
Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

12. Finding Components with Metadata in
Component Repositories

Lecturer: Dr. Sebastian Götz

Prof. Dr. Uwe Aßmann

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de/teaching/cbse

13.04.2017

1. Component Search with
Metadata

2. Searching and Browsing with
Faceted Classications

3. Faceted Metadata

4. UML Components

5. Searching by Conformance to
Protocols

Component-Based Software Engineering (CBSE)

Obligatory Literature

► R. Prieto-Diaz. Implementing Faceted Classification for Software Reuse.
CACM May 1991, vol 34(5).

► U. Aßmann. Reuse in Semantic Applications. REWERSE summer school
2005, La Valetta, Malta. Lecture Notes In Computer Science (LNCS) 3564.

■ http://www.springerlink.com/content/blx9yfthkq5xjtjg/

Component-Based Software Engineering (CBSE)

References

► http://flamenco.berkeley.edu

► http://search.express.ebay.com

► FacetMap: Greg Smith, Mary Czerwinski, Brian Meyers, Daniel
Robbins, George Robertson, Desney S. Tan. FacetMap: A Scalable
Search and Browse Visualization. IEEE Transactions on
visualization and computer graphics, vol.12 , No. 5,
september/october 2006.

► Thorsten Teschke. Semantische Komponentensuche auf Basis von
Geschäftsprozessmodellen. Dissertation. Universität Oldenburg,
2003.

► Facet-based search of computer science literature in DBLP
repository
► http://dblp.l3s.de/

► Luca de Alfaro and Thomas A. Henzinger: Interface automata.
ACM SIGSOFT FSE/ESEC, 2001

► http://doi.acm.org/10.1145/503209.503226

http://flamenco.berkeley.edu/
http://search.express.ebay.com/
http://dblp.l3s.de/?q=&newQuery=yes&resTableName=query_resultOsC5mC
http://dblp.l3s.de/?q=&newQuery=yes&resTableName=query_resultOsC5mC
http://base.google.com/

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

12.1. Component Search
in Component Repositories

• It should be as easy to find good quality reusable software
assets as it is to find a book on the internet

Component-Based Software Engineering (CBSE)

Component Repositories

 Components must be stored in component repositories with metadata
(markup, attributes) to find them again

 Description by Metadata:

• Attributes: Keywords, Author data

• Contracts (Usage protocols, behavioral specifications)

 State machines

 Sequence diagrams

 Contracts (pre/post/invariants)

 Examples of Component Repositories

• CORBA

 implementation registry

 interface registry

• COM+ registry

• Commercial Component Stores www.componentsource.com

• Debian Linux Component System (apt, dpkg)

• CTAN TeX Archive

http://www.componentsource.com

Component-Based Software Engineering (CBSE)

Why Searching Components?

 A public component repository is called a market, managed by a trader
(broker)

• Distributing or selling components

• Companies can register components at the the trader

• Customers can search components in the markets and buy or rent them

 Searching for functionality (interface, contract, protocol)

• Reuse instead of build

• Searching for components to replace own ones

• Semantic substituability (CM-S) should be ensured

 Searching for quality features

• Performance, energy consumption, reliability

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

12.2 Searching and Browsing with
Faceted Classifications

(thanks to Jan Polowinski)

Component-Based Software Engineering (CBSE)

Faceted Classification for Better Matchmaking

► A facet is a dimension of a classification

■ Facets simplify search: Facet classification has been invented in library science to
simplify the description and search for books [Ranganathan].

■ A component (or service) is described in several facets, dimensions, which are
orthogonal to each other

► Matchmaking engines can look up a service by stating the desired properties
for all facets.

► Classifications can be arranged in facets if several partitions of a group of
objects exist that are orthogonal

■ In domain modelling, this is often the case

■ Without facets, multiple inheritance hierarchies have to be specified, which are
often clumsy and error-prone

► Idea: use facets for better matchmaking

Component-Based Software Engineering (CBSE)9

Comparison

Standard Classification
► B Birds

■ B1 Breathing of Birds

■ B2 Breading of Birds

► F Fish

■ F1 Breathing of Fish

■ F2 Breading of Fish

► M Mammal

■ M1 Breathing of Mammals

■ M2 Breading of Mammals

► I Insects

■ I1 Breathing of Insects

■ I2 Breading of Insects

• Gills: F1

Example: Wikipedia

Faceted Classification
► Processfacet

■ P Physiology

. P1 Breathing

. P2 Breading

► Animalfacet

■ 1 Birds

■ 2 Fish

■ 3 Mammals

■ 4 Insects

• Gills: P1-2

Component-Based Software Engineering (CBSE)

Facetted Browsing

► Here Facet means: an interesting property of an object orthogonal to
other properties

► Incremental refinement of a set of results by restricting values of the
data's facets

► Many application domains

Component-Based Software Engineering (CBSE)

Component-Based Software Engineering (CBSE)

Facet

Facet

Facet

Facet

Component-Based Software Engineering (CBSE)

Widget for Restriction

of Facet Values

Component-Based Software Engineering (CBSE)

Sorting and

Grouping

Mechanism

s

Component-Based Software Engineering (CBSE)

Result Set

Component-Based Software Engineering (CBSE)

More Examples of Facetted Browsers

► Flamenco
■ FLexible information Access

using MEtadata in Novel
COmbinations

■ University of California,
Berkeley

► mSpace
■ http://mspace.fm
■ University of Southampton

► FacetMap
■ Microsoft Research

http://mspace.fm/

Component-Based Software Engineering (CBSE)

Facetted Browsing in e-Commerce

Component-Based Software Engineering (CBSE)

Component-Based Software Engineering (CBSE)

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

12.3 Faceted Metadata for Search

in Component Repositories

Component-Based Software Engineering (CBSE)

Example: Service Facets in a UNIX System

► To describe the services of a UNIX system, [Prieto-Diaz] employed a 4-
faceted scheme

■ function

■ logical object

■ implementation object

■ tool

► UNIX services can be described with appropriate facet values and looked up
in a repository

► Example: “append a line to a file with a text editor”

■ (function = append, logical class = line, implementation class = file, tool = text
editor):

Function Logical
class

Impleme
ntation
Class

Tool

edit Line File Text editor

Component-Based Software Engineering (CBSE)

Example: Services in a UNIX System

► [Prieto-Diaz] already suggested to use controlled vocabulary (domain
ontologies) to improve the effectiveness of the search:

■ If every facet is described by an ontology, the service descriptions are
standardized for a user group and improve understanding of service semantics.

► Facets simplified the description of the components, improved the
understanding of their domain, and facilitated the search in component
libraries.

Component-Based Software Engineering (CBSE)
And for Components?

Component-Based Software Engineering (CBSE)
And for Components?

Component-Based Software Engineering (CBSE)

Other Advantages

► The facet classification is rather immune to extensions
■ Extending one facet leaves all others invariant

■ Example: If Europe is extended with a new member state, the matchmaking
algorithm can deliver new courses from the new member state, without affecting
the rest of the semantic specifications at all

► The accuracy can be improved by synonym lists (thesauri)
■ Synonyms increase the chances for a match

■ They permit to search not only for keywords, but also for their synonyms
(assembled in a thesaurus)

■ Beyond synonyms other refinement relations of concepts can be used to improve
the search

■ Example: Great Britain is used as a synonym for England, Scotland, and

Wales. Synonyms allows for matchmaking on any of the keywords, so that
students looking for a course need not bother about geographic and political
details.

Component-Based Software Engineering (CBSE)

The Use of Ontologies in Faceted Matchmaking

► Ontologies simplify matchmaking by standardization

■ Since they provide standardized terminology and standardized
ontological relations between the terms, queries can specify

. keywords with a precise, shared, and standardized meaning (semantic
search),

. contextual information for search in context, where the context is defined by
the ontological relations of the terms.

► Example:

■ A web course on IT basics can be queried by the standardized
word IT-basics (being semantic search)

■ also in context, by relating it to courses such as IT-advanced or
IT-preparatory (contextual search)

. “find me an IT basics course, which has a preceding preparatory IT course
and has a follow-up advanced IT course“

Component-Based Software Engineering (CBSE)

Putting up a Component Repository for
Your Company

► Define facets for component metadata

■ If possible, reuse an ontology for a facet

■ Form a thesaurus for synonyms

■ Store the metadata as a tuple in the database

► Realize a search algorithm that uses facets together with thesauri

► Or use a faceted browser with the metadata

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

12.4 UML Components

Component-Based Software Engineering (CBSE)

Component Specification with UML Components

• A UML component is a hierarchical class for big objects with provided and
required interfaces (roles)

• Provided interfaces (provided roles) use „lollipop“ notation

• Required interfaces (required roles) use „plug“ notation

• Some components are required to use specific other interfaces

<<comp spec>>

ExamMgr
IExamMgt

<<comp spec>>

ExamMgr
IExamMgt

IAppointmentMgt

<<comp spec>>

AppointmentMgr

Component-Based Software Engineering (CBSE)

Ports of UML Components

 A port is a connection point of a UML component.

• A port has a set of roles (interfaces)

• It may be represented by a port object (gate)

System

Port
Provided
interfaces Required

interfaces

Component-Based Software Engineering (CBSE)

Lollipops und Plugs (Balls and Sockets)

► For a UML component, provided and required interfaces can be
distinguished

 A required interface specifies what the current class needs to execute.

<<provided>>
Addresses

<<required>>
Text

AddressManager

listAdresses()
listAdresses()

sort()

Adresses

Text

Component-Based Software Engineering (CBSE)

Ports

► Ports consist of port classes with interfaces and behavior in form of
interface automata

 provided: normal, offered interface

 required: used, necessary interface

Component

<<provided>>
Port class

<<required>>
Port class

Component

Port

Component-Based Software Engineering (CBSE)

Nesting of UML Components

► UML components

 Ports are connected by links (connections)

 Delegation link: links outer and inner port

DocumentSystem
Link/connection Delegator

Text
Manager

Address
ManagerAdresses

email

email
Manager

Text

Forms

Buffer

LinesTextRep

IText

IForm

Component-Based Software Engineering (CBSE)

Refinement of UML Components

► UML components can be nested.

► Nesting is indicated by aggregation and part-of relationship.

► Nesting is introduced by an encapsulation operator encapsulate.

Document
System

Document System

Text
Manager

Address
ManagerAdresses

email
email

Manager

Text

Forms

Buffer

LinesTextRep

IText

IForm

encapsulate

decompose

Component-Based Software Engineering (CBSE)

Encapsulation means Aggregation

► Nesting means Aggregation

 A UML component is a package and a facade for all subcomponents

DocumentSystem

Text
Manager

Address
ManagerAdresses

email

email
Manager

Text

Forms

Buffer

LinesTextRep

IText

IForm

DocumentSystem

Text
Manager

Address
Manager

Adresses

email

email
Manager

Text

Forms

Buffer

Lines

TextRep

IText

IForm

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

12.5 Searching in
Component Repositories by
Contract Conformance
• Contract Conformance means semantic substituability

Component-Based Software Engineering (CBSE)

Ports can be Equipped with Interface Automata Contracts

► Ports consist of port classes with interfaces and behavior in form of
interface automata (port automata, protocol automata)

 provided: normal, offered interface

 required: used, necessary interface

Component

<<provided>>
Port class

<<required>>
Port class

Component
Port

Interface
automaton

Interface
automaton

Component-Based Software Engineering (CBSE)

Component Protocols with Operational Contracts

 The port protocol automata can be composed to a component protocol
automaton

 Components may have a protocol automaton in which their ports,
services, procedures should be called, invoked, or signalled

• The provided protocol specifies in which order the services can be invoked (given by a
provided interface automaton)

• The required protocol specifies in which order the services can be invoked (given by a
requried interface automaton)

 The order of component invocation can be specified by a language
over the alphabet of the ports, services, procedures (state-based
protocol contract, operational contract)

• Language contains sets of paths over the alphabet

• Finite state automaton (regular language) specify regular sets of paths

 UML state chart (Hierarchical finite state machine, prococol machines)

 Data flow diagram

• Stack machine (context-free language)

• Petri net (regular dialects, context-free and context-sensitive dialects)

 The contract provides an abstraction of the implementation of the
component

• Implementations must be proven to be conformant to the procotol

 The conformance checking is decidable if the protocol language is
decidable

 Sets of paths over states (words over state and edge alphabet)

Component-Based Software Engineering (CBSE)

The Golden Rules of Substitutability

 Component A can replace component B if it offers more and requires
less

 Two conditions:

• A‘s provided protocol must be stronger (richer, larger) than B‘s – it must
guarantee more

• A‘s required protocol must be weaker (smaller) than B‘s – it must assume less

 If those conditions hold for all component instances of two component
types AT and BT, we say that AT can substitute BT in a program.

Component-Based Software Engineering (CBSE)

Searching by Protocol

 A component C can be found in a repository, if a query protocol Q is given with Q <=

P(C)

 Search consists of subsumption checking with all component protocols in the

repository

 Query protocols can be:

• Metadata about the component

• Provided protocols

• Required protocols

• Provided and required protocols

Component-Based Software Engineering (CBSE)

Declarative Protocols

 A protocol can also be specified as predicates over the states of a
component (declarative contract)

• Preconditions (assumptions)

• Postconditions (guarantees)

• Invariants

 Then, the protocol consists of logic expressions. The logic should be
decidable

• OCL

• Description logic

• Datalog

• Temporal logic (propositional logic with temporal quantifiers, such as LTL and
CTL)

 Subsumption checking of protocols and conformance can be done by
reasoning

• E.g., by subsumption checking of an OWL class hierarchy

Component-Based Software Engineering (CBSE)

The End - Acknowledgements

 Faceted browsing slides are courtesy to Jan Polowinski.

