TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie — Prof. ABmann - CBSE

21. Transparency Problems and
the Decorator-Connector Pattern

A Design Pattern appearing in all classical component systems

Lecturer: Dr. Sebastian Go6tz
Transparency Problems

Decorator-Connector Pattern
Interface Definition Languages
Location Transparency

Name Transparency and Trading
Example YP Service

Generic Skeletons

Prof. Dr. Uwe ARmann
Technische Universitat Dresden

Institut fur Software- und
Multimediatechnik

http://st.inf.tu-dresden.de/teaching/cbse
24. April 2017

NOoOOhRWDNPRE

Service-Oriented Architecture

Component-Based Software Engineering (CBSE)

When the Object Management Group (OMG) was formed in 1989, interoperability was
its founders primary, and almost their sole, objective:

» A vision of software components working smoothly together, without regard to details
of any component's location, platform, operating system, programming language, or
network hardware and software.

» Jon Siegel

The Ladder of Composition Systems

"~ 3 Component-Based Software Engineering (CBSE)

SoTtware Composition | ive C it]
Composition Lanp S e nvalillve |Om(§|08| ion
Systems guag iccola Gloo

Aspect/J
AOM

Aspect Systems Aspect Separation
Crosscut graphs

Composition Composition Filters

View Systems
y Operators Hyperspaces

Architecture as Aspect Darwin COSY

Architecture Systems
Connectors BPMN ACME

Object-Oriented Systems Objects as
Run-Time Components

C++ Java

Modular Systems Modules as Compile- Shell scripts
Time Components Modula Ada-85

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie — Prof. ABmann - CBSE

21.1. Transparency Problems
for COTS

Transparency Problems (Middleware Concerns)

Component-Based Software Engineering (CBSE)

A transparency problem describes software concerns that
should be transparent (invisible, hidden) when you write or
deploy a component.

To solve a transparency problem, the component model requires different
secrets

Content secrets

Language transparency: interoperability of components using different
programming languages

Persistency transparency

. Hide whether server has persistent memory
Lifetime transparency

= Hide whether server has to be started

Connection secrets
Location transparency: distribution of programs
. Hiding, where a program runs
Naming transparency: naming of services
. Hiding, how a service is called
Transactional transparency
= Hide whether server is embedded in parallel writes

|dea: Encapsulate Transparency Problems

Component-Based Software Engineering (CBSE)

Components encapsulate content secrets

Ports abstract required and provided interface points of components
(event channels, methods)

Ports specify the data-flow into and out of a component
Connectors are special communication components encapsulating
connection secrets
= Connectors are attached to ports
= Connectors abstract from the concrete communication carrier

. Can be binary or n-ary Interface
. Connector end is called a role Port Role
A role fits only to certain types /
of ports (typing)
(A

Connector

OO O

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie — Prof. ABmann - CBSE

21.2 The Decorator-Connector
Pattern

» Connectors can hide implementation issues for connection
transparency problems

Language Transparency With the Connector Pattern

Component-Based Software Engineering (CBSE)

The Connector Pattern (Double-Decorator Pattern, n-Decorator Pattern) can

be used in a standard object-oriented language to implement connectors for
classes and objects

= Stub: Decorator of the client
Takes calls of clients in language 4 and sends them to the skeleton
= Skeleton: Decorator of the server
Takes those calls and sends the component implementation in language %
Language adaptation in Stub or Skeleton (or both)
- Adaptation deals with calling concepts, etc. (see above)

- Based on a mapping of language constructs from both languages, defined by an
Interface Definition Language (IDL)

Client Client Server Component
Java C C++
Stub Stub Skeleton

| T

Call

Basic Idea: Stubs and (Static) Skeletons as Decorators

Component-Based Software Engineering (CBSE)

A typical instance of the Decorator pattern: two proxies on client and server
Stub decorates skeleton, skeleton decorates server

1
ServerComponent |
next
service(Data d)
|
ConcreteServer ServerDecorator |~ |
service(Data d) service(Datad) .|
............................... solveTransparencyProblem();
/\ next.service(Data d);
| |
Stub Skeleton

| super.service(Data d);
""""" additional Stuff():

service(Data d) service(Datad) -~

The Decorator-Connector Pattern

Client and server are connected via a layer of stubs and skeletons (the

connector)
The connector consists of two decorators of the server

» Decorator chain is inherited

<<client>> <<server>>
. ServerDecorator —[>
Client Server
service(d : Data) service(d : Data) ——v service(d : Data)

A
- next

- server.service(d);\l

ServiceStub ServiceSkeleton

service(d : Data)

service(d : Data)

next.service(d); N next.service(d); N

Object Diagram of Decorator-Connector Pattern

» Connector consists of a Decorator chain, in a layer

<<client>> <<server>>
c : Customer bank : Bank
startWork() createAccount()
1
I server.createAccount();\I next

server : skeleton :
ServiceStub ServiceSkeleton

createAccount() createAccount()

next.createAccount() next.createAccount(); N

Layered Decorators (Object Diagram)
__ Component-Based Software Engineering G889~~~

» More decorators can be stuffed into the connector in additional layers:

<<client>> <<server>>
c : Customer bank : Bank
startWork() createAccount()
1
' server.createAccou nt();\ next
server
stubl: skeletonl :
ServiceStubl ServiceSkeletonl
createAccount() __L . createAccount()
I : i i§XE
1 1
= next.createAccount()\I next.createAccount(); \I
stub? : skeleton?2:
ServiceStub?2 ServiceSkeleton2
createAccount() createAccount()

next.createAccount() next.createAccount();

Decorator vs Proxy vs Adapters vs Chain

Component-Based Software Engineering (CBSE)

Why should it be a Decorator?
= Decorators allow for stacking of connectors (layering)
= Proxy pattern: just one representative, no stacking possible

However, from the client and server's perspective, stub and skeletons are
Proxies

- Adapter: Adapted interface must be different from Adaptee
= Chain: In a Chain, the processing may stop (not here..)
However, Connectors can use all other basic “representer” patterns
= Adapter-Connector: adapts required interface to server additionally
= Chain-Connector: may stop processing
= Proxy-Connector: just one layer possible

Tasks of the Layers

Component-Based Software Engineering (CBSE)

In a component model, every layer of decorator-pairs is devoted to a
specific task for transparency (middleware concern)

- Language mappings (language interoperability)

- Distribution handling (serialization, deserialization)

- Names (name mapping, name search)

- Persistence

- Transactions

- etc.

Layers can be composed (stacked) freely

Containers - Infrastructure for all Connectors

Component-Based Software Engineering (CBSE)

A container of a server component is an infrastructure for all connectors at
run-time (all decorators/proxies).
= Creation (server component factories for service families)
= Transactions (begin, rollback, commit)
= Persistence (activate, passivate)

= The container is an instance of the Facade design pattern (DPF)

<<client>>
customer:
Customer
startWork() <<server>>
bank:
Bank
createAccount()
\ 4
stub: skeleton:
ServiceStub ServiceSkeleton
createAccount() » createAccount()

Y

Cﬁl

<<client>>
account:
Transfer
bank:
Account
. transfer()
container:
Container 4
beginTA()
rollbackTA() v
commitTA() skeleton: stub:
ServiceSkeleton ServiceStub
transfer() transfer()

Who Realizes Stubs and Skeletons?

Component-Based Software Engineering (CBSE)

Programmer
= Much handcrafting, using Decorator pattern. Boring and error prone

Generator:
- Stub
Export interface is component dependent, independent of source language
Implementation is source language dependent
= Skeleton
Import interface is component dependent, independent of source language
Implementation is target language dependent
Idea: Generate export and import interfaces of Stub and Skeleton out of a
component interface definition
- Take generic language adapter for the implementation

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie — Prof. ABmann - CBSE

21.3 Interface Definition Languages
for Mapping Different Languages

« Language mediation with the ,star approach®

Transparency Problem 1:
Language Transparency

Component-Based Software Engineering (CBSE)

Calling concept
= Procedure, Co-routine, Messages, ...
Calling conventions
- Call by name, call by value, call by reference, ...
Calling implementation
- Parameters on the stack, in registers, allocation and de-allocation
Data types
= Value and reference objects
= Arrays, union, enumerations, classes, (variant) records, ...
= Kind of inheritance (co-variance, contra-variance, ...)
Data representation
- Coding, size, little or big endian, ...
= Layout of composite data
Runtime environment
= Memory management, garbage collection, lifetime ...

Language Mediation - Options In General

Component-Based Software Engineering (CBSE)

Direct language mapping (full graph of language relationships):
1:1 adaptation of pairs of languages: O(n2)

Mapping to common language (“star approach”):
Adaptation to a general exchange format: O(n)

CORBA IDL SOIE0lL
specification
Compiling to common basic type system
.NET, WSDL

Ada95
Specification

CORBA
IDL
Specification

C++

JENE Specification

Specification

Language Mediation - Common Basic Type System

Component-Based Software Engineering (CBSE)

Compiling to common basic type system:

Standardize to a single format (like in .NET): O(1) but very restrictive, because
the languages become very similar

NET
Common
language
runtime

Visual Basic

Language Mediation - WSDL

Component-Based Software Engineering (CBSE)

Web Service Definition Language (WSDL) uses a similar concept as
.NET, but encodes everything as XML

COBOL

Solutions in Classical Component Systems

Component-Based Software Engineering (CBSE)

Calling concept:
- standardized by the communication library (RPC)
Calling conventions:
- Standardized by the communication library (EJB - Java , DCOM - C)
- Implementation for every single language (Corba)
Calling implementation:
= Standardized by the communication library (EJB - Java , DCOM - C)
- Implementation for every single language (Corba)
Data types:
- Standard (EJB - Java types)
- Adaptation to a general exchange format (interface definition language, IDL)
= CORBA IDL
= Web Service Definition Language (WSDL)
Data representation:
- Standard (EJB - Java representation, DCOM - binary standard)
- Adaptation to a general format (IDL 2 Language mapping)
Runtime environment
= Standard by services of the component systems

Type Mapping with the
CORBA IDL

Component-Based Software Engineering (CBSE)

An IDL language defines the
= Interfaces of components
- Data types of parameters and results

Language independent type system
- General enough to capture all data types in a
programming language
- IDL mediates between type systems of these
languages
Procedure of construction
= Define component interface with IDL

= Generate stubs and skeletons with required
languages using an IDL compiler

- Implement the frame (component) in respective
language (if possible reusing some other,
predefined components)

Ada95
Specification

COBOL
specification

IDL
Specification

C++
Specification

Java
Specification

Ex.: Types in the CORBA

Interface Definition Language

Component-Based Software Engineering (CBSE)

// IDL specification scheme

modules <identifier> {
<type declarations>
<constant declarations>
<exception declarations>

// classes

interface <identifier> : <inheriting-from> {

<type declarations>

<constant declarations>

<exception declarations>

// methods

optype <identifier>(<parameters>) {

}

module HelloWorld {
interface SimpleHelloWorld ({
string sayHello() ;
}i
}i

&

basic types

Ints (short,..) h

Any

Reals (float..)i

Bool

Enum

El
1113

Chatr, string, h
octet h

types !

objects h

value objectsh

non-objects

constructors

Struct

Sequence

Union

Array

Generation of Stubs and Skeletons from CORBA IDL

» Generation is done for every involved host programming language
(HPL)

» Interface Repository is queried for component interfaces
(introspection)

IDL Interface

IDL-
Compiler

) 4

Client

_ Server
Implementation

Implementation

Client HPL
compiler

Server HPL
compiler

Stubs and Skeletons for Language Mediation

Component-Based Software Engineering (CBSE)

Stub

Skeleton

Vv

N

Language 1
Map data to an
exchange format
(IDL)

Call Skeleton

Language 2
Receive call from stub

Retrieve data from the
exchange format (IDL),
transform it into
language 2

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie — Prof. ABmann - CBSE

21.4 Location Transparency

Transparency Problem 2: Distribution

Component-Based Software Engineering (CBSE)

Location transparency: interoperability of programs independently of their
execution location
Problems to solve
= Transparent basic communication
Transparently initiate a local/remote call
Transparently transport data locally or remotely via a network
Transparent references
- Distributed systems are heterogeneous
Platform transparent, concurrent execution?
So far we handled platform transparent design of components
= Usual aspects in distributed systems
Transactions
Synchronization

Transparent Local/Remote Calls

29 Component-Based Software Engineering (CBSE)

Communication over

RPC for remote calls to a

proxies/decorators handler
= Proxies redirect call locally = Handler always local to the
or remotely on demand callee
. E;)I)eqres always local to the We reuse Stubs and
Skeletons
Site 1 Site 2
Remote Local Server Component
Client Client C++
Stub Stub Skeleton
Local Call |
Remote Call

Stubs and Skeletons for Distribution
___ ComponentBased Software Engineering (6BSE)

» A variant of the Connector pattern, using remote procedure call (RPC)
between the decorators

<<client>> <<server>>
. ServerDecorator —[>
Client Server
service(d : Data) service(d : Data) 1 service(d : Data)
X
: A next

‘{1 stub.service(d); \l

ServiceStub ServiceSkeleton

service(d : Data) service(d : Data)

/I communicate via RPC

rpcModule.send(skeleton, serverObject.service(d)

“service’, ...);

Stubs and Skeletons for Distribution

Component-Based Software Engineering (CBSE)

Site 1

Client - --> Stub

Site 2

N

Vv

Skeleton - --> Server

Language 1

Map data / call
to a byte stream
(marshalling,serializing)
Exchange format
Send RPC

RPC

Language 2

Receive RPC
Retrieving data / call
from the byte stream

(unmarshalling,deserializing)
Exchange format

Stubs, Skeletons, and Serializers

Component-Based Software Engineering (CBSE)

» or with separate serializers/deserializers

Site 1 i Site 2
Client --p Stub | $| Skeleton $ Server
< -3 < I <15 <3
Language 1 i Language 2
RP :
Map data / call ¢ Receive RPC

to a byte stream
(marshalling,serializing)
Exchange format
Send RPC

Retrieving data / call
from the byte stream
(unmarshalling,deserializing)
Exchange format

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie — Prof. ABmann - CBSE

21.5 Name Transparency and
Trading

*Mapping names to locations by name servers

Transparency Problem 3: The Reference Problem (Name
Transparency)

Component-Based Software Engineering (CBSE)

How to reference something?

= Target of calls (services)

- Call by reference parameters and results

- Reference data in composite parameters and results
Scope of references

- Thread/process

= Computer

= Agreed between communication partners

- Net wide

How to handle references transparently?

Approach: Global Adresses

Component-Based Software Engineering (CBSE)

World wide unique /ogical addresses

e.g., computer address + local address

URL (Uniform Resource Locators), URI (Uniform Resource Identifiers)
CORBA IORs (Interoperable Object References)

Global file names, e.g., with AFS (Andrew File system)

Names in a global cloud file system (DropBox, Skydrive, etc.)

Names in a private cloud file system http://sparkleshare.org/

Mapping tables for local references

Logical to physical
Consistent change of local references possible

One server decorator per computer manages references

1:n relation decorator to skeletons

1:m relation skeletons to component objects
Lifecycle and garbage collection management
Identification (Who is this guy ...)
Authorization (Is he allowed to do this ...)

Name Service

>

>

Name to Location

Located in the container as an associative array (map)

<<client>>
Client

ServerDecorator

<<server>>
Server

service(d : Data)

service(d : Data)

ServiceStub

service(d : Data)

NameService

resolve(name : String) : Skeleton
register(name : String, s : Skeleton)

Decorator

service(d : Data)

service(d : Data)

Skeleton

service(d : Data)

Name Service Generalized (1)

» Distributed name service (name to location):

<<client>>
Client

ServerDecorator

If name of server is known, search for the right site providing a desired component

<<server>>
Server

service(d : Data)

service(d : Data)

ServiceStub

service(d : Data)

RemoteNameService

Decorator

service(d : Data)

service(d : Data)

resolve(IOR) : Skeleton
register(IOR, Skeleton)

Skeleton

service(d : Data)

Name Service Generalized (2)

» Extended name service, dynamic call:

description

<<client>>
Client

ServerDecorator

If name of server is not known, search for the right service with faceted feature

<<server>>
Server

service(d : Data)

service(d : Data)

nextf service(d : Data)

ServiceStub

ServiceSearchService

Decorator

search(Features) : Skeleton
register(Features, Skeleton)

Skeleton

service(d : Data)

service(d : Data)

service(d : Data)

Traders as Generalized Name Servers

Component-Based Software Engineering (CBSE)

Trader service, traded call map symbolic service descriptions (service

properties) to name or location
Search for a server component with known properties, but unknown name

Server components register at a trader with name, reference, and lookup
properties (metadata)
The trader has a component repository (registry)
Instead of names, lookup of service matches properties (metadata)
Return reference (site and service)
Matching relies on standardized properties
Terminology, Ontology in facets (see “Finding components”)
Functional properties (domain specific functions ...)
Non-functional properties (quality of service ...)

Trader
Decorator
, i +register(f : Features, s: Skeleton)
. .
SENIEE(E ¢ DEIE) +search(f : Features) : Skeleton

Remark: Skeletons, NameServers, and Containers

Component-Based Software Engineering (CBSE)

Can be started and consulted by skeletons

May offer many other aid functionality
= Transactions: consistent management of multiple clients and service requests
= Security
= Persistence
= Interception (hooks into which new functionality can be entered)
= Support for aspects

What Classical Component Systems Provide

Component-Based Software Engineering (CBSE)

Technical support: remote, language and platform transparency
= Stub, Skeleton
One per component (technique: IDL compiler)
Generic (technique: reflection and dynamic invocation)
= Decorators on client and server site
Individual
Generic (technique: Name services)

Economically support: reusable services
= hame, trader, persistency, transaction, synchronization

Summary

Component-Based Software Engineering (CBSE)

Component systems provide many component secrets

- Location, language and platform transparency

= Transactional, persistence, security, name service
Component secrets are realized with the Connector Pattern (Stub, Skeleton-
Pattern)

= One pair or tuple of Decorators per component in a layer, but several layers,
stacking Decorators on top of each others

= On the server side, adapters help to make services generic
= Decorators, Proxies, Adapters, Chains on client and server site
Generated by IDL compiler

- Is the IDL compiler essential?
= No! Generic stubs and skeletons are possible, too. Technique: Reflective invocation

A More Simple Connector with Server Interface
(Alt. 2, with Abstract Interface)
— ComponentBasedSoftware Engineering CBS9)

» Client and server are connected via a layer of stubs and skeletons (the
connector)

» Server, Stubs and Skeletons inherit from same interface (not a Decorator!)
- this cannot be layered

<<client>> <<interface>> <<server>>
Customer IBank Bank
| |
startWork() createAccount() I createAccount()
: serverObject
e stub.createAccount();\I

ServiceStub ServiceSkeleton

createAccount() createAccount()

skeleton.createAccount serverObject.createAccount()

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie — Prof. ABmann - CBSE

Example: A Remote
Yellow Page Service

*with remote access, serialization

Remote Yellow Page Service

» Basic design without Serialization/Deserialization

<<interface>> <<server>>
<<client>> IYellowPage YellowPageServer
Client
lookup(name : String) lookup(name:String)
startWork() store(k:String, v:String) store(k:String, v:String)
' Zx ’\serverObject
N

|

|

I stub.lookup(,MyName®);

I stub.store(,MyName*, ,name*);
stub.lookup(,MyName*);

YellowPageStub YellowPageSkeleton

lookup(name:String) lookup(name:String)
store(k:String, v:String) store(k:String, v:SItring)
1

skeleton.store(k,v) N serverObject.store(k,v); N

Remote Yellow Page Service

Component-Based Software Engineering (CBSE)

With Serialization/Deserialization

<<client>>
Client

<<interface>>
IYellowPage

startWork()

lookup(name : String)
store(k:String, v:String)

stub.lookup(,MyName*);
stub.store(,MyName*, ,name*);
stub.lookup(,MyName*);

N

JAN

<<server>>
YellowPageServer

lookup(name:String)
store(k:String, v:String)

serverObject

Site 1

Site 2

stub |

/

YellowPageStub

lookup(name:String)
store(k:String, v:String)

ClientSerializer

invoke(...)

CIientSerializer.invoke(..)\l

D

ServerDeserializer

accept()

YellowPageSkeleton

Cd

lookup(name:String)
store(k:String, v:SItring)

serverObject.store(k,v); \I-!

Service Interface

Component-Based Software Engineering (CBSE)

interface IYellowPageService {
String SERVICE NAME = “Yellow Pages”;
String lookup (String name) ;
void store(String name, String value);

Service Implementation

Component-Based Software Engineering (CBSE)

class YellowPageService implements IYellowPageService ({

private Hashtable<String,String> cache =

new Hashtable<String,String>() ;
private DataBase db = ..;
public String lookup (String name) {

String res = cache.get (name) ;

if (res == null)

res = db.lookup (name) ;

if (res !'= null) {
cache.put (name, res) ;

}
}

return res;

public void store(String name, String value) ({
cache.put (name, value);

db.store (name, wvalue);

Client

Component-Based Software Engineering (CBSE)

» Wants to transparently use the Yellow Page service

Site 1 Site 2

Server

T
1
A4

Skeleton

T
1
A4

> Deserializer

-p Stub > Serializer

Example Client

Component-Based Software Engineering (CBSE)

Client calls stub with service interface:
class Client {
// returns client stub
IYellowPageService yps =

YellowPageFactory.create () ;

String res = yps.lookup (“MyName”) ;

class YellowPageFactory ({
public IYellowPageService create() ({
return new YellowPageStub () ;

Stub (client side)

Component-Based Software Engineering (CBSE)

» Realizes 1:1 mapping of client to service component

» Uses 1:1 mapping of clients to stubs

Client

Serializer

Deserializer

1
A4

Skeleton

Server

Example Client Stub - Implementation

Component-Based Software Engineering (CBSE)

class YellowPageStub implements IYellowPageService ({
private Integer logicalAddress = new Integer(-1);

public YellowPageStub () {

logicalAddress = (Object) ClientSerializer.invoke (
IYellowPageService.SERVICE NAME, logicalAddress, “new”, null);

public String lookup (String name) {

Object res = ClientSerializer.invoke (IYellowPageService.SERVICE NAME,
logicalAddress, “lookup”, new Object[] {name}) ;

return (String)res;

public void store(String name, String value) {

ClientSerializer.invoke (IYellowPageService.SERVICE NAME,
logicalAddress, “store”, new Object[] { name, value });

Scenario with Second Stub (client site)

Component-Based Software Engineering (CBSE)

By using the Decorator pattern, stubs can be stacked onto each other

Every stub solves another transparency problem (middleware concern)

Client

Serializer

Deserializer

1
A4

Skeleton

1
A4

Server

Client Stub 1 - This Time with Decorator Chain
Implementation

Component-Based Software Engineering (CBSE)

// new stub: encryption decorator

class YellowPageStubEncryption implements IYellowPageService ({
private IYellowPageService clientDec;

// Security: encryption, decryption
private String encrypt(String name) ;
private String decrypt(String name) ;

// client-side constructor
public YellowPageStubEncryption () ({
clientDec = new YellowPageStub() ;
}
// lookup function, with encryption, decryption
public String lookup (String name) ({

String res = clientDec.lookup (encrypt (name)) ;
return decrypt(res);

// store
// ..

®}

Client-side Serializer

Component-Based Software Engineering (CBSE)

» Manages the basic communication on client side
» Is called from the client stubs

» Can be hidden in a Decorator (1:1), but can be also shared by all stubs

Client Stub

T
1
\'4

Deserializer

T
1
A4

Skeleton

T
1
A4

Server

A\
1
1

Example Client Serializer

Component-Based Software Engineering (CBSE)

class ClientSerializer ({

public static Object invoke (String service, Integer address,
String method, Object[] args) ({

Socket s = new Socket(“yp-st.inf.tu-dresden.de", 1234);
ObjectOutputStream os = new ObjectOutputStream(s.getOutputStream()) ;
ObjectInputStream is = new ObjectInputStream(s.getInputStream()) ;
os.writeObject (service) ;
os.writeObject (address) ;
os.writeObject (method) ;
if (args !'= null) {
os.writeObject (args) ;
}
os.flush();
Object result = is.readObject()
s.close() ;
return result;

Server-side Deserializer

Component-Based Software Engineering (CBSE)

» Manages the basic communication on server side
» Calls the service skeletons (1:n mapping)

Client

T
1
\'4

Stub

> Serializer

1
A4

Skeleton

T
1
A4

Server

Example Server Deserializer (1)

Component-Based Software Engineering (CBSE)

Deserializer listens on the network is shared between different services
= interprets incoming service names
= can create/invoke several service skeletons
= lives always, but hides lifetime of the server

class ServiceDeserializer {
public void run() {
ServerSocket server = new ServerSocket(1234);
Socket client = server.accept() ;
ObjectInputStream is = new ObjectInputStream(client.getInputStream()) ;
ObjectOutputStream os = new ObjectOutputStream(client.getOutputStream()) ;
while (true) {
String service = (String) is.readObject();
if (service.equals(IYellowPageService.SERVICE NAME))
handleYellowPage (os, is);
} else if (service.equals (IPhoneBook.SERVICE NAME)) {
handlePhoneBook (os, is);
} else {

System.err.println ("Unknown service.");

®}

Example Server Deserializer (2)

Component-Based Software Engineering (CBSE)

private void handleYellowPage (ObjectOutputStream os, ObjectInputStream is) {
Integer address = (Integer) is.readObject();
if (address == -1) { // creation of the service
YellowPageSkeleton skeleton = new YellowPageSkeleton() ;
os.writeObject (skeleton.getLogicalAddress()) ;
} else { // service query: interpretation of the symbolic service name
IYellowPageService yp = new YellowPageSkeleton (address) ;
String method = (String) is.readObject()
Object[] args = (Object[]) is.readObject()
if (method.equals("lookup")) {
String res = yp.lookup((String)args[0]); // finally: call the service
os.writeObject (res);
} else if (method.equals("store")) {
yp.store ((String)args[0], (String)args[1l])
os.writeObject(null) ;
} else

System.err.println ("Unknown service method.") ;

}
os.flush() ;

&

Skeleton (Server side)

Component-Based Software Engineering (CBSE)

» Manages service components of server on server side
» 1:1 mapping to service component

> Deserializer Server

Client Stub > Serializer

T
1
\'4

Example Yellow Pages Server Skeleton (Service Lookup
and Call, Adapter)

Component-Based Software Engineering (CBSE)

public class YellowPageSkeleton implements IYellowPageService ({

private static Hashtable<Integer, IYellowPageService> yellowPageServices =
new Hashtable<Integer, IYellowPageService>() ;

private Integer logicalAddress;
public YellowPageSkeleton() {
this (new Integer (yellowPageServices.size())):
yellowPageServices.put (logicalAddress, new YellowPageService()) ;
}
public YellowPageSkeleton (Integer address) ({
logicalAddress = address;
}
public Integer getlLogicalAddress() { return logicalAddress; }
public String lookup(String name) {
IYellowPageService service = yellowPageServices.get(logicalAddress) ;
return service.lookup (name) ;
}
public void store(String name, String wvalue) {
IYellowPageService service = yellowPageServices.get(logicalAddress) ;

service.store (name, value);

Creation of YP Service

Component-Based Software Engineering (CBSE)

Client Stub Decorator Decorator Skeleton Server
Client Server Impl
Site Site
create invoke Socket
(‘create”) | Communication
Call object
] new
> new
return
* Service
Socket
p . Complimpl
es Communication PImp
< handle
return handle
Stub

Object

Call (Lookup) YP Service

Component-Based Software Engineering (CBSE)

Client Stub Decorator Decorator Skeleton Server
Client Server Impl
Site Site
lookup invoke
», (handle, Socket
“lookup”) ,| Communication
Call object
] lookup
1 lookup
return
« Strin
Socket 9
“ communication
res
< Object
return
String

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie — Prof. ABmann - CBSE

Generic Skeletons

*Mapping names to locations by name servers

Rept.:
Reflection & Reflective Invocation

Component-Based Software Engineering (CBSE)

Reflection
= to inspect the interface of an unknown component
. for automatic/dynamic configuration of server sites
= to call the inspected components
Access to interfaces with IDL
= Standardize an IDL run time representation and access
- Define a IDL specification for IDL representation and access
- Store IDL specifications in interface repositories which can be introspected

Example Generic Skeleton (Reflective Skeleton)

Component-Based Software Engineering (CBSE)

A generic skeleton is a special case of a name service: using reflection to

look up the name for a method
class ReflectiveSkeleton {

// serverObjects is the server implementation repository

static ExtendendHashtable serverObjects = new ExtendedHashtable() ;
ObjectOutputStream os;

ObjectInputStream is;

gublic Object handleGeneric() { ..
Integer addr= (Integer) is.readObject();
String mn = (String) is.readObject() ; //method name
Class[] pt (Class[]) is.readObject();//parameter types
Object[] args= (Object[]) is.readObject();//parameters

// get server object reference by reflective call to implementation repository

Object o = serverObjects.getComponent (addr) ;

Method m = o.getClass () .getMethod (mn,pt) ;

Object res = m.invoke (o,args) ; //method call by
reflection

os.writeObject (res) ;
os.flush() ;

Appendix
The Decorator Design Pattern
_ ComponentBasedSoftwareEngineedng(GBS9)

> (Repetition from DPF in winter)

Decorator Pattern

Component-Based Software Engineering (CBSE)

A Decorator is a skin of another object

It is a 1-ObjectRecursion (i.e., a restricted Composite):
= A subclass of a class that contains an object of the class as child
- However, only one composite (i.e., a delegatee)
Combines inheritance with aggregation
= Inheritance from an abstract Handler class
= That defines a contract for the mimiced class and the mimicing class

Client

A:Decorator

ref— - B:Decorator
hidden < ” C:RealObject

hiddden < —

Decorator - Structure Diagram

Component-Based Software Engineering (CBSE)

MimicedClass

&
<

1

mimicedOperation()

/N

mimiced

ConcreteMimicedClass

mimicedOperation()

ConcreteDecoratorA

Decorator ~ _
mimicedOperation() --..|
/ N\ mimiced.mimicedOperation()
ConcreteDecoratorB

mimicedOperation()

mimicedOperation()

super.mimicedOperation();

........... additional Stuff():

Example: Decorator for Widgets

Component-Based Software Engineering (CBSE)

mimiced.draw()

&

_ 1
Widget <
mimiced
draw()
TextWidget WidgetDecorator e |

draw() draw() -
| |
Frame Scrollbar

super.draw(); draw() draw() -
r\d rawFrame():

super.draw();
drawScrollbar():

Decorator for Persistent Objects

Component-Based Software Engineering (CBSE)

Record

1

&
<

access()

mimiced

AN

TransientRecord

PersistentDecorator >

access()

access()

mimiced.access()

PersistentRead
OnlyRecord

if (Nloaded()) load();
super.access();

&

access()
boolean loaded()
load()

PersistentRecord

access O

boolean loaded()

boolean modified()
load()
dump()

if (loaded()) load()
super.access();
if (modified()) dump():

Purpose Decorator

Component-Based Software Engineering (CBSE)

For extensible objects (i.e., decorating objects)

. Extension of new features at runtime
= Removal possible

Instead of putting the extension into the inheritance hierarchy
- If that would become too complex
- If that is not possible since it is hidden in a library

Library

New Features

T

Library

A

Decorator with
New Features

Variants of Decorators

Component-Based Software Engineering (CBSE)

If only one extension is planned, the abstract super class Decorator can be
omitted; a concrete decorator is sufficient

Decorator family: If several decorators decorate a hierarchy, they can follow
a common style and can be exchanged together

Decorators can be chained to each other
Dynamically, arbitrarily many new features can be added

.......... | | Now Features
Q‘\ ——— |New Features

/ ' New Features
| |New Features

/ \ < - - " New Features
T |New Features

The End
___Component-Based Software Engineering (GBSE)

» Many slides courtesy to Prof. Welf Lowe, Vaxjoé University, Sweden.

