
Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

22. Classical Component Systems –
CORBA

Lecturer: Dr. Sebastian Götz

Prof. Dr. Uwe Aßmann

Technische Universität Dresden

Institut für Software- und

Multimediatechnik

http://st.inf.tu-dresden.de/teaching/cbse

1. Mai 2017

1. Basics

2. Dynamic Call

3. Traded Call

4. Evaluation according to
our criteria list

5. Appendices

Component-Based Software Engineering (CBSE)

Obligatory Reading

► ISC, 3.1-3.3

► Szyperski 2nd edition, Chap 13

► http://java.sun.com/javase/6/docs/technotes/guides/idl/

http://java.sun.com/javase/6/docs/technotes/guides/idl/

Component-Based Software Engineering (CBSE)

Literature

► R. Orfali, D. Harkey: Client/Server programming with Java and Corba.
Wiley&Sons. easy to read.

► R. Orfali, D. Harkey, J. Edwards: Instant Corba. Addison-Wesley.

► CORBA. Communications of the ACM, Oct. 1998. All articles. Overview on
CORBA 3.0.

► CORBA 3.1 specification: http://www.omg.org/spec/CORBA/3.1/

► Jens-Peter Redlich, CORBA 2.0 / Praktische Einführung für C++ und Java.
Verlag: Addison-Wesley, 1996. ISBN: 3-8273-1060-1

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

22.1 Basic Mechanisms

Component-Based Software Engineering (CBSE)

CORBA: Common Object Request Broker Architecture®

► Founding year of the OMG (object management group) 1989

► Goal: plug-and-play components everywhere

► Corba 1.1 1991 (IDL, ORB, BOA)

► ODMG-93 (Standard for OO-databases)

► Corba 2.0 1995, later 2.2 and 2.4

► Corba 3.0 1999

► Corba is large

■ Object Request Broker – 2000 pages of specification

■ Object Services – 300 pages

■ Common Facilities – 150 pages

Component-Based Software Engineering (CBSE)

Ingredients of CORBA

► Component Model

■ Components are classes and objects, i.e., similar to object-oriented software

. In CORBA 3.0, the CCM has additionally been introduced

■ Components have more component secrets

. Language interoperability by uniform interface description

. Location transparency

. Name transparency

. Transparent network protocols

■ Standardization

. CORBA Services

. CORBA Facilities

 Horizontal vs. vertical

► Composition Techniques

■ Adaptation by stubs and skeletons

■ CORBA MOF for metamodelling

Component-Based Software Engineering (CBSE)

OMA (Object Management Architecture)

► A software bus, based on the Mediator (Broker) design pattern

■ Coupled by decorator-connectors

Object Request Broker

Object Services

Application
Interfaces

Domain
Interfaces

Common
Facilities

Component-Based Software Engineering (CBSE)8

The Top Class CORBA::Object

► The class CORBA::Object

defines a component model

■ The class must be inherited

to all objects in the

application

► CORBA supports reflection

and introspection:

■ get_interface delivers a

reference to the entry in the

interface repository

■ get_implementation a

reference to the

implementation

► Reflection works by the

interface repository

(list_initial_references from

the CORBA::ORB interface).

CORBA::Object

get_implementation
get_interface
is_nil
is_a
create_request
duplicate
release
....

Component-Based Software Engineering (CBSE)

Problem: Multiple Inheritance of CORBA Object

► CORBA::Object includes code into a class

► Many languages only offer only single inheritance

■ Application super class must be a delegatee

■ Only some languages offer mixin inheritance (mixin layers), such as Scala,
C# 4.0, Eiffel

CORBA::Object

ApplicationClass
that needs

connection

ApplicationClass
SuperClass

CORBA::Object

ApplicationClass
that needs

connection

ApplicationClass
SuperClass

Component-Based Software Engineering (CBSE)

Basic Connections in CORBA

► CORBA composes components with connections

■ Static method call with static stubs and skeletons

. Local or remote is transparent (compare to EJB!)

■ Polymorphic call

. Local or remote

■ Event transmission

■ Callback (simplified Observer pattern)

■ Dynamic invocation (DII, request broking, interpreted call, symbolic call)

. Searching services dynamically in the web (location transparency of a service)

■ Trading

. Find services in a yellow pages service, based on properties

. Important: CORBA is language-heterogeneous, i.e., offers these services for
most of the main-stream languages

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

22.2 Dynamic Call Connector (with Object
Request Broking)

• (Reified or interpreted call)

Component-Based Software Engineering (CBSE)

Dynamic Call Connector (Request Broking)

► CORBA dynamic call is a reified call (interpreted call), i.e., a reflective call
with a symbolic name and arguments

■ Without knowing that the service exists

■ Services can be dynamically exchanged, brought into play a posteriori
■ Without recompilation of clients, nor regeneration of stubs

■ Binding of names to adresses is dynamic

► Requires descriptions of semantics of service components
■ For identification of services

. Metadata (descriptive data): catalogues of components (interface repository,
implementation repository)

. Property service (later)

► and a mediator, that looks for services: the ORB

Component-Based Software Engineering (CBSE)

Object Request Broker (ORB)

► For a dynamic call, the ORB must be involved

► The ORB is a mediator (design pattern) between client and server

► Hides the the environment from clients

► Can talk to other ORBs, also on the web
CORBA::ORB

init
object_to_string
string_to_object
BOA_init
list_initial_services
resolve_initial_references
get_default_context
create_environment
....

Component-Based Software Engineering (CBSE)

ORB Activation

Client
object CORBA ORB

ORB_init

BOA_init

list_initial_services

resolve_initial_references

Delivers service names (as
strings)

Delivers object references
to server objects from

service

names

Initializes the server
BOA

Initializes the
mediator

Component-Based Software Engineering (CBSE)

Requesting a Service via the ORB

► Reflective calls

■ Building a call object (Request)

■ Adding arguments

■ Invoking

■ Polling, reading CORBA::ORB

// dynamic call
create_list
create_operation_list
add_item
add_value
invoke
poll_response
send
get_response
delete
....

Component-Based Software Engineering (CBSE)

Protocol of Dynamic Call (DII)

<<<<<

Server
object

Naming
Context

get_interface

resolve

create_list

Client
object OperationDef ORB

add_value

add_item

_request

invoke

delete
Free

Request

arguments

Component-Based Software Engineering (CBSE)17

ORBs

► Java-based
■ IBM WebSphere

■ IONA Orbix: In Java,
ORBlets possible

■ BEA WebLogic

■ Visibroker (in Netscape)

■ Voyager (ObjectSpace)
(with Mobile Agents)

■ free: JacORB, ILU, Jorba,
DynaORB

► C-based
■ ACE ORB TAO,

University Washington
(with trader)

■ Linux ORBIT (gnome)

■ Linux MICO

► Python-based

■ fnorb

► http://www.omg.org

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

22.3 Trader-Based Call

• The foundation of service-oriented architecture (SOA)

Component-Based Software Engineering (CBSE)

Beyond Dynamic Call: Service Call with the Trader Service

► A service call is a call, not based on naming but on semantic attributes,
published properties

■ Requires a yellow page directory of services

► Service-oriented architectures (SOA), requires matchmaking of services

■ The ORB resolves operations still based on naming (with the name service). The
trader, however, resolves services without names, only based on properties and
policies

► The trader gets offers from servers, containing new services

Trader

ClientService

Mediator pattern,
mediator lets

clients

lookup services

Interact

Import
functionality

Export
functionality

Component-Based Software Engineering (CBSE)

Service Offers for Trader

► Service offer (IOR with properties (metadata))

■ Properties describe services

■ Are used by traders to match services to queries

■ not facet-based, one-dimensional

► Dynamic property

■ A property can be queried dynamically by the trader of service

■ The service-object can determine the value of a dynamic property anew

► Matching with the standard constraint language

■ Boolean expressions about properties

■ Numeric and string comparisons

Component-Based Software Engineering (CBSE)

Traders Provide Service Hopping

► If a trader doesn’t find a
service, it calls neighbor
traders

■ Design pattern Chain
of Responsibility

► Graph of traders

■ Links to neighbors
via TraderLink

■ TraderLink filters
queries and
manipulate via
policies

trader 1trader 1

trader 4
trader 3

trader 2Policies, that
change the values
of the properties
during passing on

Flow of the
properties of

the service query
Offers
with the
trader

Component-Based Software Engineering (CBSE)

Modification of Queries

► Policies parameterize the behaviour of the traders and the TraderLinks
■ Filters, i.e., values, modifying the queries:

■ max_search_card: maximum cardinality for the ongoing searches

■ max_match_card: maximum cardinality for matchings

■ max_hop_count: cardinality search depth in the graph

possible
offers

possible
offers

possible
offers

possible
offers

found
offers

investigated
offers

cardinalities
for search

cardinalities
for matching

Cardinalities
for return

offers

Component-Based Software Engineering (CBSE)

Interfaces Trading Service

► Basic interfaces
■ Lookup (query)

■ Register (for export, retract, import of services)

■ Admin (info about services)

■ Link (construction of trader graph)

► How does a lookup query look like?
■ Lookup.Query(in ServicetypeName, in Constraint,

in PolicySeq, in SpecifiedProperties,

in howTo, out OfferSequence, offerIterator)

► Unfortunately, no faceted matchmaking possible!

Component-Based Software Engineering (CBSE)

CORBA Trader Types

Lookup

simple trader

Lookup

standalone
trader

LookupRegister Register Admin

social trader
(linked trader)

Lookup
Register

Admin

Link

substitute
trader

(proxy trader)

Lookup
Register

Admin

proxy

full-service
trader

Lookup
Register

Admin

Link proxy

query trader

Component-Based Software Engineering (CBSE)

Corba 3.0

► Provides the well-defined packaging for producing components

■ CORBA Component Model (CCM): similar to EJB

► Message Service MOM: Objects have asynchronous buffered message
queues

► Language mappings avoid IDL

► Generating IDL from language specific type definitions

► C++2IDL, Java2IDL, …

► XML integration (SOAP messages)

► Scripting (CORBA script), a composition language

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

22.5 Evaluation of CORBA

• as composition system

Component-Based Software Engineering (CBSE)

Component Model

► Mechanisms for secrets and transparency: very good

■ Interface and Implementation repository

■ Component language hidden (interoperability)

■ Life-time of service hidden

■ Identity of services hidden

■ Location hidden

► No parameterization

► Standardization: quite good!

■ Services, application services are available

■ On the other hand, some standards are FAT

■ Technical vs. application specific vs business components:

■ .. but for business objects, the standards must be extended (vertical facilities)
(thats´s where the money is)

Component-Based Software Engineering (CBSE)

Composition Technique

► Mechanisms for connection

■ Mechanisms for adaptation

. Stubs, skeletons, server adapters

■ Mechanisms for glueing: marshalling based on IDL

► Mechanisms for aspect separation

■ Multiple interfaces per object

. Facade classes/objects (design pattern facade)

► Nothing for extensions

► Mechanisms for meta-modeling

■ Interface Repositories with type codes

■ Implementation repositories

■ Dynamic call and traded call are reflective and introspective

► Scalability

■ Connections cannot easily be exchanged (except static local and remote call)

Component-Based Software Engineering (CBSE)

Composition Language

► Weak: CORBA scripting provides a facility to write glue code, but only black-
box composition

Component-Based Software Engineering (CBSE)

CORBA

Scalability

Adaptation

MetacompositionAspect Separation

Extensibility Software process

Connection
Product quality

Component-Based Software Engineering (CBSE)

What Have We Learned

► CORBA is big, but universal:

■ The Corba-interfaces are very flexible, work and can be used in practice

■ .. but also complex and fat, may be too flexible

■ If you have to connect to legacy systems, CORBA works

► Corba has the advantage of an open standard

► To increase reuse and interoperability in practice, one has to learn many
standards

► Trading and dynamic call are future advanced communication mechanisms

► CORBA was probably only the first step, but web services might be taking
over

Component-Based Software Engineering (CBSE)

The End

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

Appendix
Basic Composition Technique of CORBA (Basic
CORBA Connections)
• (self study)

Component-Based Software Engineering (CBSE)

Static CORBA Call, Local or Remote

► Advantage: methods of the participants are statically known

■ Indirect call by stub and skeletons, without involvement of an ORB

■ Supports distribution (exchange of local call in one address space to remote call is
very easy)

. Inherit from CORBA class

. Write an IDL spec

■ No search for service objects, rather fast

■ Better type check, since the compiler knows the involved types

► The call goes through the server object adapter (server decorator)

■ Basic (server) object adapter (BOA)

■ Portable (server) object adapter (POA)

■ This hides the whether the server is transient or persistent

Component-Based Software Engineering (CBSE)

The CORBA Outer Skeleton:
Basic Object Adapter BOA

► The BOA is a real adapter (no decorator)

► The BOA hides the life time of the server object (activation: start, stop)

■ Persistency

► The BOA is implemented in every ORB, for minimal service provision

► The BOA maintains an implementation repository (component registry)

► It supports non-object-oriented code

CORBA::BOA

create
get_id
dispose
set_exception
impl_is_ready
obj_is_ready
change_implementation
deactivate_impl
deactivate_obj

Component-Based Software Engineering (CBSE)

Server Site

Basic Object Adapter
BOA
(Outer Skeleton)

IDL-
generated
Skeleton

Network

Server / Object Implementation

deactivate_obj deactivate_impl
impl_is_ready object_is_ready

upcalls

create get_id

Component-Based Software Engineering (CBSE)

Object Activation on the Server through a BOA

Server object1 object2 CORBA::BOA

create

get_id

obj_is_ready

obj_is_ready
impl_is_ready

deactivate_obj

deactivate_obj

deactivate_impl

Component-Based Software Engineering (CBSE)

Portable Object Adapter POA

► The POA is a evolution of the BOA
in CORBA 3.0

■ One per server, serving many

objects

■ Nested POAs possible, with nested

name spaces

► User policies for object

management
■ User-written instance managers for

management of object instances

CORBA::POA

create_POA
find_POA
create_reference
dispose
set_exception
impl_is_ready
obj_is_ready
change_implementation
activate_object
deactivate_object

Component-Based Software Engineering (CBSE)

Object Adapters Support Different Server Life-Time
Models

► Common server process (shared server)
■ Several objects reside in one process on the server; the BOA initializes them as

threads with common address space (common apartment)

. deactivate_impl, impl_is_ready, obj_is_ready are mapped directly to thread
functions

► Separate server process (unshared server)
■ For every object an own process

► Server-per-request (session server)
■ Every request generates a new process

■ Similar to Session EJB

► Persistent server
■ Another application stores the objects (e.g., a data base).

■ The BOA passes on the queries

■ Similar to Entity Bean

Component-Based Software Engineering (CBSE)

Callback Connectors with the Callback Service

► The Callback pattern is a simplified Observer pattern

■ Registration and notification, but not status update

► Callback function registration

■ Register a procedure variable, a closure (procedure variable with arguments), or a
reference to an object at the subject, the server

► Callback works for all languages, not only object-oriented ones

Client Server
(subject)

Client2

registerCallback()

riseEvent()

callCallback()

return()

signal()

Component-Based Software Engineering (CBSE)

Event Connections

► Most flexible way of communication (also called messages)
■ Asynchronous communication

■ Works for every CORBA language

► Receiver models
■ Unicast: one receiver

■ Multicast: many receivers

■ Dynamically varying receivers

► Push model: PushConsumer/PushSupplier: object delivers event
with push, event is shipped automatically

► Pull model: PullSupplier/PullConsumer: object waits for event
with pull

■ Synchronous or asynchronous

■ Untyped generic events, or typed by IDL

► Event channels as intermediate buffers
■ Channels buffer, filter, and map of pull to push

■ Advantage:

. Asynchronous Working in the Web (with IIOP and dynamic Call)

. Attachment of legacy systems interesting for user interfaces, network
computing etc.

■ Disadvantage: Very general interface

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

Appendix
Dynamic Call Connector (with Object Request
Broking)
• Code example (self study)

Component-Based Software Engineering (CBSE)

Example Dynamic Call in C++

// Wow, a complex protocol!!

CORBA::ORB_ptr orb;

main(int argc, char* argv[]) {

orb= CORBA::ORB_init(argc,argv, ORBID);

// alternative description of service

CosNaming::NamingContext_ptr naming=

CosNaming::NamingContext::_narrow(

::resolve_initial_references(“NameService”));

CORBA::Object_ptr obj;

try {

obj= naming->resolve(mk_name("dii_smpl"));

} catch (CORBA::Exception) {

cerr << "not registered" << endl; exit(1); }

// construct arguments

CORBA::Any val1; val1 <<= (CORBA::Short) 123;

CORBA::Any val2; val2 <<= (CORBA::Short) 0;

CORBA::Any val3; val3 <<= (CORBA::Short) 456;

// Make request (short form)
CORBA::Request_ptr rq= obj->_request("op");

// Create argument list

rq->arguments() = orb->create_list();

rq->arguments()->add_value("arg1",val1,CORBA::ARG_IN);

rq->arguments()->add_value("arg2",val2,CORBA::ARG_OUT);

rq->arguments()->add_value("arg3",val3,CORBA::ARG_INOUT);

// Start request (synchronously)

cout << "start request" << endl;

rq->invoke();

// analyze result

CORBA::Short rslt ;

if (*(rq->result()->value()) >>= rslt) {

// Analyze the out/inout-prameters (arg1 has index 0)

CORBA::Short _arg2, _arg3;

*(rq->arguments()->item(1)->value()) >>= _arg2;

*(rq->arguments()->item(2)->value()) >>= _arg3;

cout << " arg2= " << _arg2 << " arg3= " << _arg3

<< " return= " << rslt << endl; }

else {

cout << “result has unexpected type" << endl; }

}

Component-Based Software Engineering (CBSE)

DII Invocation in Java (1)

// Client.java

// Building Distributed Object Applications with CORBA

// Infowave (Thailand) Co., Ltd.

// http://www.waveman.com

// Jan 1998

public class Client {

public static void main(String[] args) {

if (args.length != 2) {

System.out.println("Usage: vbj Client <carrier-name> <aircraft-name>");

return;

}

String carrierName = args[0];

String aircraftName = args[1];

org.omg.CORBA.Object carrier = null;

org.omg.CORBA.Object aircraft = null;

org.omg.CORBA.ORB orb = null;

try {

orb = org.omg.CORBA.ORB.init(args, null);

}

catch (org.omg.CORBA.systemsxception se) {

System.err.println("ORB init failure " + se);

System.exit(1);

}

Component-Based Software Engineering (CBSE)

{ // scope

try {

carrier = orb.bind("IDL:Ship/AircraftCarrier:1.0",

carrierName, null, null);

} catch (org.omg.CORBA.systemsxception se) {

System.err.println("ORB init failure " + se);

System.exit(1);

}

org.omg.CORBA.Request request = carrier._request("launch");

request.add_in_arg().insert_string(aircraftName);

request.set_return_type(orb.get_priwithive_tc(

org.omg.CORBA.TCKind.tk_objref));

request.invoke();

aircraft = request.result().value().extract_Object();

}

{ // scope

org.omg.CORBA.Request request = aircraft._request("codeNumber");

request.set_return_type(orb.get_priwithive_tc(

org.omg.CORBA.TCKind.tk_string));

request.invoke();

String designation = request.result().value().extract_string();

System.out.println("Aircraft " + designation + " is coming your way");

}

DII Invocation in Java (2)

Component-Based Software Engineering (CBSE)

// Building Distributed Object Applications with CORBA

// Infowave (Thailand) Co., Ltd.

// http://www.waveman.com

// Jan 1998

public class Server {

public static void main(String[] args) {

org.omg.CORBA.ORB orb = null;

try {

orb = org.omg.CORBA.ORB.init(args, null);

} catch (org.omg.CORBA.systemsxception se) {

System.err.println("ORB init failure " + se);

System.exit(1);

}

org.omg.CORBA.BOA boa = null;

try {

boa = orb.BOA_init();

} catch (org.omg.CORBA.systemsxception se) {

System.err.println("BOA init failure " + se);

System.exit(1);

}

Ship.AircraftCarrier carrier =

new AircraftCarrierImpl("Nimitz");

try {

boa.obj_is_ready(carrier);

} catch (org.omg.CORBA.systemsxception se) {

System.err.println(

"Object Ready failure " + se);

System.exit(1);

}

System.out.println(

carrier + " ready for launch !!!");

try {

boa.impl_is_ready();

} catch (org.omg.CORBA.systemsxception se) {

System.err.println(

"Impl Ready failure " + se);

System.exit(1);

}

}

}

Server Implementation

Component-Based Software Engineering (CBSE)

Example: Time Server in Java

► On one machine; 2 address spaces (processes)

► Call provides current time

► Contains

■ IDL

■ Server

. Starts ORB

. Initializes Service

. Gives IOR to the output

■ Client

. Takes IOR

. Calls service

// TestTimeServer.idl

module TestTimeServer{

interface ObjTimeServer{

string getTime();

};

};

Component-Based Software Engineering (CBSE)

Service Component

// TestTimeServerImpl.java – Server Skeleton

import CORBA.*;

class ObjTestTimeServerImpl extends

TestTimeServer.ObjTimeServer_Skeleton { // generated from IDL

// Variables

// Constructor

// Method (Service) Implementation

public String getTime() throws CORBA.SystemException {

return “Time: “ + currentTime;

}

};

Component-Based Software Engineering (CBSE)

Server Implementation

// TimeServer_Server.java

import CORBA.*;

public class TimeServer_Server{

public static void main(String[] argv){

try {

CORBA.ORB orb = CORBA.ORB.init();

…

ObjTestTimeServerImpl obj =

new ObjTestTimeServerImpl(…);

…

System.out.println(orb.object_to_string(obj));

}

catch (CORBA.SystemException e){

System.err.println(e);

}

}

};

Component-Based Software Engineering (CBSE)

Client Implementation (Simpler Protocol)

// TimeServer_Client.java

import CORBA.*;

public class TimeServer_Client{

public static void main(String[] argv){

try {

CORBA.ORB orb= CORBA.ORB.init();

…

CORBA.object obj = orb.string_to_object(argv[0]);

…

TestTimeServer.ObjTimeServer timeServer =

TestTimeServerImpl.ObjTimeServer_var.narrow(obj);

…

System.out.println(timeServer.getTime());

}

catch (CORBA.SystemException e){

System.err.println(e);

}

}

};

Component-Based Software Engineering (CBSE)

Execution

// starting server
C:\> java TimeServer_Server

IOR:00000000000122342435 …

// starting client

C:\> java TimeServer_Client IOR:00000000000122342435 …

Time: 14:35:44

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

Appendix
Corba Services

• (optional material)

Component-Based Software Engineering (CBSE)

Literature

► OMG. CORBA services: Common Object Service Specifications.
http://www.omg.org.

► OMG: CORBAfacilities: Common Object Facilities Specifications.

http://www.omg.org/

Component-Based Software Engineering (CBSE)

Overview on Corba Services

► Services provide functionality a programming language might not provide
(e.g, Cobol, Fortran)

► 16+ standardized service interfaces (i.e., a library)

■ Standardized, but status of implementation different depending on producer

► Object services
■ Deal with features and management of objects

► Collaboration services
■ Deal with collaboration, i.e., object contexts

► Business services
■ Deal with business applications

► The services serve for standardization. They are very important to increase
reuse.

■ Remember, they are available for every language, and on distributed systems!

Component-Based Software Engineering (CBSE)

Object Services: Rather Simple

► Name service (directory service)

■ Records server objects in a simple tree-like name space

■ (Is a simple component system itself)

► Lifecycle service (allocation service)

■ Not automatic; semantics of deallocation undefined

► Property service (feature service for objects)

► Persistency service (storing objects in data bases)

► Relationship service to build interoperable relations and graphs

■ Support of standard relations reference, containment

■ Divided in standard roles contains, containedIn, references, referenced

► Container service (collection service)

Component-Based Software Engineering (CBSE)

Collaboration Services

► Communication services
■ Resemble connectors in architecture systems, but cannot be exchanged to each

other

■ Event service

. push model: the components push events into the event channel

. pull model: the components wait at the channel and empty it

■ Callback service

► Parallelism
■ Concurreny service: locks

■ Object transaction service, OTS: Flat transactions on object graphs

. Nested transactions?

Component-Based Software Engineering (CBSE)

Business Services

► Trader service
■ Yellow Pages, localization of services

► Query service
■ Search for objects with attributes and the OQL, SQL (ODMG-93)

► Licensing service
■ For application providers (application servers)

■ License managers

► Security service
■ Use of SSL and other basic services

Component-Based Software Engineering (CBSE)

Dependencies Between the Services

Names

Life-time

Relations

Persistency Marshalling

Concurrency

Transactions

Query

Trader

Properties

Security

Events

Licenses

Collections
Callback

Component-Based Software Engineering (CBSE)

Example: CORBA Interoperable Object Reference – IOR

► A unique key for an object

■ Uniquely mapped per language (for all ORBs)

■ Hides object references of programming languages
► Consists of:

■ Type name (code), i.e., index into Interface Repository

■ Protocol and address information (e.g., TCP/IP, port #, host
name), could support more than one protocol

■ Object key:

. Opaque data only readable by generating ORB (pointer)

. Object decorator (adapter) name (for BOA)

Type Name:
interface
repository
reference

Object key

Protocol
Address
Port

Object Adapter

Opaque unique data

IOR

Component-Based Software Engineering (CBSE)

IOR Example

IDL:
TimeServer:
Verion 1.0

Object key
IIOP
iiop.my.net
1234

OA 2

0x0003

IOR

Client

Object
0x0001

OA 2

OA 1 (BOA)

Server: iiop.my.net:1234

Object
0x0002

Object
0x0003

Component-Based Software Engineering (CBSE)

Object Services: Names

► Binding of a name associates a name to an object in a name space
(directory, scope, naming context)

■ A name space is an associative array with a set of bindings of names to values

■ Namespaces are recursive, i.e., they can reference each other and build name
graphs

■ Others: Active Directory, LDAP

► The representation of a name is based on abstract syntax, not on the
concrete syntax of a operating systemor URL.

■ A name consists of a tuple (Identifier, Kind).

■ The identifier is the real name, the Kind tells how the name is represented (e.g.,
c_source, object_code, executable, postscript,..).

■ For creation of names there is a library (design pattern Abstract Factory).

Component-Based Software Engineering (CBSE)

Name Service CosNaming

bind(in Name n, in Object obj) // associate a name

rebind(in Name n, in Object obj)

bind_context

rebind_context

mk_name(String s)

Object resolve

unbind(in Name n) // disassociate a name

NamingContext new_context;

NamingContext bind_new_context(in Name n)

void destroy

void list(..)
_narrow()

CosNaming::NamingContext

Component-Based Software Engineering (CBSE)

Name Service

void bind(in Name n, in Object obj)

raises(NotFound, Cannotproceed, InvalidName, AlreadyBoand);

void rebind(in Name n, in Object obj)

raises(NotFound, Cannotproceed, InvalidName);

void bind_context(in Name n, in NamingContext nc)

raises(NotFound, Cannotproceed, InvalidName, AlreadyBoand);

void rebind_context(in Name n, in NamingContext nc)

raises(NotFound, Cannotproceed, InvalidName);

Name mk_name(String s);

Object resolve(in Name n)

raises(NotFound, Cannotproceed, InvalidName);

void unbind(in Name n)

raises(NotFound, Cannotproceed, InvalidName);

NamingContext new_context();

NamingContext bind_new_context(in Name n)

raises(NotFound, AlreadyBoand, Cannotproceed, InvalidName);

void destroy()

raises(NotEmpty);

void list(in unsigned long how_many,

out BindingLis bl, out Bindingeserator bi);

Component-Based Software Engineering (CBSE)

Name Service in IDL

module CosNaming{

struct NameComponent {

string id;

string kind;

};

typedef sequence <NameComponent> Name;

enum BindingType { nobject, ncontext };

struct Binding {

Name binding_name;

BindingType binding_type;

};

typedef sequence <Binding> BindingList;

interface BindingIterator;

interface NamingContext {

enum NotFoundReason { missing_node,

not_context, not_object };

exception NotFound {

NotFoundReason why;

Name rest_of_name;

};

}

exception Cannotproceed {

NamingContext cxt;

Name rest_of_name;

};

exception InvalidName {};

exception AlreadyBoand {};

exception NotEmpty {};

// methods see previous slide

};

interface BindingIterator {

boolean next_one(out Binding b);

boolean next_n(in unsigned long

how_many,

out BindingLis bl);

void destroy();

};

…

Component-Based Software Engineering (CBSE)

Binding
(association)

Search/create
name space

Use of Names

System dependent
name

Corba-Name

object

Search Object

name space

Create Name

object

Component-Based Software Engineering (CBSE)

Name Service: Example

// From: Redlich

import java.io.*;

import java.awt.*;

import IE.Iona.Orbix2.CORBA.SystemException; // OrbixWeb

import CosNaming.NamingContext; // name service/context

import CosNaming.NamingContext.*; // name service/Exceptions

import Calc5.calc.complex; // Typ 'complex' from Calc5

class MyNaming extends CosNaming {

...

}

public class client extends Frame {

private Calc5.calc.Ref calc;

private TextField inR, inI;

private Button setB, addB, multB,

divB, quitB, zeroB;

public static void main(String argv[])

{

CosNaming.NamingContext.Ref cxt;

Calc5.calc_factory.Ref cf;

Frame f;

try {

cxt= NamingContext._narrow(MyNaming.

resolve_initial_references(MyNaming.NameService));

cf = Calc5.calc_factory._narrow(

cxt.resolve(MyNaming.mk_name("calcfac")));

f = new client(cf.create_new_calc());

f.pack();

f.show();

}

catch (Exception ex) {

System.out.println("Calc-5/Init:" + ex.toString());

}

}

Component-Based Software Engineering (CBSE)

Object Services: Persistency

► Definition of a Persistent Object Identifier (PID)
■ references the value of CORBA-objects (in contrast to a CORBA-object)

► Interface
■ connect, disconnect, store, restore, delete

► Attachment to data bases possible (also ODMG compatible)

Component-Based Software Engineering (CBSE)

Object Services: Property Service

► Management of lists of features (properties) for objects
■ Properties are strings

■ Dynamically extensible

► Concept well-known as
■ LISP property lists, associative arrays, Java property classes

► Iterators for properties

► Interface:
■ define_property, define_properties, get_property_value, get_properties,

delete_property,

Component-Based Software Engineering (CBSE)

Collaboration Services: Transactions

► What a dream: the Web as data base with nested transactions. Scenarios:
■ Accounts as Web-objects. Transfers as Transaction on the objects of several banks

■ Parallel working on web sites: how to make consistent?

► Standard 2-phase commit protocol:
■ begin_ta, rollback, commit

► Nested transactions
■ begin_subtransaction, rollback_subtransaction, commit_subtransaction

Component-Based Software Engineering (CBSE)

Appendix
CORBA Facilities

(Standards for Application Domains)

Component-Based Software Engineering (CBSE)

Horizontal Facilities

► User interfaces
■ Printing, Scripting

■ Compound documents: since 1996 OpenDoc is accepted as standard format.
Source Code has been released of IBM

► Information management
■ Metadata(meta object facility, MOF)

■ Tool interchange: a text- and stream based exchangeformat for UML (XMI)

■ Common Warehouse Model (CWM): MOF-based metaschema for database
applications

Component-Based Software Engineering (CBSE)

Vertical Facilities
(Domain-Specific Facilities)

 The Domain technology committee (DTC) creates domain task
forces DTF for a application domain

► Business objects

► Finance/insurance
■ Currency facility

► Electronic commerce

► Manufacturing
■ Product data management enablers PDM

► Medicine (healthcare CorbaMed)
■ Lexicon Query Service

■ Person Identifier Service PIDS

► Telecommunications
■ Audio/visual stream control object

■ Notification service

► Transportation

Component-Based Software Engineering (CBSE)

CORBA Facilities and UML Profiles

► Since 2000, the OMG describes domain-specific vocabularies with UML
profiles

■ Probably, all CORBA facilities will end up in UML profiles

► A UML Profile is a UML dialect of a application specific domain

■ With new stereotypes and tagged values

■ Corresponds to an extension of the UML metamodel

■ Corresponds to a domain specific language with own vocabulary

■ Every entry in profile is a term

► Example UML Profiles:

■ EDOC Enterprise Distributed Objects Computing

■ Middleware profiles: Corba, .NET, EJB

■ Embedded and real time systems:

. MARTE profile on schedulability, performance, time

. Ravenscar Profile

. HIDOORS Profile on real-time modelling www.hidoors.org

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

Appendix
CORBA and the Web

Component-Based Software Engineering (CBSE)

Corba and the Web

► HTML solves many of the CORBA problems

► HTTP only for data transport
■ HTTP cannot call methods, except by CGI-Gateway-functionality (common gateway

interface)

■ Behind the CGI-interface is a generals program, communicating with HTTP with
untyped environment variables (HACK!)

■ http-Server are simple ORBs, pages are objects

■ The URI/URL-name schema can be integrated into CORBA

► IIOP becomes a standard internet protocol
■ Standard ports, URL-mappings and Standard-proxies for Firewalls are available

► CORBA is an extension of HTTP of data to code

Component-Based Software Engineering (CBSE)

CORBA and Java

► Java is an ideal partner for Corba :

■ Bytecode is mobile, i.e.,

. Applets: move calculations to clients (thin/thick client problem)

. can be used for migration of objects, ORBs and agents

■ Since 1999 direct Corba support in JDK 1.2

. IDL2Java mapping, IDL compiler, Java2IDL compiler, name service, ORB

■ Corba supports for Java a distributed interoperable infrastructure

► Java imitates functionality of Corba

■ Basic services: Remote Method Invocation RMI, Java Native code Interface JNI

■ Services: serialization, events

■ Application specific services (facilities): reflection, properties of JavaBeans

Component-Based Software Engineering (CBSE)

Corba and the Web (Orblets)

► ORBs can be written as bytecode applets if they are written in Java (ORBlet)

► Coupling of HTTP and IIOP: Download of an ORBlets with HTTP: Talk to this
ORB, to get contact to server

► Standard web services (see later) are slower than CORBA/ORBlets, because
they incur interpretation overhead

ORB

Http server

ORB
Server

Web-Client Web server1) Fetch page

2) fetch ORBlet

Business
objects

3) communicate with IIOP

data bases

Lotus
Notes

