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Obligatory Reading

► ISC, 3.1-3.3

► Szyperski 2nd edition, Chap 13

► http://java.sun.com/javase/6/docs/technotes/guides/idl/

http://java.sun.com/javase/6/docs/technotes/guides/idl/
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Literature

► R. Orfali, D. Harkey: Client/Server programming  with Java and Corba. 
Wiley&Sons. easy to read.

► R. Orfali, D. Harkey, J. Edwards: Instant Corba. Addison-Wesley. 

► CORBA. Communications of the ACM, Oct. 1998. All articles. Overview on 
CORBA 3.0.

► CORBA 3.1 specification: http://www.omg.org/spec/CORBA/3.1/

► Jens-Peter Redlich, CORBA 2.0 / Praktische Einführung für C++ und Java. 
Verlag: Addison-Wesley, 1996. ISBN: 3-8273-1060-1
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22.1 Basic Mechanisms
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CORBA: Common Object Request Broker Architecture®

► Founding year of the OMG (object management group) 1989

► Goal: plug-and-play components everywhere

► Corba 1.1 1991 (IDL, ORB, BOA)

► ODMG-93 (Standard for OO-databases)

► Corba 2.0 1995, later 2.2 and 2.4

► Corba 3.0 1999

► Corba is large

■ Object Request Broker – 2000 pages of specification

■ Object Services – 300 pages

■ Common Facilities – 150 pages
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Ingredients of CORBA 

► Component Model

■ Components are classes and objects, i.e., similar to object-oriented software

. In CORBA 3.0, the CCM has additionally been introduced 

■ Components have more component secrets

. Language interoperability by uniform interface description

. Location transparency

. Name transparency

. Transparent network protocols

■ Standardization

. CORBA Services

. CORBA Facilities

 Horizontal vs. vertical

► Composition Techniques

■ Adaptation by stubs and skeletons

■ CORBA MOF for metamodelling
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OMA (Object Management Architecture)

► A software bus, based on the Mediator (Broker) design pattern

■ Coupled by decorator-connectors

Object Request Broker

Object Services

Application
Interfaces

Domain 
Interfaces

Common 
Facilities
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The Top Class CORBA::Object

► The class CORBA::Object 

defines a component model

■ The class must be inherited 

to all objects in the 

application

► CORBA supports reflection 

and introspection:

■ get_interface delivers a 

reference to the entry in the 

interface repository

■ get_implementation a 

reference to the 

implementation

► Reflection works by the 

interface repository 

(list_initial_references from 

the CORBA::ORB interface). 

CORBA::Object

get_implementation
get_interface
is_nil
is_a
create_request
duplicate
release
....
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Problem: Multiple Inheritance of CORBA Object 

► CORBA::Object includes code into a class

► Many languages only offer only single inheritance

■ Application super class must be a delegatee

■ Only some languages offer mixin inheritance (mixin layers), such as Scala, 
C# 4.0, Eiffel

CORBA::Object

ApplicationClass
that needs 

connection

ApplicationClass
SuperClass

CORBA::Object

ApplicationClass
that needs 

connection

ApplicationClass
SuperClass
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Basic Connections in CORBA

► CORBA composes components with connections

■ Static method call with static stubs and skeletons

. Local or remote is transparent (compare to EJB!)

■ Polymorphic call 

. Local or remote

■ Event transmission

■ Callback (simplified Observer pattern)

■ Dynamic invocation (DII, request broking, interpreted call, symbolic call)

. Searching services dynamically in the web (location transparency of a service)

■ Trading

. Find services in a yellow pages service, based on properties

. Important: CORBA is language-heterogeneous, i.e., offers these services for 
most of the main-stream languages
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22.2 Dynamic Call Connector (with Object 
Request Broking)

• (Reified or interpreted call)
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Dynamic Call Connector (Request Broking)

► CORBA dynamic call is a reified call (interpreted call), i.e., a reflective call
with a symbolic name and arguments

■ Without knowing that the service exists

■ Services can be dynamically exchanged,  brought into play a posteriori 
■ Without recompilation of clients, nor regeneration of stubs

■ Binding of names to adresses is dynamic

► Requires descriptions of semantics of service components
■ For identification of services

. Metadata (descriptive data): catalogues of components (interface repository, 
implementation repository)

. Property service (later)

► and a mediator, that looks for services: the ORB
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Object Request Broker (ORB)

► For a dynamic call, the ORB must be involved

► The ORB is a mediator (design pattern) between client and server

► Hides the the environment from clients

► Can talk to other ORBs, also on the web
CORBA::ORB

init
object_to_string
string_to_object
BOA_init
list_initial_services
resolve_initial_references
get_default_context
create_environment
....
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ORB Activation

Client
object CORBA ORB

ORB_init

BOA_init

list_initial_services

resolve_initial_references

Delivers service names (as 
strings)

Delivers object references 
to server objects from 

service

names

Initializes the server 
BOA

Initializes the 
mediator
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Requesting a Service via the ORB

► Reflective calls

■ Building a call object (Request)

■ Adding arguments

■ Invoking 

■ Polling, reading CORBA::ORB

// dynamic call
create_list
create_operation_list
add_item
add_value
invoke
poll_response
send
get_response
delete
....



Component-Based Software Engineering (CBSE)

Protocol of Dynamic Call (DII)

<<<<<

Server
object

Naming
Context

get_interface

resolve

create_list

Client
object OperationDef ORB

add_value

add_item

_request

invoke

delete
Free

Request

arguments
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ORBs

► Java-based
■ IBM WebSphere

■ IONA Orbix: In Java, 
ORBlets possible

■ BEA WebLogic

■ Visibroker (in Netscape)

■ Voyager (ObjectSpace) 
(with Mobile Agents)

■ free: JacORB, ILU, Jorba, 
DynaORB

► C-based
■ ACE ORB TAO, 

University Washington 
(with trader)

■ Linux ORBIT (gnome)

■ Linux MICO

► Python-based

■ fnorb

► http://www.omg.org
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22.3 Trader-Based Call

• The foundation of service-oriented architecture (SOA)
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Beyond Dynamic Call: Service Call with the Trader Service

► A service call is a call, not based on naming but on semantic attributes, 
published properties 

■ Requires a yellow page directory of services

► Service-oriented architectures (SOA), requires matchmaking of services

■ The ORB resolves operations still based on naming (with the name service). The 
trader, however, resolves services without names, only based on properties and 
policies

► The trader gets offers from servers, containing new services

Trader

ClientService

Mediator pattern, 
mediator lets 

clients

lookup services

Interact

Import
functionality

Export
functionality
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Service Offers for Trader

► Service offer (IOR with properties (metadata))

■ Properties describe services

■ Are used by traders to match services to queries

■ not facet-based, one-dimensional

► Dynamic property

■ A property can be queried dynamically by the trader of service

■ The service-object can determine the value of a dynamic property anew

► Matching with the standard constraint language

■ Boolean expressions about properties

■ Numeric and string comparisons
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Traders Provide Service Hopping

► If a trader doesn’t find a 
service, it calls neighbor 
traders

■ Design pattern Chain 
of Responsibility

► Graph of traders 

■ Links to neighbors 
via TraderLink

■ TraderLink filters 
queries and 
manipulate via 
policies

trader 1trader 1

trader  4
trader 3

trader 2Policies, that 
change the values 
of the properties 
during passing on

Flow of the
properties of 

the service query
Offers 
with the 
trader
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Modification of Queries

► Policies parameterize the behaviour of the traders and the TraderLinks
■ Filters, i.e., values, modifying the queries:

■ max_search_card: maximum cardinality for the ongoing searches

■ max_match_card: maximum cardinality for matchings

■ max_hop_count: cardinality search depth in the graph

possible
offers

possible
offers

possible
offers

possible
offers

found
offers

investigated
offers

cardinalities
for search

cardinalities 
for matching

Cardinalities 
for return

offers
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Interfaces Trading Service

► Basic interfaces
■ Lookup (query)

■ Register (for export, retract, import of services)

■ Admin (info about services)

■ Link (construction of  trader graph)

► How does a lookup query look like?
■ Lookup.Query(in ServicetypeName, in Constraint, 

in PolicySeq, in SpecifiedProperties, 

in howTo, out OfferSequence, offerIterator)

► Unfortunately, no faceted matchmaking possible!
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CORBA Trader Types

Lookup

simple trader

Lookup

standalone 
trader

LookupRegister Register Admin

social trader
(linked trader)

Lookup
Register

Admin

Link

substitute
trader

(proxy trader)

Lookup
Register

Admin

proxy

full-service
trader

Lookup
Register

Admin

Link proxy

query trader
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Corba 3.0

► Provides the well-defined packaging for producing components

■ CORBA Component Model (CCM): similar to EJB

► Message Service MOM: Objects have asynchronous buffered message 
queues 

► Language mappings avoid IDL

► Generating IDL from language specific type definitions

► C++2IDL, Java2IDL, …

► XML integration (SOAP messages)

► Scripting (CORBA script), a composition language
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22.5 Evaluation of CORBA

• as composition system
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Component Model

► Mechanisms for secrets and transparency: very good

■ Interface and Implementation repository

■ Component language hidden (interoperability)

■ Life-time of service hidden

■ Identity of services hidden

■ Location hidden

► No parameterization

► Standardization: quite good!

■ Services, application services are available

■ On the other hand, some standards are FAT

■ Technical vs. application specific vs business components: 

■ .. but for business objects, the standards must be extended (vertical facilities) 
(thats´s where the money is)
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Composition Technique

► Mechanisms for connection

■ Mechanisms for adaptation

. Stubs, skeletons, server adapters

■ Mechanisms for glueing: marshalling based on IDL

► Mechanisms for aspect separation

■ Multiple interfaces per object

. Facade classes/objects (design pattern facade)

► Nothing for extensions

► Mechanisms for meta-modeling

■ Interface Repositories with type codes

■ Implementation repositories

■ Dynamic call and traded call are reflective and introspective

► Scalability

■ Connections cannot easily be exchanged (except static local and remote call)



Component-Based Software Engineering (CBSE)

Composition Language

► Weak: CORBA scripting provides a facility to write glue code, but only black-
box composition
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CORBA

Scalability

Adaptation

MetacompositionAspect Separation

Extensibility Software process

Connection
Product quality
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What Have We Learned

► CORBA is big, but universal:

■ The Corba-interfaces are very flexible, work and can be used in practice

■ .. but also complex and fat, may be too flexible

■ If you have to connect to legacy systems, CORBA works

► Corba has the advantage of an open standard 

► To increase reuse and interoperability in practice, one has to learn many 
standards

► Trading and dynamic call are future advanced communication mechanisms

► CORBA was probably only the first step, but web services might be taking 
over
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The End
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Appendix 
Basic Composition Technique of CORBA (Basic 
CORBA Connections)
• (self study)
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Static CORBA Call, Local or Remote

► Advantage: methods of the participants are statically known 

■ Indirect call by stub and skeletons, without involvement of an ORB

■ Supports distribution (exchange of local call in one address space to remote call is 
very easy)

. Inherit from CORBA class

. Write an IDL spec

■ No search for service objects, rather fast

■ Better type check, since the compiler knows the involved types

► The call goes through the server object adapter (server decorator)

■ Basic (server) object adapter (BOA)

■ Portable (server) object adapter (POA)

■ This hides the whether the server is transient or persistent
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The CORBA Outer Skeleton: 
Basic Object Adapter BOA

► The BOA is a real adapter (no decorator)

► The BOA hides the life time of the server object (activation: start, stop)

■ Persistency

► The BOA is implemented in every ORB, for minimal service provision

► The BOA maintains an implementation repository (component registry)

► It supports non-object-oriented code

CORBA::BOA

create
get_id
dispose
set_exception
impl_is_ready
obj_is_ready
change_implementation
deactivate_impl
deactivate_obj
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Server Site

Basic Object Adapter
BOA
(Outer Skeleton)

IDL-
generated
Skeleton

Network

Server / Object Implementation

deactivate_obj deactivate_impl
impl_is_ready object_is_ready

upcalls

create get_id
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Object Activation on the Server through a BOA

Server object1 object2 CORBA::BOA

create

get_id

obj_is_ready

obj_is_ready
impl_is_ready

deactivate_obj

deactivate_obj

deactivate_impl
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Portable Object Adapter POA

► The POA is a evolution of the BOA 
in CORBA 3.0

■ One per server, serving many 

objects

■ Nested POAs possible, with nested 

name spaces

► User policies for object 

management
■ User-written instance managers for 

management of object instances

CORBA::POA

create_POA
find_POA
create_reference
dispose
set_exception
impl_is_ready
obj_is_ready
change_implementation
activate_object
deactivate_object
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Object Adapters Support Different Server Life-Time 
Models

► Common server process (shared server)
■ Several objects reside in one process on the server; the BOA initializes them as 

threads with common address space (common apartment)

. deactivate_impl, impl_is_ready, obj_is_ready are mapped directly to thread 
functions

► Separate server process (unshared server)
■ For every object an own process 

► Server-per-request (session server)
■ Every request generates a new process

■ Similar to Session EJB

► Persistent server
■ Another application stores the objects (e.g., a data base). 

■ The BOA passes on the queries

■ Similar to Entity Bean
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Callback Connectors with the Callback Service

► The Callback pattern is a simplified Observer pattern

■ Registration and notification, but not status update

► Callback function registration

■ Register a procedure variable, a closure (procedure variable with arguments), or a 
reference to an object at the subject, the server

► Callback works for all languages, not only object-oriented ones

Client Server
(subject)

Client2

registerCallback()

riseEvent()

callCallback()

return()

signal()
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Event Connections

► Most flexible way of communication (also called messages)
■ Asynchronous communication

■ Works for every CORBA language

► Receiver models
■ Unicast: one receiver

■ Multicast: many receivers

■ Dynamically varying receivers

► Push model: PushConsumer/PushSupplier: object delivers event 
with push, event is shipped automatically

► Pull model: PullSupplier/PullConsumer:  object waits for event 
with pull

■ Synchronous or asynchronous

■ Untyped generic events, or typed by IDL 

► Event channels as intermediate buffers
■ Channels buffer, filter, and map of pull to push

■ Advantage:

. Asynchronous Working in the Web (with IIOP and dynamic Call)

. Attachment of legacy systems interesting for user interfaces, network 
computing etc.

■ Disadvantage: Very general interface 
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Appendix 
Dynamic Call Connector (with Object Request 
Broking)
• Code example (self study)
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Example Dynamic Call in C++

// Wow, a complex protocol!!

CORBA::ORB_ptr orb;

main(int argc, char* argv[]) {

orb= CORBA::ORB_init(argc,argv, ORBID);

// alternative description of  service

CosNaming::NamingContext_ptr naming=

CosNaming::NamingContext::_narrow(

::resolve_initial_references(“NameService”));

CORBA::Object_ptr obj;

try  {

obj= naming->resolve(mk_name("dii_smpl"));

}  catch (CORBA::Exception)  {

cerr << "not registered" << endl; exit(1); }

// construct arguments

CORBA::Any val1;  val1 <<= (CORBA::Short) 123;

CORBA::Any val2;  val2 <<= (CORBA::Short) 0;

CORBA::Any val3;  val3 <<= (CORBA::Short) 456;

// Make request (short form)
CORBA::Request_ptr rq= obj->_request("op");

// Create argument list

rq->arguments() = orb->create_list();

rq->arguments()->add_value("arg1",val1,CORBA::ARG_IN);  

rq->arguments()->add_value("arg2",val2,CORBA::ARG_OUT);  

rq->arguments()->add_value("arg3",val3,CORBA::ARG_INOUT); 

// Start request (synchronously)

cout << "start request" << endl;

rq->invoke();

// analyze result

CORBA::Short rslt ;

if  (*(rq->result()->value()) >>= rslt) {

// Analyze the out/inout-prameters (arg1 has index 0)

CORBA::Short _arg2, _arg3;

*(rq->arguments()->item(1)->value()) >>= _arg2;

*(rq->arguments()->item(2)->value()) >>= _arg3;

cout << " arg2= "   << _arg2 << " arg3= " << _arg3 

<< " return= " <<  rslt << endl;  }

else  {

cout << “result has unexpected type" << endl; }

}
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DII Invocation in Java (1) 

// Client.java

// Building Distributed Object Applications with CORBA 

// Infowave (Thailand) Co., Ltd. 

// http://www.waveman.com

// Jan 1998 

public class Client { 

public static void main(String[] args) { 

if (args.length != 2) { 

System.out.println("Usage: vbj Client <carrier-name> <aircraft-name>"); 

return; 

} 

String carrierName = args[0]; 

String aircraftName = args[1]; 

org.omg.CORBA.Object carrier = null; 

org.omg.CORBA.Object aircraft = null; 

org.omg.CORBA.ORB orb = null; 

try { 

orb = org.omg.CORBA.ORB.init(args, null); 

} 

catch (org.omg.CORBA.systemsxception se) {  

System.err.println("ORB init failure " + se);  

System.exit(1);  

}
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{ // scope 

try { 

carrier = orb.bind("IDL:Ship/AircraftCarrier:1.0",

carrierName, null, null); 

} catch (org.omg.CORBA.systemsxception se) {  

System.err.println("ORB init failure " + se);  

System.exit(1);  

} 

org.omg.CORBA.Request request = carrier._request("launch"); 

request.add_in_arg().insert_string(aircraftName);

request.set_return_type(orb.get_priwithive_tc(

org.omg.CORBA.TCKind.tk_objref)); 

request.invoke(); 

aircraft = request.result().value().extract_Object(); 

} 

{ // scope 

org.omg.CORBA.Request request = aircraft._request("codeNumber"); 

request.set_return_type(orb.get_priwithive_tc(

org.omg.CORBA.TCKind.tk_string)); 

request.invoke(); 

String designation = request.result().value().extract_string(); 

System.out.println("Aircraft " + designation + " is coming your way"); 

}  

DII Invocation in Java (2)
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// Building Distributed Object Applications with CORBA

// Infowave (Thailand) Co., Ltd.

// http://www.waveman.com

// Jan 1998

public class Server {

public static void main(String[] args) {

org.omg.CORBA.ORB orb = null;

try {

orb = org.omg.CORBA.ORB.init(args, null);

} catch (org.omg.CORBA.systemsxception se) {

System.err.println("ORB init failure " + se);

System.exit(1);

}

org.omg.CORBA.BOA boa = null;

try {

boa = orb.BOA_init();

} catch (org.omg.CORBA.systemsxception se) {

System.err.println("BOA init failure " + se);

System.exit(1);

}

Ship.AircraftCarrier carrier =

new AircraftCarrierImpl("Nimitz");      

try {

boa.obj_is_ready(carrier);

} catch (org.omg.CORBA.systemsxception se) {

System.err.println(

"Object Ready failure " + se);

System.exit(1);

}

System.out.println(

carrier + " ready for launch !!!");

try {

boa.impl_is_ready();

} catch (org.omg.CORBA.systemsxception se) {

System.err.println(

"Impl Ready failure " + se);

System.exit(1);

}

}

}

Server Implementation
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Example: Time Server in Java

► On one machine; 2 address spaces (processes)

► Call provides current time

► Contains

■ IDL

■ Server

. Starts ORB

. Initializes Service

. Gives IOR to the output

■ Client

. Takes IOR

. Calls service

// TestTimeServer.idl

module TestTimeServer{

interface ObjTimeServer{

string getTime();

};

};
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Service Component

// TestTimeServerImpl.java – Server Skeleton

import CORBA.*;

class ObjTestTimeServerImpl extends 

TestTimeServer.ObjTimeServer_Skeleton { // generated from IDL

// Variables

// Constructor

// Method (Service) Implementation

public String getTime() throws CORBA.SystemException {

return “Time: “ + currentTime;

}

};
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Server Implementation

// TimeServer_Server.java

import CORBA.*;

public class TimeServer_Server{

public static void main(String[] argv){

try {

CORBA.ORB orb = CORBA.ORB.init();

…

ObjTestTimeServerImpl obj =

new ObjTestTimeServerImpl(…);

…

System.out.println(orb.object_to_string(obj));

}

catch (CORBA.SystemException e){

System.err.println(e);

}

}

};
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Client Implementation (Simpler Protocol) 

// TimeServer_Client.java

import CORBA.*;

public class TimeServer_Client{

public static void main(String[] argv){

try {

CORBA.ORB orb= CORBA.ORB.init();

…

CORBA.object obj = orb.string_to_object(argv[0]);

…

TestTimeServer.ObjTimeServer timeServer = 

TestTimeServerImpl.ObjTimeServer_var.narrow(obj);

…

System.out.println(timeServer.getTime());

}

catch (CORBA.SystemException e){

System.err.println(e);

}

}

};
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Execution

// starting server
C:\> java TimeServer_Server

IOR:00000000000122342435 …

// starting client

C:\> java TimeServer_Client IOR:00000000000122342435 … 

Time: 14:35:44
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Appendix 
Corba Services

• (optional material)
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Literature

► OMG. CORBA services: Common Object Service Specifications. 
http://www.omg.org. 

► OMG: CORBAfacilities: Common Object Facilities Specifications.

http://www.omg.org/
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Overview on Corba Services

► Services provide functionality a programming language might not provide 
(e.g, Cobol, Fortran)

► 16+ standardized service interfaces (i.e., a library)

■ Standardized, but status of implementation different depending on producer

► Object services
■ Deal with features and management of objects

► Collaboration services
■ Deal with collaboration, i.e., object contexts

► Business services
■ Deal with business applications

► The services serve for standardization. They are very important to increase 
reuse.

■ Remember, they are available for every language, and on distributed systems!
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Object Services: Rather Simple

► Name service (directory service)

■ Records server objects in a simple tree-like name space

■ (Is a simple component system itself)

► Lifecycle service (allocation service)

■ Not automatic; semantics of deallocation undefined

► Property service (feature service for objects)

► Persistency service (storing objects in data bases)

► Relationship service to build interoperable relations and graphs

■ Support of standard relations reference, containment

■ Divided in standard roles contains, containedIn, references, referenced

► Container service (collection service)
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Collaboration Services

► Communication services
■ Resemble connectors in architecture systems, but cannot be exchanged to each 

other

■ Event service

. push model: the components push events into the event channel

. pull model: the components wait at the channel and empty it

■ Callback service

► Parallelism
■ Concurreny service: locks

■ Object transaction service, OTS: Flat transactions on object graphs

. Nested transactions?
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Business Services

► Trader service
■ Yellow Pages, localization of services

► Query service
■ Search for objects with attributes and the OQL, SQL (ODMG-93)

► Licensing service
■ For application providers (application servers)

■ License managers 

► Security service 
■ Use of SSL and other basic services
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Dependencies Between the Services

Names

Life-time

Relations

Persistency Marshalling

Concurrency

Transactions

Query

Trader

Properties

Security

Events

Licenses

Collections
Callback
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Example: CORBA Interoperable Object Reference – IOR

► A unique key for an object

■ Uniquely mapped per language (for all ORBs)

■ Hides object references of programming languages
► Consists of:

■ Type name (code), i.e., index into Interface Repository

■ Protocol and address information (e.g., TCP/IP, port #, host 
name), could support more than one protocol

■ Object key:

. Opaque data only readable by generating ORB (pointer)

. Object decorator (adapter) name (for BOA)

Type Name:
interface
repository 
reference

Object key

Protocol
Address
Port

Object Adapter

Opaque unique data

IOR
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IOR Example

IDL:
TimeServer:
Verion 1.0

Object key
IIOP
iiop.my.net
1234

OA 2

0x0003

IOR

Client

Object
0x0001

OA 2

OA 1 (BOA)

Server: iiop.my.net:1234

Object
0x0002

Object
0x0003
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Object Services: Names

► Binding of  a name associates a name to an object in a name space 
(directory, scope, naming context)

■ A name space is an associative array with a set of bindings of names to values

■ Namespaces are recursive, i.e., they can reference each other and build name 
graphs

■ Others: Active Directory, LDAP

► The representation of a name is based on abstract syntax, not on the 
concrete syntax of a operating systemor URL.

■ A name consists of a tuple (Identifier, Kind). 

■ The identifier is the real name, the Kind tells how the name is represented (e.g., 
c_source, object_code, executable, postscript,..).

■ For creation of names there is a library (design pattern Abstract Factory).
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Name Service CosNaming

bind(in Name n, in Object obj) // associate a name

rebind(in Name n, in Object obj) 

bind_context

rebind_context

mk_name(String s)

Object resolve

unbind(in Name n)  // disassociate a name

NamingContext new_context;

NamingContext bind_new_context(in Name n)

void destroy

void list(..)
_narrow()

CosNaming::NamingContext
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Name Service

void bind(in Name n, in Object obj)

raises(NotFound, Cannotproceed, InvalidName, AlreadyBoand);

void rebind(in Name n, in Object obj)

raises(NotFound, Cannotproceed, InvalidName );

void bind_context(in Name n, in NamingContext nc)

raises(NotFound, Cannotproceed, InvalidName, AlreadyBoand );

void rebind_context(in Name n, in NamingContext nc)

raises( NotFound, Cannotproceed, InvalidName );

Name mk_name(String s);

Object resolve(in Name n)

raises( NotFound, Cannotproceed, InvalidName );

void unbind(in Name n)

raises( NotFound, Cannotproceed, InvalidName );

NamingContext new_context();

NamingContext bind_new_context(in Name n)

raises( NotFound, AlreadyBoand, Cannotproceed, InvalidName );

void destroy()

raises( NotEmpty );

void list(in unsigned long how_many,

out BindingLis bl, out Bindingeserator bi );
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Name Service in IDL

module CosNaming{

struct NameComponent {

string id;

string kind;

};

typedef sequence <NameComponent> Name;

enum BindingType { nobject, ncontext };

struct Binding {

Name binding_name;

BindingType binding_type;

};

typedef sequence <Binding> BindingList;

interface BindingIterator;

interface NamingContext {

enum NotFoundReason { missing_node,

not_context, not_object };

exception NotFound {

NotFoundReason why;

Name rest_of_name;

};

}

exception Cannotproceed {

NamingContext cxt;

Name rest_of_name;

};

exception InvalidName {};

exception AlreadyBoand {};

exception NotEmpty {};

// methods see previous slide 

};

interface BindingIterator {

boolean next_one(out Binding b);

boolean next_n(in unsigned long

how_many,

out BindingLis bl);

void destroy();

};

…
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Binding
(association)

Search/create
name space

Use of Names

System dependent 
name

Corba-Name

object

Search Object

name space

Create Name

object
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Name Service: Example

// From: Redlich

import java.io.*;

import java.awt.*;

import IE.Iona.Orbix2.CORBA.SystemException;  // OrbixWeb

import CosNaming.NamingContext;   // name service/context

import CosNaming.NamingContext.*; // name service/Exceptions

import Calc5.calc.complex;        // Typ 'complex' from Calc5

class MyNaming extends CosNaming {

...

}

public class client  extends Frame  {

private Calc5.calc.Ref calc;

private TextField inR, inI;

private Button setB, addB, multB, 

divB, quitB, zeroB;

public static void main(String argv[])

{

CosNaming.NamingContext.Ref cxt;

Calc5.calc_factory.Ref       cf;

Frame f;

try {

cxt= NamingContext._narrow( MyNaming.

resolve_initial_references(MyNaming.NameService));

cf = Calc5.calc_factory._narrow(

cxt.resolve(MyNaming.mk_name("calcfac")));

f = new client(cf.create_new_calc());

f.pack();

f.show();

}

catch (Exception ex)  {

System.out.println("Calc-5/Init:" + ex.toString());

}

}
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Object Services: Persistency

► Definition of a Persistent Object Identifier (PID)
■ references the value of CORBA-objects (in contrast to a CORBA-object)

► Interface 
■ connect, disconnect, store, restore, delete

► Attachment to data bases possible (also ODMG compatible)
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Object Services: Property Service

► Management of lists of features (properties) for objects
■ Properties are strings

■ Dynamically  extensible

► Concept well-known as 
■ LISP property lists, associative arrays, Java property classes

► Iterators for properties

► Interface: 
■ define_property, define_properties, get_property_value, get_properties, 

delete_property, 
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Collaboration Services: Transactions

► What a dream: the Web as data base with nested transactions. Scenarios: 
■ Accounts as Web-objects. Transfers as Transaction on the objects of several banks

■ Parallel working on web sites: how to make consistent? 

► Standard 2-phase commit protocol: 
■ begin_ta, rollback, commit

► Nested transactions 
■ begin_subtransaction, rollback_subtransaction, commit_subtransaction
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Appendix 
CORBA Facilities 

(Standards for Application Domains)
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Horizontal Facilities

► User interfaces
■ Printing, Scripting

■ Compound documents: since 1996 OpenDoc is accepted as standard format. 
Source Code has been released of IBM  

► Information management 
■ Metadata(meta object facility, MOF)

■ Tool interchange:  a text- and stream based exchangeformat for UML (XMI)

■ Common Warehouse Model (CWM): MOF-based metaschema for database 
applications
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Vertical Facilities
(Domain-Specific Facilities)

 The Domain technology committee (DTC) creates domain task 
forces DTF for a application domain 

► Business objects

► Finance/insurance
■ Currency facility

► Electronic commerce

► Manufacturing
■ Product data management enablers PDM

► Medicine (healthcare CorbaMed)
■ Lexicon Query Service

■ Person Identifier Service PIDS

► Telecommunications
■ Audio/visual stream control object

■ Notification service

► Transportation
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CORBA Facilities and UML Profiles

► Since 2000, the OMG describes domain-specific vocabularies with UML 
profiles

■ Probably, all CORBA facilities will end up in UML profiles

► A UML Profile is a UML dialect of a application specific domain

■ With new stereotypes and tagged values

■ Corresponds to an extension of the UML metamodel

■ Corresponds to a domain specific language with own vocabulary

■ Every entry in profile is a term

► Example UML Profiles: 

■ EDOC Enterprise Distributed Objects Computing

■ Middleware profiles: Corba, .NET, EJB

■ Embedded and real time systems: 

. MARTE profile on schedulability, performance, time

. Ravenscar Profile 

. HIDOORS Profile on real-time modelling www.hidoors.org
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Appendix
CORBA and the Web
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Corba and the Web

► HTML solves many of the CORBA problems

► HTTP only for data transport
■ HTTP cannot call methods, except by CGI-Gateway-functionality (common gateway 

interface)

■ Behind the CGI-interface is a generals program, communicating with HTTP with 
untyped environment variables  (HACK!)

■ http-Server are simple ORBs, pages are objects

■ The URI/URL-name schema can be integrated into CORBA

► IIOP becomes a standard internet protocol
■ Standard ports, URL-mappings and Standard-proxies for Firewalls are available

► CORBA is an extension of HTTP of data to code
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CORBA and Java

► Java is an ideal partner for Corba :

■ Bytecode is mobile, i.e., 

. Applets:  move calculations to clients (thin/thick client problem)

. can be used for migration of objects, ORBs and agents 

■ Since 1999 direct Corba support in JDK 1.2

. IDL2Java mapping, IDL compiler, Java2IDL compiler, name service, ORB

■ Corba supports for Java a distributed interoperable infrastructure

► Java imitates functionality of Corba

■ Basic services: Remote Method Invocation RMI, Java Native code Interface JNI

■ Services: serialization, events

■ Application specific services (facilities): reflection, properties of JavaBeans
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Corba and the Web (Orblets)

► ORBs can be written as bytecode applets if they are written in Java (ORBlet)

► Coupling of HTTP and IIOP: Download of an ORBlets with HTTP: Talk to  this  
ORB, to get contact to server 

► Standard web services (see later) are slower than CORBA/ORBlets, because 
they incur interpretation overhead

ORB

Http server

ORB
Server

Web-Client Web server1) Fetch page 

2) fetch ORBlet

Business 
objects

3) communicate with IIOP

data bases

Lotus 
Notes


