
Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

23. Enterprise Java Beans

Lecturer: Dr. Sebastian Götz

Prof. Dr. Uwe Aßmann

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de/teaching/cbse

1. Mai 2017

1. Basics

2. Parts of the Bean infrastructure

3. Different Kinds of EJB

4. Implicit Middleware in EJB-3.X

5. Evaluation

sehr vereinfachten

Component-Based Software Engineering (CBSE)

Obligatory Reading

► Oracle's enterprise bean tutorial
http://docs.oracle.com/javaee/5/tutorial/doc/bnbls.html
http://docs.oracle.com/javaee/
http://docs.oracle.com/javaee/5/tutorial/doc/javaeetutorial5.pdf

► Szyperski, Chap 14

► http://xdoclet.sourceforge.net

► EJB 3.0 Features
http://www.oracle.com/technetwork/java/index.html

► JBoss has a EJB 3.0 tutorial
http://docs.jboss.org/ejb3/docs/tutorial/1.0.7/html/index.html

► Red Hat JBoss documentation

► https://access.redhat.com/site/products/red-hat-jboss-enterprise-application-
platform/

http://docs.oracle.com/javaee/5/tutorial/doc/bnbls.html
http://docs.oracle.com/javaee/
http://java.sun.com/j2ee/learning/tutorial/index.html
http://www.oracle.com/technetwork/java/index.html
http://docs.jboss.org/ejb3/docs/tutorial/1.0.7/html/index.html
https://access.redhat.com/site/products/red-hat-jboss-enterprise-application-platform/

Component-Based Software Engineering (CBSE)

Other Literature

► JBoss EJB 3.0 Documentation
http://docs.jboss.org/ejb3/app-server/

► Ed Roman: Mastering EJB. Wiley & Sons.
http://www.theserverside.com/books/wiley/masteringEJB/index.jsp

► B. Tate, M. Clark, B. Lee, P. Linskey: Bitter EJB. Manning Publications Co.

http://docs.jboss.org/ejb3/app-server/

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

23.1 Basics of EJB

Component-Based Software Engineering (CBSE)

Basics of Enterprise Java Beans (EJB)

► Developed by SUN, now Oracle

■ Server-side component architecture for building distributed OO business
applications in Java

■ Separation of business logic and lower-level concerns (e.g., networking,
transactions, persistence, ...) into implicit middleware

► EJB 1.0 1998, EJB 2.0 2001, current version is 3.2

► EJB integrates several concepts for Dynamic deployment:

■ Deployment-time middleware code generation (implicit middleware)

■ Containers as application servers for transparency of transaction and persistency

■ Annotation-based (metadata-based) middleware code generation

■ A simple XML-based composition language

► Some common EJB application servers

■ OSS: JBoss – free software www.jboss.org

■ Apache Geronimo

■ Commercial: BEA's WebLogic, IBM's WebSphere, Oracle's Oracle 11g

Component-Based Software Engineering (CBSE)

Ingredients of EJB

► Java-based Component Model (language specific)

■ Static components contain classes

■ Dynamic components contain objects

■ Component Types:

■ Session Beans: for business logic and application algorithms (Tools)

■ Message-Driven Beans: Same function as session beans

■ Called by sending messages instead of calling methods

■ Have a message queue, react to an asynchronous message connector

■ Entity Beans: for business objects (data, Materials)

■ Persistent object that caches database information (an account, an employee,
an order, etc)

■ Component factory (Home bean), following Abstract Factory pattern

■ Customization possible by metadata and configuration files (deployment
descriptors)

► Composition Technique

■ Adaptation/Glue:

. Distribution (not transparent, see local/remote interfaces)

. Transparent network protocols

. Transparent transactions via Containers

. Transparent persistency via Containers

. No connectors

Component-Based Software Engineering (CBSE)

Interactions in an EJB Component System (Where are the
Beans?)

HTML Client
Business partner
system

Servlet JSPMessaging Client C++ Client

EJB Session Bean
EJB Message-
Driven Bean

EJB Session Bean

EJB Session BeanEJB Session Bean

EJB Entity Bean

soap, uddi
wsdi

http

Web Server

Application
Server

Presentation Tier

Business
(Application)
Tier

CORBA/iiop RMI RMImessaging

Database Tier

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

23.2 The Parts of a Bean Infrastructure

► Container

► Bean class

► Home – a factory

► Remote interface [3.0: annotation]

► Local interface [3.0: annotation]

► Deployment descriptor (2.0)

Component-Based Software Engineering (CBSE)

The Bean Container/Application Server

► The bean container is a run-time façade for all beans on a server with
infrastructure (application server)

► In a container, some business logic may run on the server, hiding the direct data
access

► The container manages the beans with

► Factory: create bean

► Repository: find, remove bean

► The container provides run-time middleware services for the beans

► The bean container is a deployment infrastructure

► The container generates dynamically middleware code for the bean when it is
deployed on a machine (implicit middleware)

. Bean developer only writes business logic and declares the middleware
services (transactions, persistence, security, resource management, ...etc) by
specifying metadata (annotations)

. The middleware services are provided automatically by code generation

. In explicit middleware (e.g., CORBA), middleware services have to be
addressed by the programmer

Component-Based Software Engineering (CBSE)

Resulting Roles in the EJB Software Process

► Bean provider (bean producer, programmer) is an application expert
■ Builds a EJB-jar with application specific methods, deployment-descriptor, remote, home

interface

► Application assembler composes EJB to larger EJB, i.e., applications units.
■ She extends the deployment-descriptors

► Bean deployer (employer) puts the EJB-jar into a deployment environment,
consisting of a EJB Server and Container

■ Preparing the EJB for use, generating middleware code

■ Is the EJB connected to a EJB-Container, it is configured and usable

► Server provider is a specialist in transaction management and distributed systems.
■ Provides basic functionality for middleware services

► Container provider delivers the container tools for configuration and for run time
inspection of EJB

■ The Container manages persistency of Entity Beans, generation of communication code (glue
code) to underlying data bases

Bean Provision
(development)

Bean
Assembly

(composition)

Bean
Deployment

•Also of
composed beans

Providers

•For application
servers

•And containers

Component-Based Software Engineering (CBSE)

Implicit Middleware by Interceptors (Bean Decorators)

 Interceptors are special server decorators (server skeletons) treating
transparency problems

• Implementations of interceptors can be generated by the container

Client

Stub

Distributed
Object (Bean)

Request
Interceptor

Skeleton

Transaction
Service

Security
Service

Database
Driver

Network

Remote interface

Remote interface

Remote interface

Transaction API

Security API

Database API

Container

Component-Based Software Engineering (CBSE)

The Parts of an EJB
- The Enterprise Bean Class

► The implementation of the bean looks different depending on which kind of
bean

► Three different beans, with different families of interfaces, exist:

► Session beans

■ Business-process-related logic, e.g., compute prices, transfer money between
accounts (“Business methods”)

■ Stateless: call-oriented, runs to completion without interruption

■ Stateful: may be interrupted and keep state by functions ejbPassivate(),
ejbActivate()

► Message-driven beans

■ Message-oriented logic, e.g., receive a message and call a session bean

► Entity beans

■ Data-related logic, e.g., change name of a customer, withdraw money from an
account

Component-Based Software Engineering (CBSE)

The Parts of an EJB
- The EJB Object as a Skeleton

► The EJB is not called directly, but via an EJB object (skeleton, facade object,
proxy)

► whose implementation is generated by the container

■ It filters the input and intercepts calls and delegates them to the inner bean

■ Interceptors can be generated by the container

■ The EJB object is responsible for providing middleware services

“Inner”
Enterprise Bean

1: Call a method

Interceptors
Different services
provided by the
container

<<skeleton>>
EJB Object

Client Code

Remote
Interface

5: Return result

2: Call middleware APIs

3: Call a bean

4: Method returns

EJB Container/Server

Component-Based Software Engineering (CBSE)

The Parts of an EJB
- The Remote Object Interface

► The interface to the bean that the client sees from remote

■ Must contain all methods the bean should expose

► As the EJB object lies between the client and the bean, it has to implement this
interface

■ Must extend javax.ejb.EJBObject

public interface Bank extends javax.ejb.EJBObject {

// Bean business methods

public Account getAccount(String name)

throws java.rmi.RemoteException;

public void openAccount(String name)

throws java.rmi.RemoteException;

}

Component-Based Software Engineering (CBSE)

The Parts of an EJB
- The Home Object and Interfaces

► An EJB object factory and repository is needed: The home object with the
home interface

■ Defines methods for creating, finding and removing EJB objects

► The communication uses Java RMI over IIOP

■ If an argument is serializable, it is sent as pass-by-value

■ RMI can also simulate pass-by-reference

■ A serialized stub for the remote object is sent instead

“Inner”
Enterprise
Beans

1: Create a new EJB object
<<factory>>
Home Object

Client Code

Home
Interface

3: Return EJB object reference

2: Create EJB
Object

EJB Container/Server

<<skeleton>>
EJB Object

Remote
Interface

Component-Based Software Engineering (CBSE)

Name Service for Name Transparency

► The Java Naming and Directory Interface (JNDI) is used to lookup home
objects

■ JNDI is a standard interface for locating resources (name service), providing a mapping
between the logical name of a resource and its physical location

■ Only the address to the JNDI server is needed

“Inner”
Enterprise Bean

3: Create a new
EJB object

Home Object

Client

Home
Interface

4: Create EJB Object

EJB Container/Server

EJB Object

Remote
Interface

Naming Service
such as LDAP

JNDI

1: Retrieve
home object
reference

2: Return
home object
reference

6: Invoke
business method

5: Return EJB object
reference

7: Delegate Request to bean

Component-Based Software Engineering (CBSE)

The Parts of an EJB
- Local Interfaces

► Beans do not support location transparency

► For a local call, you must provide local interfaces

■ local interface corresponding to remote interface

■ local home interface corresponding to home interface

■ To switch between local and remote calls it is necessary to change the code

■ Horrible: this should be encapsulated in a connector!

Remote:

► Client calls a local stub

► Marshalling

► Stub calls skeleton over a network

connection

► Unmarshalling

► EJB object is called, performs

middleware services

► Bean is called

► Repeat to return result

Local:

► Client calls a local object

► Local object performs middleware

services

► Bean is called

► Control is returned to the client

Component-Based Software Engineering (CBSE)

The Parts of an EJB –
Putting Together an EJB Component File

► All the above mentioned files are put into an EJB-jar file (Java archive,
zipped)

■ bean class

■ home (and local home) interface

■ remote (and local) interface

■ (possibly vendor-specific files)

■ Additionally in EJB 2.0:

■ Deployment descriptor, i.e., the specification for the implicit middleware and the
composition of beans

Component-Based Software Engineering (CBSE)

Deployment of an EJB Component File

► The deployment of an EJB is a new step in component systems we have
not yet seen

► Deployment: The application server is notified of the new EJB component
file by

■ using a command-line tool,

■ dropping the EJB file in a specific directory,

■ or in some other way

► The EJB-jar file is verified by the container

► The container generates an EJB object and home object

► The container generates any necessary further RMI stubs, skeletons, and
interceptors

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

23.3 A Closer Look at the Different
Kinds of Enterprise JavaBeans

Component-Based Software Engineering (CBSE)

Session Beans Overview

► Reusable components that contain logic for business processes

■ The lifetime of a session bean is roughly equivalent to the lifetime of the client
code calling it

■ A session bean is nonpersistent

java.ejb.SessionBean
■ setSessionContext(SessionContext context)

. The bean can query the SessionContext for information

concerning the container
■ ejbCreate()

. Used to perform initialization when the bean is created
■ ejbPassivate()

. Used by stateful session beans, explained later
■ ejbActivate()

. Used by stateful session beans, explained later
■ ejbRemove()

. Used to release any resources the bean has been holding

before it is removed

Component-Based Software Engineering (CBSE)

Life Cycle of a Stateful Session Bean

► Handles state-based conversations with users

■ E-commerce web store with a shopping cart

■ Online bank

■ Tax declaration

Bean instance does
not exist

1: Class.newInstance()
2: setSessionContext()
3: ejbCreate()

ejbRemove()

Ready

Business method

Passive

ejbPassivate()

ejbActivate()

Component-Based Software Engineering (CBSE)

Activation of a Stateful Session Bean

Enterprise
Bean

Client

EJB Container/Server

EJB Object
Remote
Interface

3: Reconstruct bean
1: Invoke business
method

4: Call ejbActivate()

5: Invoke business
method

2: Retrieve
passivated bean
state

Storage

Component-Based Software Engineering (CBSE)

Characteristics of Message-Driven Beans (MDB)

► MDBs are also stateless
► MDBs don't have a home, local home, remote or local interface

► MDBs have a single, weakly typed business method
■ onMessage() is used to process messages

■ MDBs don't have any return values

■ However, it is possible to send a response to the client

■ MDBs cannot send exceptions back to clients

► MDBs can be durable or nondurable subscribers
■ durable means that the subscriber receives all messages, even if it is inactive

► Why use MDB instead of Session Beans?
► Asynchronous processing means that clients don't have to wait for the bean to

finish

► Reliability

. With RMI-IIOP the server has to be up when the client is calling it.

. With a message-oriented middleware (MOM) that supports guaranteed
delivery, the message is delivered when the server gets back online

. Support for subscription of multiple senders and receivers

. RMI-IIOP is limited to one client talking to one server

Component-Based Software Engineering (CBSE)

Overview of Entity Beans

► An entity bean is a persistent material

► It consists of the same files as a session bean

► Object-relational mapping necessary (from Java classes to relational
databases)

■ Map the object to a relational database when it is stored

■ Queries possible by using an special EJB query language (EJB-QL) that is
translated to specific query languages of relational databases

■ The mapping is either hand-coded or achieved by finished products

► Several entity bean instances may represent the same underlying data

■ An entity bean has a primary key to uniquely identify the database data

■ Entity bean instances can be put to database by ejbStore() and ejbLoad()

► Two kinds of entity beans

■ Bean-managed persistent or container-managed persistent

Component-Based Software Engineering (CBSE)

Loading and Storing an Entity Bean

► Entity beans are persistent objects that can be stored in permanent storage

■ Live on the entity or database layer of the 3-tier architecture

■ The entity bean data is the physical set of data stored in the database

Entity Bean
Instance

EJB Container/Server

1: ejbLoad()

4: ejbStore()

2: Read from
database

Database

3: Business methods

5: Write to
database

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

23.4. Generation of
Implicit Middleware in EJB 3.X

•EJB heavily use metadata markup to generate all dependent
middleware interfaces and code

• Persistency

• Transactions

Component-Based Software Engineering (CBSE)

EJB 3.0

► Only the bean class is specified

■ Rest of the classes is generated from metadata annotations

<<bean class>>
ProductBean

<<generated>>
HomeInterface

Container

EJB 3.0
annotations

<<generated>>
HomeObject

<<generated>>
RemoteInterface

<<generated>>
RemoteHome

Interface

<<generated>>
Persistency

<<generated>>
Transaction

<<generated>>
Interceptors

Component-Based Software Engineering (CBSE)

Persistency is Container-Managed in 3.0

► TemplateMethod design pattern with generated hook class implementation

► The container performs the storage operations
■ The container generates the persistence (ProductBeanImpl) and does the run-time service

► The CMP entity bean is always abstract (ProductBean)
■ The container generates a concrete subclass (ProductBeanImpl)

■ An abstract persistence schema is declared in the deployment descriptor so the container will
know what to generate

EntityBean

<<abstract>>
ProductBean

<<generated>>
ProductBeanImpl

Container

Annotations
@Entity….

Client

Component-Based Software Engineering (CBSE)

Metadata Annotations in EJB 3.0 – Annotation Types

► Bean class annotations refer to classes and create interfaces with adapters:

@Entity

public class AccountBean implements Account {

public void deposit (double money) {...}

}

@Stateless

@Stateful

@MessageDriven

// adding interfaces for beans

@Local

@Remote

@RemoteHome

@LocalHome

From [EJB 3.0 Features]

Component-Based Software Engineering (CBSE)

Method Callback Annotations

► The default methods can be adorned with user-written filters (before, after,
and around fragments (advices))

► Filter methods are part of Interceptor objects

@PrePassivate

void signalPassivation() {

System.out.writeln(“passivating bean now...”);

}

@PreDestroy

@PrePersist

@PostPersist

@PreActivate

@PostActivate

@PrePassivate

@PostPassivate

@CallbackListener

[from EJB 3.0 Features]

/* Callback method defined inside a Listener class*/

public class AccountListener{

@PostPersist

insertAccountDetails(AccountDetails accountDetails){}

}

Component-Based Software Engineering (CBSE)

Custom Interceptors

[from EJB 3.0 Features]

// Provides profiling logic in a business method (with interceptors)

/* The interceptor class */

public class ProfilingInterceptor {

@AroundInvoke // indicates that this is the interceptor method

public Object profile(InvocationContext invocation) throws Exception {

long start = System.currentTimeMillis();

try {

return invocation.proceed(); // this statement would call the withdraw method

} finally {

long time = start - System.currentTimeMillis();

Method method = invocation.getMethod();

System.out.println(method.toString() + “took“ + time + “ (ms)”);

} } }

/* The bean class */

@Stateless

public class BankAccountBean implements BankAccount {

@PersistenceContext EntityManager entityManager;

@Interceptors(ProfilingInterceptor.class)

public void withdraw(int acct, double amount) { … }

public void deposit(int acct, double amount) { … }

}

Prologue
(Down action
of recursion)

Epilogue
(up action
of recursion)

Component-Based Software Engineering (CBSE)

Transaction Control with Metadata Attributes

► Classes and methods may receive transaction attributes

■ Required: bean joins the client's transaction, otherwise signals error

■ RequiresNew: bean starts new transaction

■ NotSupported: interrupt transaction, execute without it

■ Supported: bean joins the client's transaction, otherwise executes without
transaction

[The Java 2 EE tutorial]

@TransactionAttribute(NOT_SUPPORTED)

@Stateful

public class TransactionBean implements Transaction {

...

@TransactionAttribute(REQUIRES_NEW)

public void firstMethod() {...}

@TransactionAttribute(REQUIRED)

public void secondMethod() {...}

public void thirdMethod() {...}

public void fourthMethod() {...}

}

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

23.5 Evaluation of EJB

•as composition system

Component-Based Software Engineering (CBSE)

Component Model

► Mechanisms for secrets and transparency: very good

■ Interface and implementation repository

■ Location, transaction, persistence transparency

■ Life-time of service hidden, states hidden

■ Deployment-time generation of implicit middleware code

■ Communication protocol can be replaced (RMI-IIOP, CORBA-IIOP)

► Parameterization by metadata annotations

■ The services to use are specified: transaction protocol, filters

■ Deployment of EJB supported

■ Code generation of stubs

► Standardization: de-facto standard in the Java world

■ Good tutorials

■ Technical vs. application specific vs. business components

Component-Based Software Engineering (CBSE)

Composition Technique

► Mechanisms for connection

■ Mechanisms for locating

. JNDI

■ Mechanisms for adaptation

. Interceptors (server-side skeletons)

■ Mechanisms for glueing

. Container producing glue code

► Mechanisms for aspect separation

■ Middleware services declared in the deployment descriptor

► Mechanisms for meta-modeling

■ with Java reflection and metadata annotations

► Scalability

■ Pooling ensures scaling

Component-Based Software Engineering (CBSE)

Composition Language

► The deployment descriptor language of EJB 2.0 is a simple composition
language

► Limited:

■ Glue code is provided by the container

■ Services can be added/removed/modified by changing the deployment descriptor

■ CMP entity beans can be customized by changing the deployment descriptor

Component-Based Software Engineering (CBSE)

EJB - Component Model

Parameterization

Binding points

ContractsBusiness
services

Infrastructure

Secrets

Development
environments

Types

Versioning

Distribution
Location

transparence

Component-Based Software Engineering (CBSE)

EJB – Composition Technique and Language

Automatic
middleware

Scalability

Adaptation

MetacompositionAspect Separation

Extensibility Software process

Connection
Product quality

Deployment descriptor,
Metadata annotations

Component-Based Software Engineering (CBSE)

EJB as Composition Systems

Component Model Composition Technique

Composition Language

Contents: binary components

Binding points: standardized interfaces

Adaptation and glue code is generated
(implicit)

Automatic persistency and transactions

Dynamic deployment

Deployment descriptor
language

Component-Based Software Engineering (CBSE)

The End - What Have We Learned

► EJB is big, not for everything

■ Allows the developer to focus on business logic

■ Provides very useful services, like transparency, persistence, security, networking
independence, etc.

■ Can interoperate with CORBA

► It is a well-defined standard by Oracle

► It works in symbiosis with several other APIs

■ JNDI, RMI, JDBC, JMS, etc

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

Appendix: The Parts of an EJB
- The Deployment Descriptor (EJB 2.0)

► An XML file in which the middleware service requirements are declared (There is a
DD-DTD)

■ Bean management and lifecycle requirements
■ Transaction, persistence, and security requirements

► Composition of beans (references to other beans)
■ Names: Name, class, home interface name, remote-interface name, class of the primary key
■ States: type (session, entity, message), state, transaction state, persistency management - how?

► The application assembler may allocate or modify additional different information
■ Name, environments values, description forms

■ Binding of open references to other EJB

■ Transaction attributes

Component-Based Software Engineering (CBSE)

Example of a Deployment Descriptor

<!DOCTYPE ejb-jar PUBLIC “-//Sun Microsystems, Inc.//DTD Enterprise

JavaBeans 2.0//EN” “http://java.sun.com/dtd/ejb-jar_2_0.dtd”>

<ejb-jar>

<enterprise-beans>

<session>

<ejb-name>Bank</ejb-name>

<home>com.somedomain.BankHome</home>

<remote>com.somedomain.Bank</remote>

<local-home>com.somedomain.BankLocalHome</local-home>

<local>com.somedomain.BankLocal</local>

<ejb-class>com.somedomain.BankBean</ejb-class>

<session-type>Stateless</session-type>

<transaction-type>Container</transaction-type>

</session>

</enterprise-beans>

</ejb-jar>

Component-Based Software Engineering (CBSE)

Stateless Session Beans

► Handle single requests

■ Conversations that span a single method call

■ Does not hold a conversational state

► The bean may be destroyed by the container after a call or it has to be
cleared of old information

► Examples of stateless session beans

■ A user verification service

■ An encoding engine

■ Any service that given some input always produces the same result

Component-Based Software Engineering (CBSE)

Pooling Stateless Session Beans

► Stateless session beans can easily be pooled (reused) to allow better scaling

■ They contain no state

Bean

invoke()

EJB Object

Client

Remote
Interface invoke()

EJB Container/Server

Bean

Bean

Bean

Stateless bean pool

Component-Based Software Engineering (CBSE)

Life Cycle of a Stateless Session Bean

Bean instance does
not exist

1: Class.newInstance()
2: setSessionContext()
3: ejbCreate()

1: ejbRemove()

Pool of equivalent
method-ready
instances

Business method

Component-Based Software Engineering (CBSE)

Pooling Stateful Session Beans

► Pooling becomes more complicated

■ Beans must be swapped from physical memory to disk

► A stateful session bean has to implement:

■ ejbPassivate(): Called to let the bean release any resources it holds before it gets
swapped out

■ ejbActivate(): Called right after the bean has been swapped in to let it acquire the
resources it needs

Enterprise Bean

Client

EJB Container/Server

EJB Object
Remote
Interface

2: Pick the least
recently used bean

1: Invoke business
method

3: Call ejbPassivate()

4:Serialize the
bean state

5:Store passivated
bean state

Storage

Component-Based Software Engineering (CBSE)

Pooling Entity Beans

Entity Bean
Instances

Client 1
John Smith

EJB Container/Server

EJB Object 1
(John Smith's
Bank Account)Remote

Interface

Client 2
Mary Jane

Client 3
Bob Hall

EJB Object 2
(Mary Jane's
Bank Account)Remote

Interface

EJB Object 3
(Bob Hall's
Bank Account)Remote

Interface

Bean Pool

Component-Based Software Engineering (CBSE)

Bean-Managed Persistent Entity Beans (BMP Beans)

► The developer is required to provide the implementation to map the
instances to and from storage

■ Java Database Connectivity (JDBC)

► BMP beans have to implement javax.ejb.EntityBean:

■ setEntityContext(javax.ejb.EntityContext)

. The context can be queried of information regarding the container

■ unsetEntityContext()

■ ejbRemove()

. Removes the data from the persistent storage

■ ejbActivate()

. Lets the bean allocate resources after being swapped in

■ ejbPassivate()

. Called before the bean is swapped out so it can release resources

■ ejbLoad()

. Loads database data into the bean

■ ejbStore()

. Stores the data in the bean to the database

Component-Based Software Engineering (CBSE)

Bean-Managed Persistent Entity Beans

► BMP beans also have to other kinds of methods relating to storage
■ ejbCreate()

. Used to create new entries in the database (optional)

■ Finder methods

. ejbFindXXX()

. Must have at least one: ejbFindByPrimaryKey()

. Normally contains database queries

 e.g., SELECT id FROM accounts WHERE balance > 3000

■ ejbHomeXXX() methods

. Performs simple services over a set of beans

► A BMP entity bean consists of

■ Bean-managed state fields, persistable fields that are loaded from the database

■ Business logic methods: Performs services for clients

■ EJB-required methods: Required methods that the container calls to manage the
bean

Component-Based Software Engineering (CBSE)

Example
- Bean-Managed State Fields

► AccountBean.java

import java.sql.*;

import javax.naming.*;

import javax.ejb.*;

import java.util.*;

public class AccountBean implements EntityBean {

protected EntityContext context;

// Bean-managed state fields

private String accountID;

private String ownerName;

private double balance;

public AccountBean() { }

...

public void deposit(double amount) {

balance += amount;

}

public void withdraw(double amount {

if (amount < balance) {

balance -= amount;

}

}

public void getBalance() {

return balance;

}

Component-Based Software Engineering (CBSE)

Example
- Business Logic Methods

...cont...

public void ejbHomeGetTotalBankValue() {

PreparedStatement pStatement = null;

Connection connection = null;

try {

connection = getConnection();

pStatement = connection.prepareStatement(

“select sum(balance) as total from accounts”);

ResultSet rs = pStatement.executeQuery();

if (rs.next()) { return rs.getDouble(“total”); }

catch (Exception e) { … }

finally {

try { if (pStatement != null) pStatement.close(); }

catch (Exception e) { … }

try { if (connection != null) connection.close(); }

catch (Exception e) { … }

}

}

...cont...

Component-Based Software Engineering (CBSE)

Example
- Required Methods

...cont...

public void ejbRemove {

PreparedStatement pStatement = null;

Connection connection = null;

AccountPK pk = (AccountPK) context.getPrimaryKey();

String id = pk.accountID;

try {

connection = getConnection();

pStatement = connection.prepareStatement(

“delete from accounts where id = ?1”);

pStatement.setString(1, id);

pStatement.executeQuery();

catch (Exception e) { … }

finally {

try { if (pStatement != null) pStatement.close(); }

catch (Exception e) { … }

try { if (connection != null) connection.close(); }

catch (Exception e) { … }

} }

...

Component-Based Software Engineering (CBSE)

Container-Managed Persistency in 2.0

► TemplateMethod design pattern with generated hook class implementation

► Xdoclet tag comments or deployment descriptor

EntityBean

<<abstract>>
ProductBean

<<generated>>
ProductBeanImpl

Container

Deployment
descriptor

Xdoclet
/* @entitiy */

Component-Based Software Engineering (CBSE)

Container-Managed Persistent Entity Beans (CMB)

► The container performs the storage operations

■ This gives a clean separation between the entity bean and its persistent
representation

■ The container generates the persistence logic

► The CMP entity bean is always abstract

■ The container generates a concrete subclass

► The CMP entity beans have no declared fields

■ Also the get/set method implementations are generated by the container from the
deployment descriptor

► CMP beans get an abstract persistence schema

■ An abstract persistence schema is declared in the deployment descriptor so the
container will know what to generate

► There is a query language, EJB Query Language (EJB-QL)

■ SELECT OBJECT(a) FROM Account AS a WHERE a.balance > ?1

Component-Based Software Engineering (CBSE)

Example: Using the TemplateMethod Pattern in EJB 2.0

import javax.ejb.*;

public abstract class ProductBean implements EntityBean {

protected EntityContext context;

public abstract String getName();

public abstract void setName(String name);

public abstract String getDescription();

public abstract void setDescription(String description);

public abstract double getBasePrice();

public abstract void setBasePrice(double prise);

public abstract String getProductID();

public abstract void setProductID(String productID);

public void ejbActivate() { }

public void ejbRemove() { }

public void ejbPassivate() { }

public void ejbLoad() { }

public void ejbStore() { }

public void setEntityContext(EntityContext ctx) { context = ctx; }

public void unsetEntityContext() { context = null; }

public void ejbPostCreate(String productID, String name,

String description, double basePrice) { }

public String ejbCreate(String productID, String name,

String description, double basePrice) {

setProductID(productID); setName(name);

setDescription(description); setBasePrice(basePrice);

return productID;

}

}

Hook methods

Component-Based Software Engineering (CBSE)

CMP Entity Beans – Deployment Descriptor

► You have to declare how the container should generate methods and fields

....declarations of interfaces, etc

<cmp-field>

<field-name>productID</field-name>

</cmp-field>

<cmp-field>

<field-name>name</field-name>

</cmp-field>

<cmp-field>

<field-name>description</field-name>

</cmp-field>

<cmp-field>

<field-name>basePrice</field-name>

</cmp-field>

.. queries ...

<query>

<query-method>

<method-name>findByName</method-name>

<method-params>

<method-param>java.lang.String</method-param>

</method-params>

</query-method>

<ejb-ql>

<![CDATA(SELECT OBJECT(a) FROM ProductBean AS a WHERE name=?1)]>

</ejb-ql>

</query>

Component-Based Software Engineering (CBSE)

EJB and Others

► Interceptors and Decorators

■ The Interceptor of a bean is like a decorator

■ It can be overwritten and extended from outside the EJB

■ User can write filters for EJB

■ JBoss uses this for aspect-oriented EJB (see later)

► EJB was formed after Microsoft's MTS (now COM+)

■ COM+ is in .NET

■ Models are somewhat similar

► Corba Component Model (CCM) is also similar

Component-Based Software Engineering (CBSE)

XDoclets

► An XDoclet is a plugin into the XDoclet framework

► The XDoclet framework is a doclet, i.e., a Javadoc extension

► XDoclets define new tags (xtags), used for metadata

■ Tags can have attribute lists

■ /* @ejb.bean type = “CMP” name=”client” view-type=”local” */

► Tags steer code generation

■ XDoclet compiler reads the Java source files, evaluates commented tags and
generates additional code

Java,
with xtags

Java byte
code

Additional
helper code

Component-Based Software Engineering (CBSE)

Use of Xdoclets in EJB 2.0

► Generation of

■ Deployment descriptors

■ Default interfaces

■ Implementation stubs

► Example [from XDoclet documentation]
/** Account

@see Customer

@ejb.bean name=”bank/Account” type=”CMP”

jndi-name=”ejb/bank/Account”

primkey-field=”id”

@ejb.finder signature=”jara.util.collection findAll()”

unchecked=”true”

@ejb.transaction type=”required”

@ejb.interface remote-class=”test.interfaces.Account”

@version 1.5

*/

