
Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

30. Architecture Systems

Lecturer: Dr. Sebastian Götz

Prof. Dr. Uwe Aßmann

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de/teaching/cbse

8. Mai 2017

1. Separation of Concerns

2. Concepts of an ADL

3. Examples of ADL

4. Appendix:

1. Architecture Specification in
UML

2. Refinement of Connectors in
MDSD

Component-Based Software Engineering (CBSE)

Obligatory Literature

► E. W. Dijkstra. EWD 447: On the role of scientific thought. Selected
Writings on Computing: A Personal Perspective, pages 60–66, 1982.
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html

► D. Garlan and M. Shaw. An Introduction to Software Architecture. In
Advances in Software Engineering and Knowledge Engineering, World
Scientific Publishing Company, 1993, Ed. V. Ambriola and G. Tortora, S.
1-40. Nice introductory article.
http://www-2.cs.cmu.edu/afs/cs/project/able/www/paper_abstracts/intro_softarch.html

► Shaw, M. and Clements, P.C. A Field Guide to Boxology. Preliminary
Classification of Architectural Styles for Software Systems. CMU April 1996.
http://www.cs.cmu.edu/~Vit/paper_abstracts/Boxology.html

► C. Hofmeister, R. L. Nord, D. Soni. Describing Software Architecture with
UML. In P. Donohoe, editor, Proceedings of Working IFIP Conference on
Software Architecture, pages 145--160. Kluwer Academic Publishers,
February 1999.
http://link.springer.com/chapter/10.1007/978-0-387-35563-4_9

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html
http://www-2.cs.cmu.edu/afs/cs/project/able/www/paper_abstracts/intro_softarch.html
http://www.cs.cmu.edu/~Vit/paper_abstracts/Boxology.html
http://link.springer.com/chapter/10.1007/978-0-387-35563-4_9

Component-Based Software Engineering (CBSE)

Literature

► Shaw, M., Garlan, D. Software Architecture – Perspectives for an Emerging
Discipline. Prentice-Hall,1996. Nice Introduction.

► Clements, Paul C. A Survey of Architecture Description Languages. Int.
Workshop on Software Specification and Design, 1996.

► C. Hofmeister, R. Nord, D. Soni. Applied Software Architecture. Addision-
Wesley, 2000. Very nice book on architectural elements in UML.

► Martin Alt. On Parallel Compilation. PhD Dissertation, Universität
Saarbrücken, Feb. 1997. (CoSy prototype)

► ACE b.V. Amsterdam. CoSy Manuals.

► http://www.ace.nl/compiler/cosy

► Overview of EAST-ADL

► http://www.maenad.eu/public_pw/conceptpresentations/EAST-
ADL_WhitePaper_M2.1.10.pdf

http://www.ace.nl/compiler/cosy
http://www.ace.nl/cosy

Component-Based Software Engineering (CBSE)

Examples of Architecture Systems

► Shaw, M, DeLine, R., Klein, D.V., Ross, T.L., Young, D.M., Zelesnik, G,
Abstractions for Software Architecture and Tools to Support Them. IEEE
Transactions on Software Engineering, April 1995, S. 314-335. (UNICON)
http://ieeexplore.ieee.org/abstract/document/385970/

► D. C. Luckham and J. Vera. An Event-Based Architecture Definition
Language. IEEE Transactions on Software Engineering, S. 717--734, Sept.
1995. (RAPIDE)

► Gregory Zelesnik. The UniCon Language User Manual. School of Computer
Science, Carnegie Mellon University Pittsburgh, Pennsylvania

► M. Alt, U. Aßmann, and H. van Someren. Cosy Compiler Phase Embedding
with the CoSy Compiler Model. In P. A. Fritzson, editor, Proceedings of the
International Conference on Compiler Construction (CC), volume 786 of
Lecture Notes in Computer Science, pages 278-293. Springer, Heidelberg,
April 1994.

http://ieeexplore.ieee.org/abstract/document/385970/

Component-Based Software Engineering (CBSE)

Other References

 Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. OSDI 2004.

 McMenamin, S., Palmer, J.: Essential Systems Analysis. Yourdon Press,
1984

• In German: Strukturierte Systemanalyse; Hanser Verlag 1988

Component-Based Software Engineering (CBSE)6

Classical
Component Systems

Architecture Systems

Aspect Systems

View Systems

Darwin
BPMN

Aspect/J
AOM

Invasive Composition
Piccola Gloo

Standard Components
Reflection

Architecture as Aspect
Connectors

Aspect Separation
Crosscut graphs

Composition
Operators

Composition
Language

Object-Oriented Systems
C++ Java

Objects as
Run-Time Components

Modular Systems Modules as Compile-
Time Components

Composition Filters
Hyperspaces

Software
Composition
Systems

.NET CORBA
Beans EJB

The Ladder of Composition Systems

Shell scripts
Modula Ada-85

COSY
ACME

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

30.1. Separation of Concerns

• Let me try to explain to you, what to my taste is characteristic for all intelligent
thinking. It is, that one is willing to study in depth an aspect of one’s subject matter in
isolation for the sake of its own consistency, all the time knowing that one is
occupying oneself only with one of the aspects. ... It is what I sometimes have called
"the separation of concerns", which, even if not perfectly possible, is yet the only
available technique for effective ordering of one’s thoughts, that I know of.

• Edsgar W. Dijkstra, "On the role of scientific thought", [Dij82]

Component-Based Software Engineering (CBSE)

A Basic Rule for Design

► ... is to focus at one problem at a time and to forget about others:

► Abstraction is neglection of unnecessary detail

■ Display and consider only essential information

► Heuristic: Separation of Concerns (SoC)

■ Different concepts should be separated so that they can be specified independently

■ Every separated concept neglects unnecessary details

■ Dimensional specification: Specify a system from different viewpoints and abstract for
every viewpoint from unnecessary details

► An Example of SoC: Separate Policy and Mechanism

■ Mechanism:

. The way how to technically realize a solution

■ Policy:

. The way how to parameterize the realization of a solution

► Objective: vary policy independently from mechanism

Component-Based Software Engineering (CBSE)9

Structure
Media plan

Light plan Water pipe plan

Integrated
house

Aspects in Architecture as an Example of SoC

Component-Based Software Engineering (CBSE)10

Application
Components

Other aspects
Architecture

Code generator

Another Example of SoC:
Architectural Aspect in Software

Component-Based Software Engineering (CBSE)

Architecture Systems as Automated Architectural Views

Architecture Systems advance in all three criteria groups for composition
systems:

► Component model
■ Binding points: Ports

■ Transfer (carrier) of the communication is transparent

■ Hierarchical components by encapsulation

► Composition technique
■ Adaptation and glue code by connectors

■ Aspect separation: application and communication are separated

. Topology (with whom?): Skeletons, coordinators

. Carrier (how?)

■ Scalability (distribution, binding time with dynamic architectures)

■ Architectural skeletons as composition operators

► Composition language: Architecture Description Language (ADL)

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

30.1.2 VIEW MODELS OF
ARCHITECTURE

What are the Concerns of Architecture we are
Interested in?

Component-Based Software Engineering (CBSE)

Infrastructure

Administration
Essence

(Application)

Linker

Essence – Administration – Infrastructure (EAI)

 [McMenamen/Palmer] EAI separates a software system into three types
of components

• Functional essence (application components)

• Administration (contracts, quality assurance)

• Infrastructure components (communication, architecture)

Component-Based Software Engineering (CBSE)

Kruchten‘s 4+1 View Model of Software

Philippe Kruchten: Architectural Blueprints—The “4+1” View Model of Software
Architecture. In IEEE Software 12 (6). November 1995, pp. 42-50

Component-Based Software Engineering (CBSE)

The 4-View to Software Architecture

► [Hofmeister/Sony/Nord. Applied Software Architecture] fills the Kruchten
Model with more content

► Software architecture consists of 4 views
■ logical view (conceptual view, component-connector architectures)

. specifies the functional requirements and structure, in a component-based UML model

. This is the focus in this chapter

■ process view (dynamic view)

. specifies non-functional features as performance, reliability, fault tolerance,
parallelism, division in processes.

■ development view (project tree structure)

. specifies the file organisation the modules, libraries, subsystems, the static structure
the software in the development environment

■ physical view (run-time view)

. specifies the mapping of the software to the hardware, distribution, processes, etc.,
and the run-time execution structure

► For all these views, architecture diagrams can be made in different
modelling languages

► Here, we treat only the logical view

Component-Based Software Engineering (CBSE)16

Logical View
Process view

Deployment view Physical view

Integrated
house

Hofmeister Aspects (Profiles in UML)

Component-Based Software Engineering (CBSE)

Reference Model for Open Distributed Processing (RM-ODP)

http://upload.wikimedia.org/wikipedia/commons/7/7b/RM-
ODP_viewpoints.jpg
Marcel Douwe Dekker CCBYSA 3.0, GNU FDL

Business IT

perspective
Data base

perspective

Platform

perspective

Functions and

classes

Interaction,

Infrastructure,

hardware

http://upload.wikimedia.org/wikipedia/commons/7/7b/RM-ODP_viewpoints.jpg

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

30.2 ELEMENTS OF ARCHITECTURE
DESCRIPTION LANGUAGES

Component-Based Software Engineering (CBSE)

Connector

Port

Interface

Role

Component Model in
Architecture Systems

► Ports abstract interface points (event channels, methods)

■ Ports specify the data-flow into and out of a component

■ In the simplest case, ports are methods, such as in(data), out(data)

► Connectors are special communication components

■ Connectors are attached to ports

■ Connectors abstract from the concrete carrier

■ Can be binary or n-ary

■ Connector end is called a role

■ A role fits only to certain types of ports (typing)

■ Encapsulation is a composition
operator to build hierarchies

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

30.2.1 PORTS

Component-Based Software Engineering (CBSE)

Abstract Binding Points: Data Ports

► A data port denotes a spot in the component, where it reads data from
(or writes data to) the outer world

► A control-flow port (service port) denotes a spot in the component
which can be triggered for an activity

► Ports are provided or required
► A port is provided, if the component offers its implementation for external use

► A port is required, if the component needs an implementation for it from another
component in the external world

► Ports are

► Synchronous or asynchronous (partner has to wait or not)

► Singular or continuous (communication can take place once or many times)

► Atomic or composite

Component-Based Software Engineering (CBSE)

Different Data Ports

Synchronicity

► Input data ports are synchronous or asynchronous: in(data)

■ get(data) aka receive(data): Synchronous in-port, taking in one data

■ testAndGet(data): Asynchronous in-port, taking in one data, if it is available

► Output data ports are synchronous or asynchronous: out(data)

■ set(data): Synchronous out-port, putting out one data, waiting until acknowledge

■ put(data) aka send(data): Asynchronous out port, putting out one data, not waiting
until acknowledge

Continuity

► Stream ports (channels, pipes): continuous data port

► Can be realized by Design Pattern Iterator

► Event port: asynchronous continuous data port

Component-Based Software Engineering (CBSE)

Composite Ports (Services)

Ports can be atomic or composite (structured)

► A service is a structured port (groups of ports)

► A data service is a tuple of atomic ports:

[in(data), ..., in(data), out(data), ..., out(data)]

► A call port is a synchronous input/output composite, singular port with
one out-port, the return

[in(data), ..., in(data), out(data)]

► A property service is a synchronous singular data service to access
component attributes, i.e., a simple tuple of in and out ports

[in(data), out(data)]

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

30.2.2 ENCAPSULATION

Component-Based Software Engineering (CBSE)

Hierarchic Architectures with Encapsulation

► Components can be connected by connectors
► Then, the tuple space is split into communication channels, avoiding bottleneck

► Protocols are hidden in the connector

► Components can be nested by an encapsulation operator
► The operation “encapsulate” hides encapsulated components in an outer component

► Architectures become hierarchical, reducible structures (with fractal-like zoom-in/out)

► Ports of outer components are called players

► Connectors from players to ports of inner components are called delegation connectors

► A topology is the network of connectors and ports within a component

Player Component

Component

Component

Player

Component-Based Software Engineering (CBSE)

Nesting of Components with the Encapsulation Operator

► In most component models, components are nested.

► Nesting is indicated by aggregation and part-of relationship.

► Nesting is introduced by an encapsulation operator encapsulate.

Document
System

Document System

Text
Manager

Address
ManagerAdresses

email

email
Manager

Text

Forms

Buffer

LinesTextRep

IText

IForm

encapsulate

decompose

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

30.2.3 CONNECTORS

Component-Based Software Engineering (CBSE)

Connectors Generate Architectural Code

► Glue- and adapter code from connectors, skeletons, and ADL-specifications

■ Mapping of the protocols of the components to each other

► Simulations of architectures:

■ Test dummies and mocks (dummies with protocol machines)

■ The architecture can be created first and tested standalone

■ Analysis of run-time possible (if those of components are known)

► Test cases for architectures

Architecture

(Connectors)

ADL-

compiler

Architectural Glue Code

Application

component
Application

component

Application

component
Application

component

Component-Based Software Engineering (CBSE)

Client
component

Role

Server
component

Port

Connectors are Abstract Communication Buses

Port

Port

Connector

Role

Component-Based Software Engineering (CBSE)

Corba has a Simple Connector, but it is not explicit

Client
Java

Server
C++

Client
C

IDL Stub IDL skeletonIDL Stub

Corba-ORB-Connector

Object adapter

Marshaling
Marshaling

Component-Based Software Engineering (CBSE)

Most Commercial Component Systems Provide Restricted
Forms of Connectors

► It turns out that most commercial component systems do not offer
connectors as explicit modelling concepts, but

■ offer communication mechanisms that can be encapsulated into a connector
component

■ For instance, CORBA remote connections can be packed into connectors

Client Stub
Skeleton CompImplStub Adapter AdapterClient

Connector

Component-Based Software Engineering (CBSE)

Insight: CORBA is a Simple Architecture System with
Restricted Connectors

 CORBA:

► Client and service components

► ORB client side, server side

► Marshalling, proxy, Stub, Skeleton,
Object Adapter

► Interfaces in IDL (not abstracted to
ports)

► static call

► dynamic call

► connectors always binary

► Events, callbacks, persistence as
services (cannot be exchanged to
other communications)

 Architecture System:

► Components

► Connectors

► Roles

► Ports

► procedure call connector (also
distributed)

► dynamic reconfigurable
connectors (e.g., in Darwin)

► connectors n-ary

► All these as connectors (can be
exchanged to other
communications)

Component-Based Software Engineering (CBSE)

A Complex Connector: Repository Connector
(Tuple Space Connector)

 A specific, large connector is the repository (tuple space)

 Based on data ports, components can communicate via tuples of data,
emitting and receiving from a tuple space
• Repository offers data objects (material) with data ports

• Active components work (tools) on the material

 Data in tuple spaces can be untyped, or typed by a data definition
language (DDL)

Producer

Consumer 1

Consumer 2

Tuple space
(repository,
Blackboard)

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

30.2.4 COORDINATORS
(SKELETONS)

http://homepages.inf.ed.ac.uk/mic/Skeletons/

Component-Based Software Engineering (CBSE)

Complex Composition Operator: Coordination
Skeletons

 An architectural skeleton is a coordination scheme for a set of
components superimposing a topology of connectors (connector nets)

• their encapsulation to a new component

 Example: the Map-Reduce Skeleton (Google) for searching

• Divide-and-conquer, partition, zip, serialize, ...

Component-Based Software Engineering (CBSE)

Map-Reduce in Hadoop

https://developer.yahoo.com/hadoop/tutorial/module4.html

Component-Based Software Engineering (CBSE)

Pipeline Skeleton

 Pipes use continuous ports (data flow)

Filter 2Filter 1 Filter 3

pipeline

Component-Based Software Engineering (CBSE)

Farm Skeleton (Coordinator)

 Farms use masters distributing tasks to workers (call ports)

Slave 1

Master

Slave 3

farm

Slave 2

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

30.2.5 Architecture Styles

Component-Based Software Engineering (CBSE)

Architectural Styles

► An architecture style employs for a system or a layer only particular
architectural concepts and defines constraints on their employment
[Garlan/Shaw: Software Architecture]:

■ particular composition operators (specific connectors, coordinators, skeletons, …)

■ particular communication carriers or topologies

■ Particular form of control- and data-flow

■ Architectural sytems can be expressed by architectural rules
(architectural constraints), often specified in logic

■ Wellformedness constraints, which architectural concepts may be used in the style
and which are forbidden

■ Ex.: Pipe-and-filter style, repository style, call-based style, event-driven
architecture, 3-tier architecture, and many more

Component-Based Software Engineering (CBSE)

Which Types of Control- and Data-flow Specifications
Exist for Architectures?

► Data-flow graphs (data flow diagrams, DFD) focus on data flowing
through operations

■ Activity diagrams: data flows through actions

■ See courses Softwaretechnologie II

■ Control-flow graphs (CFG) focus on control dependencies

■ Nodes are control-flow operations that start other operations on a state

■ The standard representation for imperative programs

► State systems focus on transitions between states

■ Finite State Machines (FSM): events trigger state transitions

■ Statecharts: Hierarchical FSM

► Mixed approaches

■ Colored Petri nets: tokens mark control and data-flow, see course
Softwaretechnologie II

■ Cyclic data-flow graphs (also called static-single assignment graphs, SSA)

. Cycles are marked by phi-nodes that contain control-flow guards

■ Workflow languages mix control and data-flow

■ Provide specific split and join operators for control and data flow

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

30.2.6 ARCHITECTURE DESCRIPTION
LANGUAGES (ADL)

Component-Based Software Engineering (CBSE)

Architecture can be Exchanged Independently of
Components

► Reuse of components and architectures is fundamentally improved

► Two dimensions of reuse

■ Architecture and components can be reused independently of each other

Port 2

Port 1

PortPort Component

Component

Component

Architecture Application
Component

Application
Component

Component-Based Software Engineering (CBSE)

Architecture Systems

► Unicon [Shaw 95]

► Darwin [Kramer 92]

► Rapide [Luckham95]

► C2 [Medvedovic]

► Wright [Garlan/Allen]

► CoSy
[Aßmann/Alt/vanSomeren
94]

► Modelica
http://www.modelica.org,
equation-based connectors

► EAST-ADL for architectures
of embedded systems

► http://www.east-
adl.info/Specification.html

► ARTOP for architectures on
AutoSAR for cars

► https://www.artop.org/

► Aesop [Garlan95]

► ACME [Garlan97]:

http://www.modelica.org/
http://www.east-adl.info/Specification.html

Component-Based Software Engineering (CBSE)

The Composition Language: ADL and its Tools

► For an architecture language (architectural description language,
ADL), there are several tools

■ ADL-compiler generating code for encapsulators, connectors and skeletons

■ ADL-editor: (graphic and textual) simple specification of architectures

■ The architecture is a reducible graph

■ The reducibility of the architecture allows for simple overview, evolution, and
documentation

■ ADL-style editor: Specification of architectural styles

■ Architectural constraints, such as control/data-flow style

■ ADL-checker: export of the architecture to a model checker or other semantic
analysis tool

■ ADL-exchange: XML-Readers/Writers for ADL

■ ADL-reference-architecture editor: Specification of reference architectures

Component-Based Software Engineering (CBSE)

Reference Architectures

 A reference architecture is a template or framework of an architecture,
most often for a particular application domain.

• It uses a predominant architectural style

• Strong emphasis on architectural design rules

• Can be instantiated or derived to a concrete architecture

• Often used in product families

 Later, we will see how generic programming and view-based
programming can be used to specify reference architectures

Component-Based Software Engineering (CBSE)

What ADL Offer for the Software Process

► Support for requirements specification

■ Client can understand the architecture graphics well

■ Architectural styles classify the nature of a system (similar to design patterns)

► Design support

■ Visual and textual views to the software resp. the design

■ Refinement of architectures (stepwise design, design to several levels)

■ Design of product families

. A reference architecture fixes the commonalities of the product line

. The components express the variability

► Support for validation

■ Consistency checking tools for consistency of architectures

■ Type checking: are all ports bound? Do all protocols fit?

■ Does the architecture corresponds to a certain style ?

■ Does the architecture fit to a reference architecture?

■ Checking, analysing deadlock, liveness, fairness checking

Component-Based Software Engineering (CBSE)

Support for Testing

 Dummy-in-the-loop vs software-in-the-loop:

• Instead of the components, dummies can be used to test the architecture

 Software-in-the-loop vs Hardware-in-the-loop

 Test suites for architecture and components can be split

• And reused independently

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

30.3 Examples for
Architecture Systems

• 30.3.1 CoSy - A commercial architecture system for compilers
and repository-based systems

Component-Based Software Engineering (CBSE)

50

A CoSy Compiler with Repository-Style Architecture
(Typed Tuple Space)

Lexer

Parser

Semantics

Optimizer

Transformation

Codegen

Blackboard

Component-Based Software Engineering (CBSE)

Optimizer
II

Parser

Optimizer
I

Generated
access layer

Logical view

Generated Factory

A CoSy Compiler has a Repository Connector Layer
(Access Layer)

 Access to data objects (material) in repository is via memory (tuple
space) connector

Component-Based Software Engineering (CBSE)

Subarchitecture
Back end

Hierarchical Components in the Repository Style (CoSy)

Subarchitecture
Front end

Lexer

Parser

Subarchitecture
Middle end

Semantics OptimizerTrafo

Scheduler

Code
generator

Compiler

Component-Based Software Engineering (CBSE)

Hierarchical Repository Style

► CoSy generates for every component an adapter (envelope, container),

■ that maps the protocol of the component to that of the environment

■ Coordination, communication, encapsulation and access to the repository (memory
connectors) are generated

Repository

Component-Based Software Engineering (CBSE)

Evaluation of CoSy

► CoSy is one of the few commercial architecture systems with professional
support

■ CoSy realizes hierarchical repositories with memory connectors

■ The outer call layers of the compiler are generated from the ADL

■ Sequential and parallel implementation can be exchanged

■ There is also a non-commercial prototype [Martin Alt: On Parallel Compilation. PhD
Dissertation Universität Saarbrücken])

■ Access layer to the repository is efficient (solved by generation of macros)

► Because of views a CoSy-compiler is very simply extensible

■ That's why it is expensive

■ Reconfiguration of a compiler within an hour

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

30.3.2 UNICON

► UNICON supports

■ Components in C

■ Simple and user-defined connectors

► Design Goals

■ Uniform access to a large set of connections

■ Check of architectures (connections) with analysis tools should be possible

■ Both Graphics and Text

■ Reuse of existing legacy components

Component-Based Software Engineering (CBSE)

Description of Components and Connectors in UNICON

► Name

► Interface (component) resp. protocol (connector)

► Type
■ component: modules, computation, SeqFile, Filter, process, general

■ connectors: Pipe, FileIO, procedureCall, DataAccess, RPC, RTScheduler

► Global assertions in form of a feature list (property list)

► Collection of
■ Players for components (for ports and port mappings for components of different

nesting layers)

■ Roles for connectors

► The UNICON-compiler generates
■ Odin-Files from components and connectors. Odin is an extended Makefile

■ Connection code

Component-Based Software Engineering (CBSE)57

Supported Player Types per Component Type

► Modules:

■ RoutineDef, RoutineCall,
GlobalDataDef,
GlobalDataUse,
ReadFile, WriteFile

► Computation:

■ RoutineDef, RoutineCall,
GlobalDataUse,

► SharedData:

■ GlobalDataDef,
GlobalDataUse,

► SeqFile:

■ ReadNext, WriteNext

► Filter:

■ StreamIn, StreamOut

► Process:

■ RPCDef, RPCCall

► Schedprocess:

■ RPCDef, RPCCall, RTLoad

► General:

■ All

Component-Based Software Engineering (CBSE)58

Supported Role Types For Connector Types

► Pipe:

■ Source fits to Filter.StreamOut,
SeqFile.ReadNext

■ Sink fits to Filter.StreamIn,
SeqFile.WriteNext

► FileIO:

■ Reader fits to modules.ReadFile

■ Readee fits to SeqFile.ReadNext

■ Writer fits to Modules.WriteFile

■ Writee fits to SeqFile.WriteNext

► ProcedureCall:

■ Definer fits to
(Computation|Modules).RoutineDe
f

■ User fits to
(SharedData|Computation|Module
s).GlobalDataUse

► RPC

■ Definer fits to
(Process|Schedprocess).RPC
Def

■ User fits to
(Process|Schedprocess).RPC
Call

► RTScheduler

■ Load fits to
Schedprocess.RTLoad

Component-Based Software Engineering (CBSE)

A Filter in UNICON

COMPONENT Reverser INTERFACE IS

TYPE Filter

PLAYER input IS StreamIn SIGNATURE ("line") PORTBINDING (stdin) END input

PLAYER output IS StreamOut SIGNATURE ("line") PORTBINDING (stdout) END output PLAYER

error IS StreamOut SIGNATURE ("line") PORTBINDING (stderr) END error

END INTERFACE

IMPLEMENTATION IS

/* Component instantiations are declared below. */

USES reverse INTERFACE Reverse

USES stack INTERFACE Stack

USES libc INTERFACE Libc

USES datause protocol C-shared-data

/* We will use <establish> statements for the procedure call connections (next page) */

/* Now for the configuration of connectors to players */

/* CONNECTs bind ports to roles */

CONNECT reverse._iob TO datause.user

CONNECT libc._iob TO datause.definer

END IMPLEMENTATION END Reverser

Component-Based Software Engineering (CBSE)

The KWIC Problem in UNICON

► Example from UniCon distribution:

► "Keyword in Context" problem (KWIC)
■ The KWIC problem is one of the 10 model problems of architecture systems

■ Proposed by Parnas to illustrate advantages of different designs [Parnas72]

■ For a text, a KWIC algorithm produces a permuted index

. every sentence is replicated and permuted in its words, i.e., the words are
shifted from left to right

. every first word of a permutation is entered into an alphabetical index, the
permuted index

every sentence is replicated and permuted

every sentence is replicated and permuted

every sentence is replicated and permuted

every sentence is replicated and permuted

every sentence is replicated and permuted

every sentence is replicated and permuted

Component-Based Software Engineering (CBSE)

The KWIC Problem in Unicon

► KWIC is a compound component KWIC
■ Works in a pipe-and-filter style
■ PLAYER definitions define ports of the outer

component
. stream input port input
. and two output ports output and error

■ BIND statements connect ports from outer
components to ports of inner components
(delegation connectors)

■ USES definitions create instances of
components and connectors

■ CONNECT statements connect connectors to
ports at their roles

merge

caps

output
input

shifter

req-data

Q

P

sorter

R

KWIC

error

■ Components

. caps: replicates the

sentences as necessary

. shifter: permutes the

generated sentences

. req-data: provides some data

to the merge component

. merge: join, piping the

generated data to the

component

. sorter: sorts the shifted

sentences

Component-Based Software Engineering (CBSE)

COMPONENT KWIC

/* This is the interface of KWIC with in- and output ports */

INTERFACE IS TYPE Filter

PLAYER input IS StreamIn SIGNATURE ("line")

PORTBINDING (stdin) END input

PLAYER output IS StreamOut SIGNATURE ("line")

PORTBINDING (stdout) END output

END INTERFACE

IMPLEMENTATION IS

/* Here come the component definitions */

USES caps INTERFACE upcase END caps

USES shifter INTERFACE cshift END shifter

USES req-data INTERFACE const-data END req-data

USES merge INTERFACE converge END merge

USES sorter INTERFACE sort END sorter

/* Here come the connector definitions */

USES P PROTOCOL Unix-pipe END P

USES Q PROTOCOL Unix-pipe END Q

USES R PROTOCOL Unix-pipe END R

/* Here come the connections */

BIND input TO caps.input

CONNECT caps.output TO P.source

CONNECT shifter.input TO P.sink

CONNECT shifter.output TO Q.source

CONNECT req-data.read TO R.source

CONNECT merge.in1 TO R.sink

CONNECT merge.in2 TO Q.sink

/* Syntactic sugar is provided for complete connections */

ESTABLISH Unix-pipe WITH

merge.output AS source

sorter.input AS sink

END Unix-pipe

BIND output TO sorter.output

END IMPLEMENTATION

END KWIC

KWIC in Text

Component-Based Software Engineering (CBSE)

30.3.3 Architectural Style Rules with Aesop and ACME

► Connectors are first class language elements, i.e., can be defined by users

■ Connectors are classes which can be refined by inheritance from system connectors

► Aesop supports the definition of architectural styles with fables

■ Architectural styles obey rules (logic constraints)

■ Editor for architectural styles edits design rules

. A design rule is a code fragment by which a class extends a method of a super
class. Has:

 A pre-check that helps control whether the method should be run or not.

 A post-action

► Design Environments

■ A design environment tailored to a particular architectural style.

. It includes a set of policies about the style

. A set of tools that work in harmony with the style, visualization information for
tools

. If something is part of the formal meaning, it should be part of a style

Component-Based Software Engineering (CBSE)

ACME Studio as Graphic Environment

Component-Based Software Engineering (CBSE)

ACME (CMU)

► ACME offers an exchange language (exchange format), to which different
ADL can be mapped (UNICON, Aesop,..).

► It consists of abstract syntax specification
■ Similar to feature terms (terms with attributes).

■ With inheritance

Template SystemIO () : Connector {

Connector {

Roles: { source = SystemIORole();

sink = SystemIORole()

}

properties: { blockingtype = non-blocking;

Aesop-style = subroutine-call

}

}

}

Features

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

30.4 Architecture Systems: Evaluation

► How to evaluate architecture systems as composition systems?
■ Component model

■ Composition technique

■ Composition language

Component-Based Software Engineering (CBSE)

ADL: Mechanisms for Modularization

► Component concepts
■ Clean language-, interfaces and component concepts

■ New type of component: connectors

■ Clean documentation

■ Secrets: Connectors hide
. Communication transfer

. Partner of the communication

. Distribution

► Parameterisation: depends on language

► Standardization: still pending

Component-Based Software Engineering (CBSE)

Architecture Systems - Component Model

Parameterization

Binding points

ContractsBusiness
services

Infrastructure

Secrets

Development
environments

Types

Versioning

Distribution

Ports

UML genericity

Location transparence

Component-Based Software Engineering (CBSE)

ADL: Mechanisms for Adaptation

► Connectors generate glue code: very good!

■ Many types of glue code possible

■ User definable connectors allow for specific glue

■ Tools analyze the interfaces and find about the necessary adaptation code
automatically

► Mechanisms for aspect separation. At least 3 aspects are distinguished:
■ Architecture (topology and hierarchy)

■ Communication carrier

■ Application

► No weaving
■ The aspects are not weaved, but encapsulated in glue

► An ADL-compiler is only a rudimentary weaver

Component-Based Software Engineering (CBSE)

Architecture Systems – Composition Technique and
Language

Connectors

Architecture
language

Architecture is separated

Fully scalable distribution Scalability

Adaptation

MetacompositionAspect Separation

Extensibility Software process

Connection
Product quality

Component-Based Software Engineering (CBSE)

Architecture Systems as Composition Systems

Component Model Composition Technique

Composition Language

Source or binary components

Binding points: ports

Adaptation and glue code by connectors

Scaling by exchange of connectors

Skeletons (coordinators)

Architectural language

Component-Based Software Engineering (CBSE)

What Have We Learned?

► Architecture systems provide an important step forward in software
engineering

■ For the first time, architecture becomes visible

► Concepts can be applied in UML already today

► Architectural languages are the most advanced form of blackbox
composition technology so far

Component-Based Software Engineering (CBSE)

Composition program

Connectors - Coordinators

Components

Component-based
applications

Blackbox Composition in an Architecture System

Component-Based Software Engineering (CBSE)

How the Future Will Look Like

► Metamodels of architecture concepts (with MOF in UML) will replace
architecture languages

■ The attempts are promising which describe architecture concepts with UML

■ Example: EAST-ADL, an ADL for the automotive domain:

■ http://en.wikipedia.org/wiki/EAST-ADL

► Web service languages have taken over the role of ADL in practice

► More aspects can be distinguished (see later)

■ Leading to more MOF-based extensions of UML

► We should think more about general software composition mechanisms
■ Adaptation by glue is only a simple way of composing components (... see invasive

composition)

Component-Based Software Engineering (CBSE)

The End

