
Faculty of Computer Science Institute of Software and Multimedia Technology, Software Technology Group

SS2018 – Model-driven Software Development in Technical Spaces

Aspect-Oriented Programming (AOP)

Professor: Prof. Dr. Uwe Aßmann
Tutor: Dr.-Ing. Thomas Kühn

Task 1 Aspect-Oriented Programming (AOP)

The goal of aspect-oriented programming (AOP) is to elucidate design decisions that
cross-cut the system’s basic functionality. According to Kiczales et al. [3] aspect-oriented
programming (AOP) “makes it possible to clearly express programs involving such aspects,
including appropriate isolation, composition and reuse of the aspect code.”

a) Describe the terms scattering and tangling. Why are both effects bad?

Solution:

• Scattering: Code handling one concern is split and spread throughout dif-
ferent modules/classes.

• Tangling: Code in one module/class handles multiple concerns. Both effects
indicate unmanaged redundancy of code as well as bad modularity.

b) What does cross-cutting mean wrt. AOP?

Solution: AOP acknowledges that complex systems inherently contain cross-
cutting concerns that should be specified separately. In detail, the Cross-cutting
concerns have a clear purpose and regular interaction points. Thus, AOP distin-
guishes core components and aspect components.

c) Describe the terms Pointcut, Join Point, Advice and Weaving. Give examples for
each.

Solution:

• Pointcut: Declares a set of logically related join points that must be matched
to activate an advice, e.g., intercept all calls to print or println.

• Join Point: Specifies the points where an open core component can be ex-
tended.

• Advice: Denotes a code fragment with behavior that should become active,
whenever a dynamic join point is encountered.

• Weaving: The technology for composing aspects and core components.

1



d) Where is the difference between static and dynamic join points?

Solution:

• static join points: are code positions, hooks, open for extension, e.g., class
definitions, method definitions.

• dynamic join points: are some points in the execution trace of an applica-
tion, open for extension, e.g., method entry, method exit.

e) Where is the difference between static and dynamic weaving?

Solution:

• Static aspect weaving: Performs the composition of the core components
and aspects at compile-time or load-time. Advice code is statically bound to
join points.

• Dynamic aspect weaving: Only prepares the join points at load-time,
whereas the aspects are dynamically linked to the join points at runtime.
Consequently, new core components and aspects can be dynamically loaded,
woven and activated.

f) Describe the component model, composition technique and composition language of
AspectJ.

Solution:

• Component model: core components and aspect components containing
advices

• Composition technique: Aspect weaving, i.e., extending join points of core
components with advices.

• Composition language: Pointcut description language

2



Figure 1: Metamodel of the Composition Filters.

Task 2 Composition Filters

In contrast to AOP, one of the main goals of Composition Filters is to “extend existing
(object-oriented) programming models in a modular way, instead of replacing or adapting
them” [1].

a) What are the basic concepts of Composition Filters? How are they related? Draw
an analysis class diagram.

Solution: As shown in Figure 1Concerns, filter modules, filters, filter types, filter
patterns, filter elements, filter compositions, superimpositions.

b) In what ways can Filters adapt messages before passing them one to the next
Filter?

Solution:
Ingoing and outgoing messages can be

• accepted (passed to inner object),
• dispatched (passed to external objects),
• delayed until a condition becomes true,
• discarded invocation is rejected (with an exception),
• substituted replaced with another message, and
• transformed to the metaclass Message.

c) Can the java.util.stream library of Java be considered a Composition Filter
architecture?

Solution: Partially, as Java streams can be subject to multiple input and output
filters by composing the respective method invocations. Moreover, functions, such
as parallel(), permit adding a concern into an existing stream. Yet, both streams

3



and filters only emit streams. In contrast, Composition Filters permits filtering
messages to and from object, regardless of its type. Thus, while Java streams
support input filters, they limit output filters to always emit another stream.

d) Describe the component model, composition technique and composition language of
Composition Filters [1]?

Solution:

• Component model: Components and Filters with methods as ports.
• Composition technique: Static composition employing Multiple Inheri-

tance or dynamic composition with decorators. Superimposition allows adap-
tation of filters and components.

• Composition language: Simple dispatch composition for input and output
filters.

4



Task 3 Programming with AspectJ

In this task, you will learn how learn how aspect-oriented software is implemented. You
are tasked to write simple aspects for a Java application using AspectJ, an aspect-
oriented extension to Java. Luckily, there exists direct Eclipse support by means of the
AspectJ Development Tools (AJDT) [2].

As our example we consider a tiny library that represents the structure of houses. The
library offers an interface to construct houses. In the current version any combination
of ComplexHouseParts is possible (e.g., a level can contain hallways, which can contain
levels etc.). Furthermore, rooms can either be clean or not clean. They can be cleaned
by calling the setClean(boolean clean) method. House parts can be entered and
visited. Visiting a house part means entering the part itself and visiting all the subparts.
However, as we want to use our library for any kind of domain, we want to exclude the
consistency checking code from the base implementation. Rather than, we want to use
customer-specific aspects, which are woven into the base implementation. Use AspectJ
to implement the following features.

a) Download and install AspectJ and the corresponding example.

1. Install the AspectJ Development Tools (AJDT).1

2. Download the source of the core project from the CBSE website.
3. Edit the core project to solve the task (by adding aspects).

b) Define an Aspect that logs (prints to the console) when the program starts and
stops running.

c) Define an Aspect, which restricts that levels cannot contain other levels.
d) Define an Aspect, which marks a bathroom as not clean, when it is entered.
e) Define an Aspect, which prints a warning when a room is entered which is not

cleaned.
f) Define an Aspect, which prohibits (e.g., throws an exception) any person entering

a bathroom which is not cleaned.
g) In the initialization Script (buildSimpleHouse()), a house with a private room is

created. Define an aspects, which prohibits any other person that the owner of the
house, to enter the private room.

Hand in your solution as archive *.zip before the next exercise.

Solution: A possible solution can be downloaded from the website.

1Choose the right update site wrt. your Eclipse version http://www.eclipse.org/ajdt/downloads/
index.php

5

http://www.eclipse.org/ajdt/downloads/index.php
http://www.eclipse.org/ajdt/downloads/index.php


Additional Information

• AspectJ Development Tools2

• AJDT Documentation3

• Tutorials to getting started4

• More elaborate tutorial5

References

[1] Lodewijk Bergmans and Mehmet Aksit. Principles and design rationale of composi-
tion filters. Aspect-Oriented Software Development, pages 63–95, 2004.

[2] Adrian Colyer, Andy Clement, George Harley, and Matthew Webster. Eclipse aspectj:
aspect-oriented programming with aspectj and the eclipse aspectj development tools.
Addison-Wesley Professional, 2004.

[3] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In European
conference on object-oriented programming, pages 220–242. Springer, 1997.

2https://www.eclipse.org/ajdt/
3https://eclipse.org/aspectj/doc/released/progguide/starting.html
4https://eclipse.org/ajdt/demos/
5https://o7planning.org/en/10257/java-aspect-oriented-programming-tutorial-with-aspectj

6


	Aspect-Oriented Programming (AOP)
	Composition Filters
	Programming with AspectJ

