TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - CBSE

Component-Based Software Engineering (CBSE)
0. Announcements

Dr.-Ing. Sebastian Gotz
Technische Universitat Dresden

Institut fur Software- und
Multimediatechnik

04.04.2018

Based on Slides by Prof. Uwe ABmann


http://st.inf.tu-dresden.de/teaching/cbse

Master's Courses (Hauptstudium)

Component-Based Software Engineering (CBSE)

Softwaretechnologie | (Bachelor)

(SS: Prof. ABmann)

Softwaretechnologie Il (Bachelor)

(WS: Dr. Gotz)

A 4

A 4

p

~
Future-Proof Software

Systems (Dr. Furrer)
(WS: Prof. Furrer)

Design Patterns and

Frameworks
(WS: Dr. G6t2)

.
4

/

\

Software Reengineering
(SS: Harry Sneed)

(&
e

Prof. U. ABmann

Component-Based

Software Engineering
(SS: Dr. Gotz)

/
N )
Automotive Software Requirements
Engineering Engineering und Testen
(SS: Dr. Conrad) (WS: Dr. Demuth)
AN /

O

h 4

N

Software-Management
How to manage software
projects (SS)

(SS: Dr. Demuth)

~

o
p

Software as a Business
(WS: Prof. ABmann)

v
~

-
4

Academic Skills in

Computer Science
(SS: Dr. Gotz)

/
~




Elements of the Course

Component-Based Software Engineering (CBSE)

Lecturing
= Do not miss one, they should give you a short and concise overview of the material

Reading
- Slides on “Obligatory Literature” require you to read papers from the web
= TU Dresden has subscription to ACM Digital Library, IEEE Explorer, etc.
- Slides on “Secondary Literature” contain useful but optional literature
Exercise with Dr. Thomas Kuhn
= No exercise this week.
= Exercises will start next week.

> Oral exams usually in September, so that you have enough time to learn
For exchange students, other individual dates are possible

» To register for the exam
Write an email to katrin.heber@tu-dresden.de
Specify the module you want to be tested in



mailto:katrin.heber@tu-dresden.de

Reading Along the Lectures

Component-Based Software Engineering (CBSE)

Unfortunately, the course is not covered by any book
= About 60% is covered by the blue book “Invasive Software Composition”

= Most of the rest on classical component systems by Szyperski in the book “Component
Software. Beyond object-oriented computing. Addison-Wesley.”

You have to read several research papers, available on the internet
= Marked by “Obligatory Literature”

Secondary Literature is non-mandatory, but interesting reading. Can be done
during the course



Obligatory Literature

Component-Based Software Engineering (CBSE)

During the course, read the following papers, if possible, in sequential order.
Every week, read about 1 paper (3-4h work)
Course web site

Side note
30 LP can be interpreted as a full position (40h/week) for the whole semester
This course captures 6 LP > 8h/week
This leaves 5h/week for self-study! (1.5h lecture, 1.5h exercise)

Papers

[Mcllroy68] D. Mcllroy. Mass-produced Software Components. 1st NATO
Conference on Software Engineering.
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
(Pages 79 - 87)

Others will be announced.



http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF

Obligatory Literature

Component-Based Software Engineering (CBSE)

[GOF, Gamma95] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns.
Addison-Wesley 1995.

- Standard book belonging to the shelf of every software engineer.

= The bookis called GOF (Gang of Four), due to the 4 authors

Alternatively to GOF you can be read:
= [Freeman04] E. Freeman, E. Robson, B. Bates, K. Sierra. Head First Design Patterns: A Brain-
Friendly Guide. O'Reilly Media, Inc., 2004.
[Volter06] Markus Voélter, Thomas Stahl, Jorn Bettin, Arno Haase, Simon Helsen,
Krzysztof Czarnecki: Model-Driven Software Development: Technology,
Engineering, Management. Wiley 2006.
Read Chapter 2



Be Aware - There Will Be Pain!

Component-Based Software Engineering (CBSE)

This course is not like a standard course, it is research-oriented
It treats rather advanced material, the concept of graybox engineering

No single book exists on all of that at all

= ISC covers about 60%

= Please, collaborate!

= Read the articles

= Ask questions!

= Do the exercise sheets

The exam can only be passed successfully, if you understood all parts of the
course.

Learn continuously! One week before the exam is too late!

Be aware: most likely, you have not yet seen larger systems
= Middle-size systems start over 100KLOC



The Positive Side - Why Should You Visit this Course

Component-Based Software Engineering (CBSE)

Component-based software engineering (CBSE) is the generalization of object-
oriented software engineering (OOSE)

If you follow carefully,
You will discover an exciting world of graybox composition, a new way to extend software

You will know how to arrange software reuse in your company, because component models
and composition are the enabling technologies

You will know why many companies fail in arranging a product line

The gain is worthwhile the pain!



TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - CBSE

Component-based Software
Contents and Goals



Course Content

Component-Based Software Engineering (CBSE)

1. Basics

*Introduction
*Metamodelling
*Component repositories

2. Simple black-box composition systems

*UML Business components
*Transparency problems and connectors
*CORBA

*EJB

3. Architecture Systems

*Archjava
*Web services

4. Gray-box composition systems

*Composition filters

*Generic programming
*View-based programming
*Aspect-oriented programming
*Invasive Software Composition

5. Applications of composition

*Robotics
*Mobile Applications




Main Goals

Component-Based Software Engineering (CBSE)

Understand the notion of a component
With explicitly stated dependencies (in/out interfaces)

Understand the concept of a component model
Frameworks and product lines work with various different component models
= Variability, extensibility, and gluing are three central goals
= There are other central concepts for component models than classes and objects

Understand composition techniques
different times of composition
dynamic composition
Understand connectors as role models plus protocol
= Understand composition systems

« Understand grey-box, fragment-based composition

= Why it introduces new forms of static extensibility

= Why other static component models are special cases of it



The End
___ Component-Based Software Engineering(CBS))




