
Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

Component-Based Software Engineering (CBSE)
0. Announcements

Dr.-Ing. Sebastian Götz

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de/teaching/cbse

04.04.2018

Based on Slides by Prof. Uwe Aßmann

http://st.inf.tu-dresden.de/teaching/cbse

Component-Based Software Engineering (CBSE)

Master‘s Courses (Hauptstudium)

P
ro

f.
 U

.
A

ß
m

a
n

n

2

Softwaretechnologie II (Bachelor)
(WS: Dr. Götz)

Design Patterns and
Frameworks
(WS: Dr. Götz)

Component-Based
Software Engineering

(SS: Dr. Götz)

Requirements
Engineering und Testen

(WS: Dr. Demuth)

Academic Skills in
Computer Science

(SS: Dr. Götz)

Future-Proof Software
Systems (Dr. Furrer)

(WS: Prof. Furrer)

Automotive Software
Engineering
(SS: Dr. Conrad)

Software-Management
How to manage software

projects (SS)
(SS: Dr. Demuth)

Software as a Business
(WS: Prof. Aßmann)

Software Reengineering
(SS: Harry Sneed)

Softwaretechnologie I (Bachelor)
(SS: Prof. Aßmann)

Component-Based Software Engineering (CBSE)

Elements of the Course

► Lecturing
■ Do not miss one, they should give you a short and concise overview of the material

► Reading
■ Slides on “Obligatory Literature” require you to read papers from the web

■ TU Dresden has subscription to ACM Digital Library, IEEE Explorer, etc.

■ Slides on “Secondary Literature” contain useful but optional literature

► Exercise with Dr. Thomas Kühn
■ No exercise this week.

■ Exercises will start next week.

 Oral exams usually in September, so that you have enough time to learn
• For exchange students, other individual dates are possible

 To register for the exam
• Write an email to katrin.heber@tu-dresden.de

• Specify the module you want to be tested in

mailto:katrin.heber@tu-dresden.de

Component-Based Software Engineering (CBSE)

Reading Along the Lectures

► Unfortunately, the course is not covered by any book
■ About 60% is covered by the blue book “Invasive Software Composition”

■ Most of the rest on classical component systems by Szyperski in the book “Component
Software. Beyond object-oriented computing. Addison-Wesley.”

► You have to read several research papers, available on the internet
■ Marked by “Obligatory Literature”

► Secondary Literature is non-mandatory, but interesting reading. Can be done
during the course

Component-Based Software Engineering (CBSE)

Obligatory Literature

► During the course, read the following papers, if possible, in sequential order.
► Every week, read about 1 paper (3-4h work)

► Course web site

► Side note
► 30 LP can be interpreted as a full position (40h/week) for the whole semester

► This course captures 6 LP 8h/week

► This leaves 5h/week for self-study! (1.5h lecture, 1.5h exercise)

Papers

► [McIlroy68] D. McIlroy. Mass-produced Software Components. 1st NATO
Conference on Software Engineering.
► http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF

(Pages 79 – 87)

► Others will be announced.

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF

Component-Based Software Engineering (CBSE)

Obligatory Literature

► [GOF, Gamma95] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns.
Addison-Wesley 1995.
■ Standard book belonging to the shelf of every software engineer.

■ The book is called GOF (Gang of Four), due to the 4 authors

► Alternatively to GOF you can be read:
■ [Freeman04] E. Freeman, E. Robson, B. Bates, K. Sierra. Head First Design Patterns: A Brain-

Friendly Guide. O'Reilly Media, Inc., 2004.

► [Völter06] Markus Völter, Thomas Stahl, Jorn Bettin, Arno Haase, Simon Helsen,
Krzysztof Czarnecki: Model-Driven Software Development: Technology,
Engineering, Management. Wiley 2006.
► Read Chapter 2

Component-Based Software Engineering (CBSE)

Be Aware – There Will Be Pain!

► This course is not like a standard course, it is research-oriented
► It treats rather advanced material, the concept of graybox engineering

► No single book exists on all of that at all
■ ISC covers about 60%

■ Please, collaborate!

■ Read the articles

■ Ask questions!

■ Do the exercise sheets

► The exam can only be passed successfully, if you understood all parts of the
course.

► Learn continuously! One week before the exam is too late!

► Be aware: most likely, you have not yet seen larger systems
■ Middle-size systems start over 100KLOC

Component-Based Software Engineering (CBSE)

The Positive Side – Why Should You Visit this Course

► Component-based software engineering (CBSE) is the generalization of object-
oriented software engineering (OOSE)

► If you follow carefully,
► You will discover an exciting world of graybox composition, a new way to extend software

► You will know how to arrange software reuse in your company, because component models
and composition are the enabling technologies

► You will know why many companies fail in arranging a product line

► The gain is worthwhile the pain!

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

Component-based Software
Contents and Goals

Component-Based Software Engineering (CBSE)

Course Content

•Introduction

•Metamodelling

•Component repositories

1. Basics

•UML Business components

•Transparency problems and connectors

•CORBA

•EJB

2. Simple black-box composition systems

•ArchJava

•Web services

3. Architecture Systems

•Composition filters

•Generic programming

•View-based programming

•Aspect-oriented programming

•Invasive Software Composition

4. Gray-box composition systems

•Robotics

•Mobile Applications

5. Applications of composition

Component-Based Software Engineering (CBSE)

Main Goals

► Understand the notion of a component
► With explicitly stated dependencies (in/out interfaces)

► Understand the concept of a component model
► Frameworks and product lines work with various different component models

■ Variability, extensibility, and gluing are three central goals

■ There are other central concepts for component models than classes and objects

► Understand composition techniques
► different times of composition

► dynamic composition

► Understand connectors as role models plus protocol

■ Understand composition systems
■ Understand grey-box, fragment-based composition

■ why it introduces new forms of static extensibility

■ why other static component models are special cases of it

Component-Based Software Engineering (CBSE)

The End

