
Fakultät Informatik – Institut Software- und Multimediatechnik – Softwaretechnologie – Dr. Sebastian Götz – CBSE

Component-Based Software Engineering (CBSE)
10. Introduction

Dr.-Ing. Sebastian Götz

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de/teaching/cbse

04.04.2018

Based on Slides by Prof. Uwe Aßmann

1. Basics of Composition Systems

2. Black-Box Composition Systems

3. Gray-Box Composition Systems

1

Component-Based Software Engineering (CBSE)

Obligatory Reading

 McIlroy, M. D. (1968). Mass produced software components.
In: Proceedings of the 1st International Conference on Software Engineering,
Garmisch Pattenkirchen, Germany. 1968.
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF (Pages 79-87)

 Dijkstra, E.W. (1982). On the Role of Scientific Thought.
In: Selected Writings on Computing: A personal Perspective. Texts and
Monographs in Computer Science. Springer, New York, NY
https://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF

2

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
https://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF

Component-Based Software Engineering (CBSE)

The Destructive Power of Ill-Used Components: The
Ariane 5 Launcher Failure

June 4th 1996

Total failure of the Ariane 5

launcher on its maiden flight

The following slides are from

Ian Summerville, Software Engineering

http://www.astronews.com/news/artikel/2002/12/0212-009.shtml

Credit: DLR/Thilo Kranz (CC-BY 3.0) 2013

http://commons.wikimedia.org/wiki/File:Ariane_5ES_with_ATV_4_on_its_way_to_ELA-3.jpg

3

http://www.astronews.com/news/artikel/2002/12/0212-009.shtml
http://commons.wikimedia.org/wiki/File:Ariane_5ES_with_ATV_4_on_its_way_to_ELA-3.jpg

Component-Based Software Engineering (CBSE)

Ariane 5 Launcher Failure

► Ariane 5 can carry a heavier payload than Ariane 4

■ Ariane 5 has more thrust, launches steeper

► 37 seconds after lift-off, the Ariane 5 launcher lost control

■ Incorrect control signals were sent to the engines

■ These swivelled so that unsustainable stresses were imposed on the rocket

■ It started to break up and self-destructed

► The system failure was a software failure

Ian Summerville, Software Engineering

4

Component-Based Software Engineering (CBSE)

The Problem of Component Reuse

► The attitude and trajectory of the rocket are measured by a computer-based
inertial reference system

■ This transmits commands to the engines to maintain attitude and direction

■ The software failed and this system and the backup system shut down

► Diagnostic commands were transmitted to the engines

■ ..which interpreted them as real data and which swivelled to an extreme position

► Technically: Reuse Problem

■ Integer overflow failure occurred during converting a 64-bit floating point number to a
signed 16-bit integer

■ There was no exception handler

■ So the system exception management facilities shut down the software

Ian Summerville, Software Engineering

5

Component-Based Software Engineering (CBSE)

Software Reuse Error

► The erroneous software component (Ada-83) was reused from the Ariane 4 launch
vehicle.

► The computation that resulted in overflow was not used by Ariane 5.

► Decisions were made in the development

■ Not to remove the facility as this could introduce new faults

■ Not to test for overflow exceptions because the processor was heavily loaded.

■ For dependability reasons, it was thought desirable to have some spare processor
capacity

► Why not in Ariane 4?
■ Ariane 4 has a lower initial acceleration and build up of horizontal velocity than Ariane 5

■ The value of the variable on Ariane 4 could never reach a level that caused overflow
during the launch period.

■ The contract was not re-proven for Ariane-5

■ There was also no run-time check for contract violation in Ariane-5

Ian Summerville, Software Engineering

6

Fakultät Informatik – Institut Software- und Multimediatechnik – Softwaretechnologie – Dr. Sebastian Götz – CBSE

10.1. Basics of Composition Systems

• Component-based software engineering is built on

composition systems.

• A composition system has

– a component model,

– a composition technique, and

– a composition language.

7

Component-Based Software Engineering (CBSE)

► Cars, Planes, Ships, Factories, Houses, Watches, …

► Unimaginable amount of software is spread across the globe

► How to keep this manageable?

Software is Everywhere

8

Component-Based Software Engineering (CBSE)

The Power of Components

(CC0)

9

Component-Based Software Engineering (CBSE)

Goals

► Component-based software engineering (CBSE) is the generalization of
object-oriented software engineering (OOSE)

► Understand how to reuse software

► Component models are the basis of all engineering

► Understand how large software systems are build

► What is a composition system?

► The difference of component-based and composition-based systems

► What is a composition operator? composition expression? composition program?
composition language?

► Understand the difference between graybox and blackbox systems

► Understand the ladder of composition systems

► Understand the criteria for comparison of composition systems

10

Component-Based Software Engineering (CBSE)

Motivation for Component-Based Development

► Component-Based Development is the basis of all engineering

► Development by “divide-and-conquer” (Alexander the Great)

► Well known in other disciplines

 Mechanical engineering (e.g., German VDI 2221)

 Electrical engineering

 Architecture

► “Make, reuse or buy” decisions (reuse decisions):

► Outsourcing to component producers (Components off the shelf, COTS)

► Reuse of partial solutions

► Easy configurability of the systems: variants, versions, product families

► Scaling business by Software Ecosystems

► Component models and composition systems are the technical basis for all modern
software ecosystems: Linux, Eclipse, AutoSAR, Android, openHAB, ROS, …

11

Component-Based Software Engineering (CBSE)

Mass-produced Software Components

► Mass Produced Software Components [McIlroy, Garmisch 68, NATO conference on
software engineering]:

■ Every ripe industry is based on components, to manage large systems

■ Components should be produced in masses and composed to systems afterwards

Yet this fragile analogy is belied when we seek for analogues of other tangible symbols of
mass production.
• There do not exist manufacturers of standard parts, much less catalogues of standard

parts.
• One may not order parts to individual specifications of size, ruggedness, speed, capacity,

precision or character set.

In the phrase “mass production techniques”, my emphasis is on “techniques” and not on
“mass production” plain. Of course mass production, in the sense of limitless replication of
a prototype, is trivial for software.

But certain ideas from industrial technique I claim are relevant.
• The idea of subassemblies carries over directly and is well exploited.
• The idea of interchangeable parts corresponds roughly to our term “modularity”, and is

fitfully respected.
• The idea of machine tools has an analogue in assembly programs and compilers.

12

Component-Based Software Engineering (CBSE)

Mass-produced Software Components

► Later McIlroy was with Bell Labs,

■ ..and invented pipes, diff, join, echo (UNIX).

■ Pipes are still today the most employed component system!

► Where are we today?

(Google Ngram Viewer)

13

Component-Based Software Engineering (CBSE)

“Real” Component Systems

► Lego

► Square stones

► Building plans

► IC‘s

► Hardware bus

► How do they differ from software?

14

Component-Based Software Engineering (CBSE)

Definitions of Software Components

A software component is a unit of composition

• with contractually specified interfaces

• and explicit context dependencies only.

A software component

• can be deployed independently and

• is subject to composition by third parties.

(Clemens Szyperski)

A reusable software component is a

• logically cohesive,

• loosely coupled module

• that denotes a single abstraction. (Grady Booch)

A software component is a static abstraction with plugs.

(Nierstrasz/Dami)

15

Component-Based Software Engineering (CBSE)

What is a Software Component?

► A component is a container with

■ Hidden inner

■ Public outer interface

■ Stating all dependencies explicitly

► Example: a method

► Public outer interface: return type

► Explicit dependencies: parameters

► Hidden inner: method body

► A component is a reusable unit for composition!

► A component underlies a component model

■ that fixes the abstraction level

■ that fixes the grain size (widget or OS?)

■ that fixes the time (static or runtime?)

int add(int a, int b) {
return a+b;

}

16

Component-Based Software Engineering (CBSE)

What is a Software Component?

► A component is a container with

■ Hidden inner

■ Public outer interface

■ Stating all dependencies explicitly

► Example: Android Activity Components
► Interfaces specified in AndroidManifest.xml

► Public outer interface:

► Intent-filter, lists intents the activity shall respond to

► Explicit dependencies:

► Uses-feature, to list hard- and software features required by your activity

► Hidden inner:

► Implementation of Activity class

<<Activity>>
Show

Picture

<<Activity>>
Interactive

Camera

<<Intent>>
PICTURE_TAKEN<<Resource>>

android.hard-
ware.camera

<<uses-feature>> <<intent-filter>>

Learn more here:
https://developer.android.com/topic/libraries/architecture/index.html

17

https://developer.android.com/topic/libraries/architecture/index.html

Component-Based Software Engineering (CBSE)

<<Package>>

<<Package>>

What is a Software Component?

► A component is a container with

■ Hidden inner

■ Public outer interface

■ Stating all dependencies explicitly

► Example: Robot Operating System (ROS) Components

► Public outer interface:

► ROS Nodes are executables. Their outer interface is defined by start-up parameters.

► Explicit dependencies:

► ROS Packages (package.xml). Dependencies are specified per package.

► ROS Nodes communicate via topics

► Hidden inner:

► Implementation in C++ or Python.

<<Node>>
Simulator

<<Node>>
Input

Listener

<<Topic>>
Command

dependency

subscribepublish

Learn more here: http://wiki.ros.org/ROS/Tutorials/

18

http://wiki.ros.org/ROS/Tutorials/

Component-Based Software Engineering (CBSE)

What Is a Component-Based System?

► A component-based system has the following divide-and-conquer feature:

■ A component-based system is a system in which a major relationship between the
components should be tree-shaped or reducible.

■ In other words: components are hierarchically organized

► Consequence: the entire system can be reduced to one abstract node

■ at least along the structuring relationship

► Because of the divide-and-conquer property, component-based development is
attractive.

► However, we have to choose the structuring relation and the composition model

► Mainly, 2 types of component models are known

■ Modular decomposition (blackbox)

■ Separation of concerns (graybox)

everything hidden everything visibleparts visible

19

Component-Based Software Engineering (CBSE)

Component Systems

► We call a technology in which component-based systems can be produced a
component system.

► A component system has

for description of
components

for compositions of
components

Component Model Composition Technique

20

Component-Based Software Engineering (CBSE)

Composition Systems

► A composition system has

Composition
Language

for programming-in-
the-large

and architecture

Component Model Composition Technique

21

Component-Based Software Engineering (CBSE)

Composition Systems

► Component Model:

■ How do components look like? What types of components are provided?

■ Secrets, interfaces, substitutability

► Composition Technique

■ How are components plugged together, composed, merged, applied?

■ Composition time (Compile-time, Deployment-time, Runtime)

► Composition Language

■ How are compositions of large systems described?

■ How are system builds managed?

22

Component-Based Software Engineering (CBSE)

Classical
Component Systems

Architecture Systems

Aspect Systems

View Systems

EAST-ADL
Web Services

Aspect/J
AOM

Invasive Composition
Piccola Gloo

Standard Components
Reflection

Architecture as Aspect
Connectors

Aspect Separation
Crosscutting

Composition
Operators

Composition
Language

Object-Oriented Systems
C++ Java
UML components

Objects as
Run-Time Components

Modular Systems Modules as Compile-
Time Components

Composition Filters
Hyperspaces

Software
Composition
Systems

.NET CORBA
EJB ROS Android

The Ladder of Composition Systems

Shell scripts
Pascal C

23

Fakultät Informatik – Institut Software- und Multimediatechnik – Softwaretechnologie – Dr. Sebastian Götz – CBSE

10.2 Black-box Composition Systems

24

Component-Based Software Engineering (CBSE)

Black-box Composition

Structured
Programming

• Pascal

• C

Object-oriented
Programming

• Java

• C++

Classical
Component
Systems

• CORBA

• Enterprise Java
Beans

• OSGi

Architectural
Systems

• Web Services

• EAST-ADL
(AutoSAR)

25

Component-Based Software Engineering (CBSE)

Example: Pascal

Structured Programming

 Component Model

• Procedures (alias Methods,
Functions, Operations)

• Variables (i.e., data)

 Composition Technique

• Procedure calls (data exchanged via
parameters and return values)

 Composition Language

• none

PROGRAM ProgramName;

VAR

VariableName : VariableType;

...

PROCEDURE ProcedureName;

variable declarations

BEGIN

...

END;

FUNCTION FunctionName(variableList): VariableType;

variable declarations

BEGIN

...

FunctionName := some expression

...

END;

BEGIN

...

END.

<<Procedure>>
Main

<<Procedure>>
Sort

Procedure call

26

Component-Based Software Engineering (CBSE)

Object-oriented Programming

 Component Model

• Classes, which capsule

 Methods (alias Procedures,
Functions, Operations)

 Variables (i.e., data)

• Objects

 Composition Technique

• Method calls (Delegation)

• Inheritance (Polymorphism)

 Composition Language

• none

Example: Java

class HelloWorld {

protected String text;

public HelloWorld() {

text = “Hello World.”;

}

public void sayHello() {

System.out.println(text);

}

}

class HelloCBSE extends HelloWorld {

public HelloCBSE() {

text = “Hello CBSE!”;

}

}

class Client {

public static void main(String args[]) {

HelloWorld a = new HelloCBSE();

a.sayHello();

}

}

27

Component-Based Software Engineering (CBSE)

Classical Component-based Systems

 Component Model

• Standardized components, typically defined via interfaces

• Components are technology-specific:

 Android: Apps, Activities, Services, Broadcast Receivers, Content providers

 Robot OS: Packages, Nodes, Services

 Enterprise Java: Enterprise archive (EAR), Entity/Session/Message-driven Beans

 OSGi: Bundles, Services

 Composition Technique

• Interplay of components managed by middleware services

• Composition techniques are technology-specific, too:

 Android: Intents, Android Interface Definition Language (AIDL)

 Robot OS: Topics

 Enterprise Java: Remote Method Invocation (RMI)

 OSGi: Package ex-/import, Method calls

 Composition Language

• none

28

Component-Based Software Engineering (CBSE)

Architectural Systems

 Component Model

• Standardized components, typically defined via interfaces

 Composition Technique

• Interconnection of components via connectors

• Connectors encapsulate communication

 Composition
Language

• Architecture
Description
Languages

MetaCase Document No. EAT-5.5 (2017)

Example: EAST-ADL

29

Component-Based Software Engineering (CBSE)

Black-box Composition Systems

Composition recipe

Connectors

Components

Component-based
applications

30

Component-Based Software Engineering (CBSE)

Classical
Component Systems

Architecture Systems

Aspect Systems

View Systems

EAST-ADL
Web Services

Aspect/J
AOM

Invasive Composition
Piccola Gloo

Standard Components
Reflection

Architecture as Aspect
Connectors

Aspect Separation
Crosscutting

Composition
Operators

Composition
Language

Object-Oriented Systems
C++ Java
UML components

Objects as
Run-Time Components

Modular Systems Modules as Compile-
Time Components

Composition Filters
Hyperspaces

Software
Composition
Systems

.NET CORBA
EJB ROS Android

The Ladder of Composition Systems

Shell scripts
Pascal C

31

Fakultät Informatik – Institut Software- und Multimediatechnik – Softwaretechnologie – Dr. Sebastian Götz – CBSE

10.3 Gray-box Composition Systems

32

Component-Based Software Engineering (CBSE)

Beyond Black-box Components

 Black-box component systems fully hide what‘s inside:

• Components (e.g., implementation language)

• Connectors (i.e., how components communicate)

 But, this strict decomposition of systems is in contrast to the way we think:

• Dijkstra E.W. (1982) On the Role of Scientific Thought. In: Selected Writings on
Computing: A personal Perspective. Texts and Monographs in Computer Science.
Springer, New York, NY

 We need a more elaborate way of decomposition: separation of concerns

„Let me try to explain to you, what to my taste is characteristic for all intelligent
thinking. It is, that one is willing to study in depth an aspect of one's subject matter
in isolation for the sake of its own consistency, all the time knowing that one is
occupying oneself only with one of the aspects.“

(Edgar Dijkstra)

33

Component-Based Software Engineering (CBSE)

Aspects in Architecture

Electricity Water Air conditioning

Image courtesy of ITTEN-BRECHBÜHL AG, BERN, SWITZERLAND | HEADQUARTER SCOTT SPORTS SA, GIVISIEZ FR, SWITZERLAND

Statics …

34

Component-Based Software Engineering (CBSE)

<<aspect>>
Logging

<<aspect>>
Persistence

<<core>>
Algorithm

Weaver-Tool

Aspects in Software

Algorithm

Logging

Persistence

Logging

Logging

Persistence

35

Component-Based Software Engineering (CBSE)

Aspects in Software

 Aspects are Crosscutting:

• scattered across and tangled in the core

<<aspect>>
Logging

<<aspect>>
Persistence

<<core>>
Algorithm

Joinpoints Crosscut
Graph

Pointcuts

36

Component-Based Software Engineering (CBSE)

Aspects in Software

<<core>>

Algorithm

void doSth() {

//methodEntry

//code

//methodExit

}

void doSthElse {

//methodEntry

//code

//methodExit

}

<<aspect>>

Logging

before *() {

System.out.println(“log”);

}

Weaver

<<composed>>

Algorithm

void doSth() {

//methodEntry

System.out.println(“log”);

//code

//methodExit

}

void doSthElse {

//methodEntry

System.out.println(“log”);

//code

//methodExit

}

37

Component-Based Software Engineering (CBSE)

Aspects in Software

 Component Model

• Core and aspects

 Core contains joinpoints

 Aspects specify pointcuts, which reference sets of jointpoints

 Composition Technique

• Weaving (code composition)

 Composition Language

• Usually implicit (i.e., part of the programming language)

 Besides Aspect-oriented Programming, we will investigate:

► Composition Filters [Aksit,Bergmans]

► Hyperspace Programming [Ossher et al., IBM]

► Invasive software composition (ISC) [Aßmann]

38

Component-Based Software Engineering (CBSE)

Composition Languages in Composition Systems

► Composition languages describe the structure of the system in-the-large
(“programming in the large”)

► Composition programs combine the basic composition operations of the composition
language

► Composition languages can look quite different

■ Imperative or rule-based

■ Textual languages

■ Standard languages, such as Java

■ Domain-specific languages (DSL) such as Makefiles or ant-files

■ Graphic languages

■ Architectural description languages (ADL)

► Composition languages enable us to describe large systems

39

Component-Based Software Engineering (CBSE)

Composition Recipe

Composition Operators

Grey-box Components

System Constructed with an

Invasive Architecture

Invasive

Software

Composition

Grey-Box Composition Systems

40

Component-Based Software Engineering (CBSE)

Conclusions for Composition Systems

► Components have a composition interface

► Composition interface is different from functional interface

■ The composition is running usually before the execution of the system

■ From the composition interface, the functional interface is derived

► System composition becomes a new step in system build

Composition

• With
composition
interfaces

Deployment

• With
functional
interfaces

Execution

• With
functional
interfaces

41

Component-Based Software Engineering (CBSE)

Classical
Component Systems

Architecture Systems

Aspect Systems

View Systems

EAST-ADL
Web Services

Aspect/J
AOM

Invasive Composition
Piccola Gloo

Standard Components
Reflection

Architecture as Aspect
Connectors

Aspect Separation
Crosscutting

Composition
Operators

Composition
Language

Object-Oriented Systems
C++ Java
UML components

Objects as
Run-Time Components

Modular Systems Modules as Compile-
Time Components

Composition Filters
Hyperspaces

Software
Composition
Systems

.NET CORBA
EJB ROS Android

The End / Course Outline

Shell scripts
Pascal C

42

