
Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

12. Finding Components with Metadata in
Component Repositories

Lecturer: Dr. Sebastian Götz

Prof. Dr. Uwe Aßmann

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de/teaching/cbse

19.04.2018

1. Searching and Browsing with
Faceted Classications

2. Faceted Metadata

3. UML Components

4. Searching by Conformance to
Protocols

1

Component-Based Software Engineering (CBSE)

Obligatory Literature

► R. Prieto-Diaz. Implementing Faceted Classification for Software Reuse. CACM
May 1991, vol 34(5).

► U. Aßmann. Reuse in Semantic Applications. REWERSE summer school 2005, La
Valetta, Malta. Lecture Notes In Computer Science (LNCS) 3564.

■ http://www.springerlink.com/content/blx9yfthkq5xjtjg/

2

Component-Based Software Engineering (CBSE)

References

► http://flamenco.berkeley.edu

► http://search.express.ebay.com

► FacetMap: Greg Smith, Mary Czerwinski, Brian Meyers, Daniel Robbins,
George Robertson, Desney S. Tan. FacetMap: A Scalable Search and
Browse Visualization. IEEE Transactions on visualization and computer
graphics, vol.12 , No. 5, september/october 2006.

► Thorsten Teschke. Semantische Komponentensuche auf Basis von
Geschäftsprozessmodellen. Dissertation. Universität Oldenburg, 2003.

► Facet-based search of computer science literature in DBLP repository
► http://dblp.l3s.de/

► Luca de Alfaro and Thomas A. Henzinger: Interface automata. ACM
SIGSOFT FSE/ESEC, 2001

► http://doi.acm.org/10.1145/503209.503226

3

http://flamenco.berkeley.edu/
http://search.express.ebay.com/
http://dblp.l3s.de/?q=&newQuery=yes&resTableName=query_resultOsC5mC
http://base.google.com/

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

12.2 Searching and Browsing with
Faceted Classifications

(thanks to Jan Polowinski)

4

Component-Based Software Engineering (CBSE)

Faceted Classification for Better Matchmaking

► A facet is a dimension of a classification

■ Facets simplify search: Facet classification has been invented in library science to simplify
the description and search for books [Ranganathan].

■ A component (or service) is described in several facets, dimensions, which are orthogonal
to each other

► Matchmaking engines can look up a service by stating the desired properties for all
facets.

► Classifications can be arranged in facets if several partitions of a group of objects
exist that are orthogonal

■ In domain modelling, this is often the case

■ Without facets, multiple inheritance hierarchies have to be specified, which are often
clumsy and error-prone

► Idea: use facets for better matchmaking

5

Component-Based Software Engineering (CBSE)6

Comparison

Standard Classification
► B Birds

■ B1 Breathing of Birds

■ B2 Breading of Birds

► F Fish

■ F1 Breathing of Fish

■ F2 Breading of Fish

► M Mammal

■ M1 Breathing of Mammals

■ M2 Breading of Mammals

► I Insects

■ I1 Breathing of Insects

■ I2 Breading of Insects

• Gills: F1

Example: Wikipedia

Faceted Classification
► Processfacet

■ P Physiology

. P1 Breathing

. P2 Breading

► Animalfacet

■ 1 Birds

■ 2 Fish

■ 3 Mammals

■ 4 Insects

• Gills: P1-2

6

Component-Based Software Engineering (CBSE)

Facetted Browsing

► Here Facet means: an interesting property of an object orthogonal to other
properties

► Incremental refinement of a set of results by restricting values of the data's
facets

► Many application domains

7

Component-Based Software Engineering (CBSE)8

Component-Based Software Engineering (CBSE)

Facet

Facet

Facet

Facet

9

Component-Based Software Engineering (CBSE)

Widget for Restriction

of Facet Values

10

Component-Based Software Engineering (CBSE)

Sorting and

Grouping

Mechanism

s

11

Component-Based Software Engineering (CBSE)

Result Set

12

Component-Based Software Engineering (CBSE)

More Examples of Facetted Browsers

► Flamenco
■ FLexible information Access

using MEtadata in Novel
COmbinations

■ University of California,
Berkeley

► mSpace
■ http://mspace.fm
■ University of Southampton

► FacetMap
■ Microsoft Research

13

http://mspace.fm/

Component-Based Software Engineering (CBSE)

Facetted Browsing in e-Commerce

14

Component-Based Software Engineering (CBSE)15

Component-Based Software Engineering (CBSE)16

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

12.3 Faceted Metadata for Search

in Component Repositories

17

Component-Based Software Engineering (CBSE)

Example: Service Facets in a UNIX System

► To describe the services of a UNIX system, [Prieto-Diaz] employed a 4-faceted
scheme

■ function

■ logical object

■ implementation object

■ tool

► UNIX services can be described with appropriate facet values and looked up in a
repository

► Example: “append a line to a file with a text editor”

■ (function = append, logical class = line, implementation class = file, tool = text editor):

18

Component-Based Software Engineering (CBSE)

Example: Services in a UNIX System

► [Prieto-Diaz] already suggested to use controlled vocabulary (domain ontologies) to
improve the effectiveness of the search:

■ If every facet is described by an ontology, the service descriptions are standardized for a
user group and improve understanding of service semantics.

► Facets simplified the description of the components, improved the understanding
of their domain, and facilitated the search in component libraries.

19

Component-Based Software Engineering (CBSE)
And for Components?

20

Component-Based Software Engineering (CBSE)
And for Components?

21

Component-Based Software Engineering (CBSE)

Other Advantages

► The facet classification is rather immune to extensions
■ Extending one facet leaves all others invariant

■ Example: If Europe is extended with a new member state, the matchmaking algorithm can
deliver new courses from the new member state, without affecting the rest of the
semantic specifications at all

► The accuracy can be improved by synonym lists (thesauri)
■ Synonyms increase the chances for a match

■ They permit to search not only for keywords, but also for their synonyms (assembled in a
thesaurus)

■ Beyond synonyms other refinement relations of concepts can be used to improve the
search

■ Example: Great Britain is used as a synonym for England, Scotland, and Wales.

Synonyms allows for matchmaking on any of the keywords, so that students looking for a
course need not bother about geographic and political details.

22

Component-Based Software Engineering (CBSE)

The Use of Ontologies in Faceted Matchmaking

► Ontologies simplify matchmaking by standardization

■ Since they provide standardized terminology and standardized
ontological relations between the terms, queries can specify

. keywords with a precise, shared, and standardized meaning (semantic search),

. contextual information for search in context, where the context is defined by the
ontological relations of the terms.

► Example:

■ A web course on IT basics can be queried by the standardized word
IT-basics (being semantic search)

■ also in context, by relating it to courses such as IT-advanced or IT-
preparatory (contextual search)

. “find me an IT basics course, which has a preceding preparatory IT course and has a
follow-up advanced IT course“

23

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

12.4 UML Components

24

Component-Based Software Engineering (CBSE)

Component Specification with UML Components

• A UML component is a hierarchical class for big objects with provided and
required interfaces (roles)

• Provided interfaces (provided roles) use „lollipop“ notation

• Required interfaces (required roles) use „plug“ notation

• Some components are required to use specific other interfaces

<<comp spec>>

ExamMgr
IExamMgt

<<comp spec>>

ExamMgr
IExamMgt

IAppointmentMgt

<<comp spec>>

AppointmentMgr

25

Component-Based Software Engineering (CBSE)

Ports of UML Components

 A port is a connection point of a UML component.

• A port has a set of roles (interfaces)

• It may be represented by a port object (gate)

System

Port
Provided
interfaces Required

interfaces

26

Component-Based Software Engineering (CBSE)

Lollipops und Plugs (Balls and Sockets)

► For a UML component, provided and required interfaces can be distinguished

 A required interface specifies what the current class needs to execute.

<<provided>>
Addresses

<<required>>
Text

AddressManager

listAdresses()
listAdresses()

sort()

Adresses

Text

27

Component-Based Software Engineering (CBSE)

Ports

► Ports consist of port classes with interfaces and behavior in form of interface
automata

 provided: normal, offered interface

 required: used, necessary interface

Component

<<provided>>
Port class

<<required>>
Port class

Component

Port

28

Component-Based Software Engineering (CBSE)

Nesting of UML Components

► UML components

 Ports are connected by links (connections)

 Delegation link: links outer and inner port

DocumentSystem
Link/connection Delegator

Text
Manager

Address
ManagerAdresses

email

email
Manager

Text

Forms

Buffer

LinesTextRep

IText

IForm

29

Component-Based Software Engineering (CBSE)

Refinement of UML Components

► UML components can be nested.

► Nesting is indicated by aggregation and part-of relationship.

► Nesting is introduced by an encapsulation operator.

Document
System

Document System

Text
Manager

Address
ManagerAdresses

email
email

Manager

Text

Forms

Buffer

LinesTextRep

IText

IForm

encapsulate

decompose

30

Component-Based Software Engineering (CBSE)

Encapsulation means Aggregation

► Nesting means Aggregation

 A UML component is a package and a facade for all subcomponents

DocumentSystem

Text
Manager

Address
ManagerAdresses

email

email
Manager

Text

Forms

Buffer

LinesTextRep

IText

IForm

DocumentSystem

Text
Manager

Address
Manager

Adresses

email

email
Manager

Text

Forms

Buffer

Lines

TextRep

IText

IForm

31

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

12.5 Searching in
Component Repositories by
Contract Conformance
• Contract Conformance means semantic substituability

32

Component-Based Software Engineering (CBSE)

Ports can be Equipped with Interface Automata
Contracts

► Ports consist of port classes with interfaces and behavior in form of interface
automata (port automata, protocol automata)

 provided: normal, offered interface

 required: used, necessary interface

Component

<<provided>>
Port class

<<required>>
Port class

Component
Port

Interface
automaton

Interface
automaton

33

Component-Based Software Engineering (CBSE)

Component Protocols with Operational Contracts

 The port protocol automata can be composed to a component protocol
automaton

 Components may have a protocol automaton in which their ports, services,
procedures should be called, invoked, or signalled

• The provided protocol specifies in which order the services can be invoked (given by a provided
interface automaton)

• The required protocol specifies in which order the services can be invoked (given by a requried
interface automaton)

 The order of component invocation can be specified by a language over the
alphabet of the ports, services, procedures (state-based protocol contract,
operational contract)

• Language contains sets of paths over the alphabet

• Finite state automaton (regular language) specify regular sets of paths

 UML state chart (Hierarchical finite state machine, prococol machines)

 Data flow diagram

• Stack machine (context-free language)

• Petri net (regular dialects, context-free and context-sensitive dialects)

 The contract provides an abstraction of the implementation of the component
• Implementations must be proven to be conformant to the procotol

 The conformance checking is decidable if the protocol language is decidable

 Sets of paths over states (words over state and edge alphabet)

34

Component-Based Software Engineering (CBSE)

The Golden Rules of Substitutability

 Component A can replace component B if it offers more and requires less

 Two conditions:

• A‘s provided protocol must be stronger (richer, larger) than B‘s – it must guarantee
more

• A‘s required protocol must be weaker (smaller) than B‘s – it must assume less

 If those conditions hold for all component instances of two component types AT
and BT, we say that AT can substitute BT in a program.

35

Component-Based Software Engineering (CBSE)

Searching by Protocol

 A component C can be found in a repository, if a query protocol Q is given with Q <=

P(C)

 Search consists of subsumption checking with all component protocols in the

repository

 Query protocols can be:

• Metadata about the component

• Provided protocols

• Required protocols

• Provided and required protocols

36

Component-Based Software Engineering (CBSE)

Declarative Protocols

 A protocol can also be specified as predicates over the states of a component
(declarative contract)

• Preconditions (assumptions)

• Postconditions (guarantees)

• Invariants

 Then, the protocol consists of logic expressions. The logic should be decidable

• OCL

• Description logic

• Datalog

• Temporal logic (propositional logic with temporal quantifiers, such as LTL and CTL)

 Subsumption checking of protocols and conformance can be done by reasoning

• E.g., by subsumption checking of an OWL class hierarchy

37

Component-Based Software Engineering (CBSE)

The End - Acknowledgements

 Faceted browsing slides are courtesy to Jan Polowinski.

38

