
Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

Part II – Black-Box Composition Systems
20. Finding UML Business Components in
a Component-Based Development Process

Lecturer: Dr. Sebastian Götz

Prof. Dr. Uwe Aßmann

Technische Universität Dresden

Institut für Software- und

Multimediatechnik

http://st.inf.tu-dresden.de/teaching/cbse

19.04.2018

1. Business component model of
the Cheesman/Daniels process

2. Identifying business
components

1

Component-Based Software Engineering (CBSE)

Literature

► J. Cheesman, J. Daniels. UML Components. Addison-Wesley.

2

Component-Based Software Engineering (CBSE)3

Classical

Component Systems

Architecture Systems

Aspect Systems

View Systems

Darwin

BPMN

Aspect/J

AOM

Invasive Composition

Piccola Gloo

Standard Components

Reflection

Architecture as Aspect

Connectors

Aspect Separation

Crosscut graphs

Composition

Operators

Composition

Language

Object-Oriented Systems UML

C++ Java
Objects as

Run-Time Components

Modular Systems Modules as Compile-

Time Components

Composition Filters

Hyperspaces

Software

Composition

Systems

.NET CORBA

Beans EJB

The Ladder of Composition Systems

Shell scripts

Modula Ada-85

COSY

ACME

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

20.1 The Cheesman-Daniels
Business Component Model

• Problem: UML classes do not specify required interfaces,
which is necessary for UML components

• The Cheesman-Daniels process helps to find components
from UML class diagrams

• Using the “Business component model”

4

Component-Based Software Engineering (CBSE)

Business Objects are Complex Objects

 In the Cheesman-Daniels component model, a business component consists of a
set of business objects and other business components (part-of relation)

► The smallest component is a business object with several provided and required interfaces

. The business objects are the logical entities of an application

. Their interfaces are re-grouped on system components for good information hiding and
change-oriented design

■ A business component has a specification containing all interfaces and contracts
and an implementation

■ UML-CD are used (UML profile with stereotypes)

5

Component-Based Software Engineering (CBSE)

Goals of the Cheesman-Daniels Process

► The Cheesman-Daniels Process identifies UML components in UML class diagrams

► It bridges

► domain modelling with

► use case modelling (functional requirements)

6

Component-Based Software Engineering (CBSE)

Identifying Business Components with the
Cheesman-Daniels Process

 Overall development process

1)

Requirements

2) Specification 3) Provisioning 4) Assembly

Test

Deployment

Use Case

models

Business

Concept

models
Constraints Components

Existing assets

Component Specs & Architectures

Simplified version of Fig. 2.1 from Cheesman/Daniels

1) Component

Identification

2) Component

Interaction

3) Contract

Specification

7

Component-Based Software Engineering (CBSE)

Artifacts of the Cheesman/Daniels Process

► Requirement artifacts:

■ Domain model (business concept model): describes the business domain (application
domain)

■ Use case model (requirements model)

► System artifacts, derived from the business concept model:

■ Business type model, class diagram derived from domain model:

. Represents the system's perspective on the outer world (more attributes, refined
class structures from the system's perspective)

■ Business object interface model, identifies the business objects and all their interfaces

■ Business object model, derived from the business object interface model by adding
additional operations

► System component artifacts

■ Component interface specifications: one contract with the client

■ Component interface information model (state-based model)

■ Component specifications: all interface specifications of a component plus constraints.

■ Component architecture: wiring (topology) of a component net.

8

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

20.2. Identifying Business
Components

9

Component-Based Software Engineering (CBSE)

Component Identification (Step 2.1)

Select interesting
Business Classes

From Domain Model
Component
Identification

Domain Model
(Business Concept Model)

Business Type
Model

Develop system
interfaces model

Use Case
Model

Component
Specification

Database

Find UML component
specifications

(matchmaking)

Decompose
top-down

Allocation of
business object interfaces

to components

Reusable
component specifications

New
component specifications

Find out
Business Object

Interfaces

Business Object
Interface Model

Domain
analysis

Function
analysis

Reuse
analysis

Business Component Specifications
and Architecture

10

Component-Based Software Engineering (CBSE)

Ex.: Domain Model of a Course-Management System

► Collects all concepts of the domain (aka business concept model)

Teacher

Participant

Company

Course

Course
Part

Exercise

Exam

Student Engineer Alumnus

11

Component-Based Software Engineering (CBSE)

Step 2.1a) Business Type Model

► Shorten the domain model by selecting system types from the domain model

■ Eliminates superfluous concepts

■ Adds more details

■ Distinguish datatypes (passive objects, materials, persistent entities)

Teacher

Participant

Company

<<datatype>>

Course

<<datatype>>

Course
Part

<<datatype>>

Exercise

<<datatype>>

Exam
Student Engineer Alumnus

Person

name:String

12

Component-Based Software Engineering (CBSE)

Step 2.1b) Identifying Business Object Interfaces

► Identifies business objects from the business type model

■ And defines management interfaces for them

■ Here, only Company, Course, Person are business objects, all others are dependent types

Teacher

Participant

<<business object>>
Company

<<business object>>
Course

Course
Part

Exercise

Exam
Student Engineer

<<business object>>
Person

name:String

ICompanyMgmt

ICourseMgmt

IPersonMgmt

13

Component-Based Software Engineering (CBSE)

Step 2.1c) Component Grouping

► Group classes and interfaces into reusable components

Teacher

Participant

<<business object>>
Company

<<business object>>
Course

Course
Part

Exercise

Exam
Student Engineer

<< business object>>
Person

name:String

ICompanyMgmt

ICourseMgmt

IPersonMgmt
<<comp spec>>

Company

<<comp spec>>
Repository

14

Component-Based Software Engineering (CBSE)

Alternative Component Grouping (Version 0.2)

► Often, classes and interfaces can be grouped in several ways into
components. Goal: think about what is reusable

► Here: Person management might be reuseable, so make it a separate
component

Teacher

Participant

<<business object>>
Company

<<business object>>
Course

Course
Part

Exercise

Exam
Student Engineer

<<business object>>
Person

name:String

ICompanyMgmt

ICourseMgmt

IPersonMgmt
<<comp spec>>

Company

<<comp spec>>
Courses

<<comp spec>>
Persons

15

Component-Based Software Engineering (CBSE)

Component Identification

► The component identification subprocess attempts to

■ Create a business object interface model from the domain model (still without methods)

■ Attempts to group these interfaces to initial system component specifications

. The grouping is done according to

 information hiding: what should a component hide, so that it can easily be
exchanged and the system can evolve?

 Reuse considerations: which specifications of components are found in the
component specification repository, so that they can be reused?

► There is a tension between business concepts, coming from the business domain
(problem domain), and system components (solution domain). This gap should be
bridged.

16

Component-Based Software Engineering (CBSE)

Step 2.2: Component Interaction Analysis for Refinement
of Component Interfaces

Add Operations Component
Interaction

Analysis

Business Object
Interface Model

Business Object
Model

Architecture
Analysis

Component Specifications
and Architecture (0.1)

Refine
Interfaces

Component Specifications
and Architecture (0.2)

17

Component-Based Software Engineering (CBSE)

Component Interaction Analysis

► Component Interaction Analysis refines the results of the first stage

■ Removing,

■ Regrouping,

■ Augmenting,

■ Adding interfaces

■ Producing component specifications and wirings in a version 0.2

► Additionally, operations are added to business object interfaces

■ And mapped to internal types.

18

Component-Based Software Engineering (CBSE)

Step 2.3: Contract Specification

 Enrich the interfaces with contracts

Add Contracts
(pre-, postconditions, invariants)

Specification

Business Object
Model

Interfaces

Component Specifications
and Architecture (0.2)

Component Specifications
and Architecture (1.0)

Construct
Interface Information Model

Interface
Information Model

19

Component-Based Software Engineering (CBSE)

Contract Specification in OCL (Step 2.3)

► Specification of declarative contracts for UML classes in OCL

► Invariants:

■ Evaluate business domain rules and integrity constraints

■ Example:

context r: Course

-- a course can only be booked if it has been allocated in the

company

inv: r.bookable = r.allocation->notEmpty

► Pre- and Postconditions for operations (assumptions and guarantees)

■ Can only be run on some state-based representation of the component

■ Hence, the component must be modeled in an interface information model

■ Or: be translated to implementation code (e.g. Java using an OCL2Java Compiler)

context Course::book(cert:Certification)

-- a course can only be booked if the booker has an A-level

certificate

pre: cert.instanceOf A-level

20

Component-Based Software Engineering (CBSE)

Step 3: Provisioning (Realization, Implementation,
Publishing)

► Provisioning selects component implementations for the specifications

■ Choosing a concrete implementation platform (EJB, CORBA, COM+, ...)

■ Look up component implementations in implementation repositories

. Write adapters if they don't fit exactly

■ Program missing components

■ And makes them available in component repositories

■ Store component implementations and specifications in database for future reuse

21

Component-Based Software Engineering (CBSE)

Step 4: Assembly

► Puts together architecture, component specifications and implementations,
existing components

■ We will see more in the next lectures

22

Component-Based Software Engineering (CBSE)

20.3 Evaluation of Cheesman-Daniels Business
Components

► No top-down decomposition of components, only bottom-up grouping from class
diagrams

■ part-of relationship is not really supported

► Reuse of components is attempted, but

■ Finding components is not supported

. Metadata

. Facet-based classification

23

Component-Based Software Engineering (CBSE)

Cheesman-Daniels’ Business Component Model as
Composition System

Component Model

Composition Technique

Composition Language

Content:

a) UML class diagrams, component
diagrams

b) Contracts in OCL

c) Business components

Binding points: methods

Standard object-oriented polymorphism

Run-time contract checking

24

Component-Based Software Engineering (CBSE)

The End

25

