TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultédt Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - CBSE

Part Il - Black-Box Composition Systems
20. Finding UML Business Components in
a Component-Based Development Process

Lecturer: Dr. Sebastian Gotz 1. Business component model of
the Cheesman/Daniels process

2. Identifying business
components

Prof. Dr. Uwe ABmann
Technische Universitat Dresden

Institut fur Software- und
Multimediatechnik

http://st.inf.tu-dresden.de/teaching/cbse
19.04.2018

Literature

» J. Cheesman, J. Daniels. UML Components. Addison-Wesley.

The Ladder of Composition Systems

Software Composition | ive C it]
Composition Lanp e nvalil_ve IomGr‘)Iom ion
Systems guag iccola Gloo

Aspect Systems Aspect Separation Aspect/J
Crosscut graphs AOM

Composition Composition Filters

View Systems
y Operators Hyperspaces

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultédt Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - CBSE

20.1 The Cheesman-Daniels
Business Component Model

« Problem: UML classes do not specify required interfaces,
which is necessary for UML components

« The Cheesman-Daniels process helps to find components
from UML class diagrams

« Using the “Business component model”

Business Objects are Complex Objects

5 Component-Based Software Engineering (CBSE)

In the Cheesman-Daniels component model, a business component consists of a
set of business objects and other business components (part-of relation)
The smallest component is a business object with several provided and required interfaces
The business objects are the logical entities of an application
Their interfaces are re-grouped on system components for good information hiding and
change-oriented design
A business component has a specification containing all interfaces and contracts

and an implementation
= UML-CD are used (UML profile with stereotypes)

Goals of the Cheesman-Daniels Process

~ 6 Component-Based Software Engineering (CBSE)

The Cheesman-Daniels Process identifies UML components in UML class diagrams
It bridges
domain modelling with
use case modelling (functional requirements)

ldentifying Business Components with the
Cheesman-Daniels Process

~ 7 Component-Based Software Engineering (CBSE)

» Overall development process

1) W Use Case
Requirements | models
Business
Concept Constraints Components
models Y

/ 2) Specification \<:>[3) Provisioning }<:>£ 4) Assembly }
[1) Component | 2) Component } %
Identification Interaction

Existing assets [Test
Component Specs & Architectures

[3) Contract } ﬁ
Specification
\\ / [Deployment }

@ Simplified version of Fig. 2.1 from Cheesman/Daniels

Artifacts of the Cheesman/Daniels Process

8

Component-Based Software Engineering (CBSE)

Requirement artifacts:

= Domain model (business concept model): describes the business domain (application
domain)

= Use case model (requirements model)

System artifacts, derived from the business concept model:
= Business type model, class diagram derived from domain model:

Represents the system's perspective on the outer world (more attributes, refined
class structures from the system's perspective)

= Business object interface model, identifies the business objects and all their interfaces

= Business object model, derived from the business object interface model by adding
additional operations

System component artifacts
- Component interface specifications: one contract with the client
- Componentinterface information model (state-based model)
= Component specifications: all interface specifications of a component plus constraints.
= Component architecture: wiring (topology) of a component net.

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultédt Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - CBSE

20.2. Identifying Business
Components

Component Identification (Step 2.1)

~ 10 Component-Based Software Engineering (CBSE)

|

Business Object
Interface Model

<IIIIIII

Allocation of
business object interfaces

Find UML component
specifications

_ _ Component
Domain Model Domain Use Case Function Specification Reuse
(Business Concept Model) | gnalysis Model analysis Database analysis
4 Select interesting . = . A
Business Classes a = Component .
From Domain Model = . Identification "
T : v : :
Business Type - Develop system E E
Model . interfaces model - .
) l . Decompose - .
Find out. - top-down .
Business Object = =
Interfaces . l < .
v

to components E (matchmaking)
v : v
New § Reusable
component specifications - component specifications
— \ 4

and Architecture

N
Business Component Specifications

I

Ex.: Domain Model of a Course-Management System

11

Component-Based Software Engineering (CBSE)

Collects all concepts of the domain (aka business concept model)

Teacher

Participant

Company

VAN

Student

Course

|

\ 4

Engineer

Alumnus

Course
Part

Exercise

Exam

Step 2.1a) Business Type Model

~ 12 Component-Based Software Engineering (CBSE)

Shorten the domain model by selecting system types from the domain model
= Eliminates superfluous concepts
= Adds more details
- Distinguish datatypes (passive objects, materials, persistent entities)

Person

name:String

AN

Teacher

Participant

/\

Student

Engineer

Company
<<datatype>>
Course
<<datatype>>
[Exercise
<<datatype>>
Course <<datatype>>
Part Exam

Step 2.1b) Identifying Business Object Interfaces

~ 13 Component-Based Software Engineering (CBSE)

|dentifies business objects from the business type model

= And defines management interfaces for them

= Here, only Company, Course, Person are business objects, all others are dependent types

<<business object>>
Person

IPersonMgmt

O

name:String

T~

Teacher

ICompanyMgmt

'

Participant

<<business object>>

AN

/

Student

Engineer

Company
ICourseMgmt
<<business object>> /Q
Course
A
Exercise
Course
Part Exam

Step 2.1c) Component Grouping

~ 14 Component-Based Software Engineering (CBSE)

Group classes and interfaces into reusable components

IPersonMgmt

ICompanyMgmt

<<comp spec>>
Company

<<business object>>
Company

RS

ICourseMgmt

<< business object>>
Person

Teacher

«— |
name:String —_

AN

Participant ————

/

Student Engineer

<<comp spec>>
Repository

<<business object>>
Course

A

Course
Part

Exercise

Exam

Alternative Component Grouping (Version 0.2)

~ 15 Component-Based Software Engineering (CBSE)

Often, classes and interfaces can be grouped in several ways into
components. Goal: think about what is reusable

Here: Person management might be reuseable, so make it a separate

component

IPersonMgmt

ICompanyMgmt

<<comp spec>>
Company

<<business object>>
Company

RS

ICourseMgmt

<<business object>> |__— Teacher
Person
name:String
T~ Participant
<<comp spec>>
Persons AN
Student Engineer

<<comp spec>>
Courses

<<business object>>
Course

A

Course
Part

Exercise

Exam

Component Identification

~ 16 Component-Based Software Engineering (CBSE)

The component identification subprocess attempts to
= Create a business object interface model from the domain model (still without methods)
- Attempts to group these interfaces to initial system component specifications
The grouping is done according to

information hiding: what should a component hide, so that it can easily be
exchanged and the system can evolve?

Reuse considerations: which specifications of components are found in the
component specification repository, so that they can be reused?
There is a tension between business concepts, coming from the business domain

(problem domain), and system components (solution domain). This gap should be
bridged.

Step 2.2: Component Interaction Analysis for Refinement
of Component Interfaces

~ 17 Component-Based Software Engineering (CBSE)

Business Object Component Specifications
Interface Model and Architecture (0.1)
4 , l A
_ Architecture Component

Add Operations : :

[perat] [Analysis j Interaction

Analysis
Business Object ‘f Refine
Model '& Interfaces

A

Component Specifications
and Architecture (0.2)

- [/

: !

Component Interaction Analysis

~ 18 Component-Based Software Engineering (CBSE)

Component Interaction Analysis refines the results of the first stage

= Removing,

= Regrouping,

= Augmenting,

- Addinginterfaces

Producing component specifications and wirings in a version 0.2
Additionally, operations are added to business object interfaces

= And mapped to internal types.

Step 2.3: Contract Specification

19

Component-Based Software Engineering (CBSE)

» Enrich the interfaces with contracts

Model

Business Object Component Specifications

and Architecture (0.2)

——

Construct Specification
Interface Information Model

y

Interface
Information Model

y

Add Contracts
(pre-, postconditions, invariants)

/\

>

Component Specifications

Interfaces :
and Architecture (1.0)

~

Contract Specification in OCL (Step 2.3)

~ 20 Component-Based Software Engineering (CBSE)

Specification of declarative contracts for UML classes in OCL

Invariants:
- Evaluate business domain rules and integrity constraints
= Example:

context r: Course

-—- a course can only be booked if it has been allocated in the
company

inv: r.bookable = r.allocation->notEmpty
Pre- and Postconditions for operations (assumptions and guarantees)
- Canonly be run on some state-based representation of the component
= Hence, the component must be modeled in an interface information model
- Or: be translated to implementation code (e.g. Java using an OCL2Java Compiler)
context Course: :book (cert:Certification)

-- a course can only be booked if the booker has an A-level
certificate

pre: cert.instanceOf A-level

Step 3: Provisioning (Realization, Implementation,
Publishing)

~ 21 Component-Based Software Engineering (CBSE)

Provisioning selects component implementations for the specifications
= Choosing a concrete implementation platform (EJB, CORBA, COM+, ...)
= Look up component implementations in implementation repositories
Write adapters if they don't fit exactly
= Program missing components
= And makes them available in component repositories
- Store component implementations and specifications in database for future reuse

Step 4: Assembly
2 ComponencBasedSofwareEngieering(Bse)

» Puts together architecture, component specifications and implementations,
existing components
= We will see more in the next lectures

20.3 Evaluation of Cheesman-Daniels Business
Components

~ 23 Component-Based Software Engineering (CBSE)

No top-down decomposition of components, only bottom-up grouping from class
diagrams
= part-of relationship is not really supported
Reuse of components is attempted, but
= Finding components is not supported
Metadata
Facet-based classification

Cheesman-Daniels’ Business Component Model as
Composition System

~ 24 Component-Based Software Engineering (CBSE)

Component Model
Content:

Composition Technique

a) UML class diagrams, componen
diagrams

b) Contracts in OCL

c) Business components

Standard object-oriented polymorphism

Run-time contract checking

Binding points: methods

Composition Language

The End
25 ComponentBasedSoftware Engineering (89

