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20.1 The Cheesman-Daniels
Business Component Model

« Problem: UML classes do not specify required interfaces,
which is necessary for UML components

« The Cheesman-Daniels process helps to find components
from UML class diagrams

« Using the “Business component model”



Business Objects are Complex Objects

5 Component-Based Software Engineering (CBSE)

In the Cheesman-Daniels component model, a business component consists of a
set of business objects and other business components (part-of relation)
The smallest component is a business object with several provided and required interfaces
The business objects are the logical entities of an application
Their interfaces are re-grouped on system components for good information hiding and
change-oriented design
A business component has a specification containing all interfaces and contracts

and an implementation
= UML-CD are used (UML profile with stereotypes)



Goals of the Cheesman-Daniels Process
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The Cheesman-Daniels Process identifies UML components in UML class diagrams
It bridges
domain modelling with
use case modelling (functional requirements)



ldentifying Business Components with the
Cheesman-Daniels Process
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» Overall development process
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@ Simplified version of Fig. 2.1 from Cheesman/Daniels




Artifacts of the Cheesman/Daniels Process
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Requirement artifacts:

= Domain model (business concept model): describes the business domain (application
domain)

= Use case model (requirements model)

System artifacts, derived from the business concept model:
= Business type model, class diagram derived from domain model:

Represents the system's perspective on the outer world (more attributes, refined
class structures from the system's perspective)

= Business object interface model, identifies the business objects and all their interfaces

= Business object model, derived from the business object interface model by adding
additional operations

System component artifacts
- Component interface specifications: one contract with the client
- Componentinterface information model (state-based model)
= Component specifications: all interface specifications of a component plus constraints.
= Component architecture: wiring (topology) of a component net.
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20.2. Identifying Business
Components



Component Identification (Step 2.1)
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Ex.: Domain Model of a Course-Management System

11

Component-Based Software Engineering (CBSE)

Collects all concepts of the domain (aka business concept model)
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Step 2.1a) Business Type Model
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Shorten the domain model by selecting system types from the domain model
= Eliminates superfluous concepts
= Adds more details
- Distinguish datatypes (passive objects, materials, persistent entities)
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Step 2.1b) Identifying Business Object Interfaces
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|dentifies business objects from the business type model

= And defines management interfaces for them

= Here, only Company, Course, Person are business objects, all others are dependent types
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Step 2.1c) Component Grouping
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Group classes and interfaces into reusable components

IPersonMgmt

ICompanyMgmt

<<comp spec>>
Company

<<business object>>
Company

RS

ICourseMgmt

<< business object>>
Person

Teacher

«— |
name:String —_

AN

Participant ————

/

Student Engineer

<<comp spec>>
Repository

<<business object>>
Course

A

Course
Part

Exercise

Exam




Alternative Component Grouping (Version 0.2)
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Often, classes and interfaces can be grouped in several ways into
components. Goal: think about what is reusable

Here: Person management might be reuseable, so make it a separate

component
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Component Identification
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The component identification subprocess attempts to
= Create a business object interface model from the domain model (still without methods)
- Attempts to group these interfaces to initial system component specifications
The grouping is done according to

information hiding: what should a component hide, so that it can easily be
exchanged and the system can evolve?

Reuse considerations: which specifications of components are found in the
component specification repository, so that they can be reused?
There is a tension between business concepts, coming from the business domain

(problem domain), and system components (solution domain). This gap should be
bridged.



Step 2.2: Component Interaction Analysis for Refinement
of Component Interfaces
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Component Interaction Analysis
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Component Interaction Analysis refines the results of the first stage

= Removing,

= Regrouping,

= Augmenting,

- Addinginterfaces

Producing component specifications and wirings in a version 0.2
Additionally, operations are added to business object interfaces

= And mapped to internal types.



Step 2.3: Contract Specification
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» Enrich the interfaces with contracts
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Contract Specification in OCL (Step 2.3)
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Specification of declarative contracts for UML classes in OCL

Invariants:
- Evaluate business domain rules and integrity constraints
= Example:

context r: Course

-—- a course can only be booked if it has been allocated in the
company

inv: r.bookable = r.allocation->notEmpty
Pre- and Postconditions for operations (assumptions and guarantees)
- Canonly be run on some state-based representation of the component
= Hence, the component must be modeled in an interface information model
- Or: be translated to implementation code (e.g. Java using an OCL2Java Compiler)
context Course: :book (cert:Certification)

-- a course can only be booked if the booker has an A-level
certificate

pre: cert.instanceOf A-level



Step 3: Provisioning (Realization, Implementation,
Publishing)
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Provisioning selects component implementations for the specifications
= Choosing a concrete implementation platform (EJB, CORBA, COM+, ...)
= Look up component implementations in implementation repositories
Write adapters if they don't fit exactly
= Program missing components
= And makes them available in component repositories
- Store component implementations and specifications in database for future reuse



Step 4: Assembly
2 ComponencBasedSofwareEngieering(Bse)

» Puts together architecture, component specifications and implementations,
existing components
=  We will see more in the next lectures




20.3 Evaluation of Cheesman-Daniels Business
Components
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No top-down decomposition of components, only bottom-up grouping from class
diagrams
= part-of relationship is not really supported
Reuse of components is attempted, but
= Finding components is not supported
Metadata
Facet-based classification



Cheesman-Daniels’ Business Component Model as
Composition System
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Component Model
Content:

Composition Technique

a) UML class diagrams, componen
diagrams

b) Contracts in OCL

c) Business components

Standard object-oriented polymorphism

Run-time contract checking

Binding points: methods

Composition Language



The End
25 ComponentBasedSoftware Engineering (89




