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Literature 

► J. Cheesman, J. Daniels. UML Components. Addison-Wesley.
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20.1 The Cheesman-Daniels
Business Component Model

• Problem: UML classes do not specify required interfaces, 
which is necessary for UML components

• The Cheesman-Daniels process helps to find components 
from UML class diagrams

• Using the “Business component model”
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Business Objects are Complex Objects

 In the Cheesman-Daniels component model, a business component consists of a 
set of business objects and other business components (part-of relation)

► The smallest component is a business object with several provided and required interfaces

. The business objects are the logical entities of an application

. Their interfaces are re-grouped on system components for good information hiding and 
change-oriented design

■ A business component has a specification containing all interfaces and contracts
and an implementation

■ UML-CD are used (UML profile with stereotypes)
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Goals of the Cheesman-Daniels Process

► The Cheesman-Daniels Process identifies UML components in UML class diagrams

► It bridges 

► domain modelling with 

► use case modelling (functional requirements)
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Identifying Business Components with the
Cheesman-Daniels Process

 Overall development process

1) 

Requirements

2) Specification 3) Provisioning 4) Assembly
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Simplified version of Fig. 2.1 from Cheesman/Daniels
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Artifacts of the Cheesman/Daniels Process 

► Requirement artifacts:

■ Domain model (business concept model): describes the business domain (application 
domain)

■ Use case model (requirements model)

► System artifacts, derived from the business concept model:

■ Business type model, class diagram derived from domain model: 

. Represents the system's perspective on the outer world (more attributes, refined 
class structures from the system's perspective)

■ Business object interface model, identifies the business objects and all their interfaces

■ Business object model, derived from the business object interface model by adding 
additional operations

► System component artifacts

■ Component interface specifications: one contract with the client

■ Component interface information model (state-based model)

■ Component specifications: all interface specifications of a component plus constraints. 

■ Component architecture: wiring (topology) of a component net. 
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20.2. Identifying Business 
Components 
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Component Identification (Step 2.1)
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Ex.: Domain Model of a Course-Management System

► Collects all concepts of the domain (aka business concept model)

Teacher

Participant

Company

Course

Course
Part

Exercise

Exam

Student Engineer Alumnus
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Step 2.1a) Business Type Model

► Shorten the domain model by selecting system types from the domain model 

■ Eliminates superfluous concepts

■ Adds more details

■ Distinguish datatypes (passive objects, materials, persistent entities)

Teacher

Participant

Company

<<datatype>>

Course

<<datatype>>

Course
Part

<<datatype>>

Exercise

<<datatype>>

Exam
Student Engineer Alumnus

Person

name:String
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Step 2.1b) Identifying Business Object Interfaces

► Identifies business objects from the business type model

■ And defines management interfaces for them

■ Here, only Company, Course, Person are business objects, all others are dependent types

Teacher

Participant

<<business object>>
Company

<<business object>>
Course

Course
Part

Exercise

Exam
Student Engineer

<<business object>>
Person

name:String

ICompanyMgmt

ICourseMgmt

IPersonMgmt
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Step 2.1c) Component Grouping

► Group classes and interfaces into reusable components
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Alternative Component Grouping (Version 0.2)

► Often, classes and interfaces can be grouped in several ways into 
components. Goal: think about what is reusable

► Here: Person management might be reuseable, so make it a separate 
component

Teacher

Participant

<<business object>>
Company

<<business object>>
Course

Course
Part
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Component Identification

► The component identification subprocess attempts to

■ Create a business object interface model from the domain model (still without methods)

■ Attempts to group these interfaces to initial system component specifications

. The grouping is done according to 

 information hiding: what should a component hide, so that it can easily be 
exchanged and the system can evolve?

 Reuse considerations: which specifications of components are found in the 
component specification repository, so that they can be reused?

► There is a tension between business concepts, coming from the business domain 
(problem domain), and system components (solution domain). This gap should be 
bridged.
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Step 2.2: Component Interaction Analysis for Refinement 
of Component Interfaces

Add Operations Component
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Component Interaction Analysis

► Component Interaction Analysis refines the results of the first stage

■ Removing, 

■ Regrouping, 

■ Augmenting,

■ Adding interfaces

■ Producing component specifications and wirings in a version 0.2

► Additionally, operations are added to business object interfaces

■ And mapped to internal types.
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Step 2.3: Contract Specification

 Enrich the interfaces with contracts

Add Contracts
(pre-, postconditions, invariants)

Specification

Business Object
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Interfaces

Component Specifications
and Architecture (0.2)

Component Specifications
and Architecture (1.0)
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Interface Information Model

Interface
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Contract Specification in OCL (Step 2.3)

► Specification of declarative contracts for UML classes in OCL

► Invariants:

■ Evaluate business domain rules and integrity constraints

■ Example:

context r: Course

-- a course can only be booked if it has been allocated in the 

company

inv:  r.bookable = r.allocation->notEmpty

► Pre- and Postconditions for operations (assumptions and guarantees)

■ Can only be run on some state-based representation of the component

■ Hence, the component must be modeled in an interface information model

■ Or: be translated to implementation code (e.g. Java using an OCL2Java Compiler)

context Course::book(cert:Certification)

-- a course can only be booked if the booker has an A-level 

certificate

pre:  cert.instanceOf A-level
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Step 3: Provisioning (Realization, Implementation, 
Publishing)

► Provisioning selects component implementations for the specifications

■ Choosing a concrete implementation platform (EJB, CORBA, COM+, ...)

■ Look up component implementations in implementation repositories

. Write adapters if they don't fit exactly

■ Program missing components

■ And makes them available in component repositories

■ Store component implementations and specifications in database for future reuse
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Step 4: Assembly

► Puts together architecture, component specifications and implementations, 
existing components

■ We will see more in the next lectures
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20.3 Evaluation of Cheesman-Daniels Business 
Components

► No top-down decomposition of components, only bottom-up grouping from class 
diagrams

■ part-of relationship is not really supported

► Reuse of components is attempted, but

■ Finding components is not supported

. Metadata

. Facet-based classification
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Cheesman-Daniels’ Business Component Model as 
Composition System

Component Model

Composition Technique

Composition Language

Content:

a) UML class diagrams, component
diagrams

b) Contracts in OCL

c) Business components 

Binding points: methods

Standard object-oriented polymorphism

Run-time contract checking
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The End
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