
Fakultät Informatik - Institut Software- und Multimediatechnik

41. Composition Filters - A Filter-Based
Grey-Box Component Model

Lecturer: Dr. Sebastian Götz

Prof. Dr. Uwe Aßmann

Technische Universität
Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de

21. Juni 2018

1. Inheritance Anomaly

2. Design Pattern Decorator

3. Composition Filters

4. Implementations of the Filter
Concept in Standard Languages

5. Evaluation

http://st.inf.tu-dresden.de

2

Literature (To Be Read)

 L. Bergmans, M. Aksit, K. Wakita, A. Yonezawa. An Object-Oriented
Model for Extensible Concurrent Systems: The Composition-Filters
Approach. Technical Report, University of Twente.

► http://trese.cs.utwente.nl

► Compose* is the current tool for Composition Filters. It is an extension of

Java

► http://composestar.sf.net/

2

http://trese.cs.utwente.nl
http://composestar.sf.net/

3

Other Literature

► Mehmet Aksit and Lodewijk Bergmans. Obstacles in object-oriented
software development. ACM Proceedings OOPSLA '92, SIGPLAN Notices,
27(10):341--358, October 1992.

► L. Bergmans. Composition filters. PhD thesis, Twente University,
Enschede, Holland, 1994.

► Mehmet Aksit, Ken Wakita, Jan Bosch, Lodewijk Bergmans, and Akinori
Yonezawa. Abstracting object interactions using composition filters. In O.
Nierstrasz, R. Guerraoui, and M. Riveill, editors, Proceedings of the
ECOOP'93 Workshop on Object-Based Distributed Programming, LNCS
79, pages 152--184. Springer, 1994.

► Mehmet Aksit and Lodewijk Bergmans. Composing crosscutting concerns
using composition filters. Communications of the ACM, 44(10):51--57,
October 2001.

► On the TRESE home page, there are many papers available for CF

http://trese.cs.utwente.nl/

3

http://trese.cs.utwente.nl/

4

Goal

► Composition Filters (CF) are a solution to many composition problems

► The first approach to grey-box components

► Understand the similarty to decorator/adapter-based component

models, and why grey-box provides an advantage

4

Fakultät Informatik - Institut Software- und Multimediatechnik

41.1 The Inheritance
Anomaly

6

Inheritance Anomaly – Why Dimensional Software
Composition Is Necessary

► In a parallel program, where should synchronization code be
inserted?

■ Stack?

■ Queue?

■ OrderedCollection?

■ Collection?

■ Object?

OrderedCollection

add()

Stack

pop() enter()

wait(s);
super.pop();

free(s);

LockedStack PlainStack

Queue

PriorityQueue

s: semaphor;

pop()

6

7

Inheritance Anomaly

► At the beginning of the 90s, parallel object-oriented languages failed, due
to the inheritance anomaly problem

► Inheritance anomaly: In inheritance hierarchies, synchronization code

is tangled (interwoven) with the algorithm,

■ and cannot be easily exchanged when the inheritance hierarchy should be

extended

■ Ideally, one would like to specify algorithm and function independently

7

8

Algorithm and Synchronization are Almost Facets

► But they depend on each other

► How to mix them appropriately?

OrderedCollection

add()

Stack

pop() enter()

Queue

PriorityQueue

LockProtocol

Semaphor

wait()
free()

enter()

Binary
Semaphor

Counting
Semaphor

Monitor

HoareMonitor HansenMonitor

8

Fakultät Informatik - Institut Software- und Multimediatechnik

41.2 The Decorator
Design Pattern (Rpt.)

10

Decorator Pattern

► A Decorator is a skin of another object

► It is a 1-ObjectRecursion (i.e., a restricted Composite):

■ A subclass of a class that contains an object of the class as child

■ However, only one composite (i.e., a delegatee)

► Combines inheritance with aggregation

■ Inheritance from an abstract Handler class

■ That defines a contract for the mimiced class and the mimicing class

:Client

ref
A:Decorator

hidden

B:Decorator

hiddden

C:RealObject

10

11

Decorator – Structure Diagram

MimicedClass

mimicedOperation()

ConcreteMimicedClass

mimicedOperation()

Decorator

mimicedOperation()

mimiced.mimicedOperation();

mimiced

ConcreteDecoratorA

mimicedOperation()

ConcreteDecoratorB

mimicedOperation()

super.mimicedOperation();
additionalStuff():

1

11

12

Decorator for Widgets

Widget

draw()

TextWidget WidgetDecorator

mimiced.draw()

mimiced

Frame

draw()

Scrollbar

draw()

draw()

draw()

super.draw();
drawScrollbar():super.draw();

drawFrame():

1

12

13

Decorator for Persistent Objects

Record

access()

TransientRecord PersistentDecorator

mimiced.access()

mimiced

PersistentRead
OnlyRecord

PersistentRecord

access()

access()
boolean loaded()

boolean modified()

load()

dump()

access()

if (!loaded()) load();
super.access();

if (modified()) dump():
access()

boolean loaded()

load()

if (!loaded()) load();
super.access();

1

13

14

Purpose Decorator

► For extensible objects (i.e., decorating objects)

■ Extension of new features at runtime

■ Removal possible

► Instead of putting the extension into the inheritance hierarchy

■ If that would become too complex

■ If that is not possible since it is hidden in a library

Library

New Features

Library

Decorator with
New Features

14

15

Variants of Decorators

► If only one extension is planned, the abstract superclass Decorator can
be saved; a concrete decorator is sufficient

► Decorator family: If several decorators decorate a hierarchy, they can

follow a common style and can be exchanged together

New Features

New Features

New Features

New Features

New Features

New Features

15

16

Decorator Relations

► Decorators can be chained to each other

► Dynamically, arbitrarily many new features can be added

► A decorator is a special ChainOfResponsibility with

■ The decorator(s) come first

■ Last, the mimiced object

16

Fakultät Informatik - Institut Software- und Multimediatechnik

41.3 Composition Filters

18

Filters are Layers

► Composition Filters (CF) wraps objects with filters

► A filter is an input or output interceptor of an object being part of

the object

► Messages flow through the filters

■ are accepted or rejected

■ are modified by them

■ Wait on other objects

■ Notify other objects

18

19

Filters are Special Decorators

► Filters are decorators that do not suffer from object schizophrenia

► “inner” is the core of the object

► “self” comprises all filters and inner

Object Facade

Output filters

Input filters

Object
Implementation

Decorator Inner

Self

19

20

Filter Types

► Filters are Event-Condition-Action rules

► Error. An error filter tests whether a method exists.

■ If not, it stops filtering and execution.

■ In statically typed languages, error filters can be replaced by the compiler

► Wait. A wait filter accepts methods only if a condition is true, otherwise it waits

until the condition becomes true.

■ The condition may refer to a semaphore that is shared by all objects of the class

■ In case the semaphore is not free, the wait filter blocks execution

► Dispatch. A dispatch filter dispatches the message

■ to the internal implementation, the “inner”

■ to other external objects, to a superclass,

■ or to sequences of objects.

► Meta. A meta filter converts the message to an instance of class Message and

passes it on to the continuation method. Then, the method can evaluate the new

message.

► RealTime. Specify a real-time constraint.

20

21

Main Advantage of the Filter Concept

► Filters are built into an object, they are grey-box decorators

► They avoid object-schizophrenia

► Filters are specified in the interface, not in the implementation

■ Implementations are free of synchronization code

■ Separation of concerns (SOC): synchronization and algorithm are separated

■ Filters and implementations can be varied independently

► Filters are specified statically, but can be activated or deactivated

dynamically

► Filters are statically composed with multiple inheritance

■ One dimension from algorithm,

■ one from synchronization strategy

■ Filters can be overwritten during inheritance

21

22

Composing a Locking Stack by Composing Filters

► Filter composition can be specified by selecting filters from
superclasses

► Compose* can superimpose filters also dynamically

OrderedCollection

add()

Stack

pop()

LockingStack

LockProtocol

Semaphor

wait()
free()

Binary
Semaphor

View 1

(algorithmic view)

View 2

(synchronization view)

22

Fakultät Informatik - Institut Software- und Multimediatechnik

41.4 Implementations of
the Filter Concept in
Standard Languages

24

Implementation with Decorator

► The superclass of the Decorator pattern implements the object interface

■ The decorating classes are the filters

■ Problem: Decorators do not provide access to the “inner” object or the “self”

object

► Filters also can be regarded as ChainOfResponsibility

■ However, there is a final element of the Chain, the object implementation

24

25

Filters Can be Composed From Outside

► Filter superimposition

Object Facade

Output filters

Input filters

Object
Implementation

NewDecorator

25

26

Superimposing a Decorator in Hand-Written Code

► Walk through the list of decorators

► Insert a new decorator where appropriate

► Example: superimposing synchronization:

■ Do for all objects involved:

. Get the first decorator

. Append a locking decorator, accessing a common semaphore

► Removing synchronization

■ Do for all objects involved:

. Get the synchronizing decorator

. Dequeue it

26

27

Filters in MOP-Based Languages

► In languages with a MOP, a filter can be implemented as a specific object
that is called during the functions

■ enterObject

■ accessAttribute

■ callMethod

27

28

Filters In UML

► Realize as inner components

Robot
Implementation

<<FilteredComponent>>
Robot

move Decorator
inputfilters:Filter

Filter

* outputfilters:Filter
*

28

29

Insight: Greybox Composition Relies on Extensibility

► Composition Filters is a greybox composition technology

■ Because it inlines Decorators into objects

► Superimposition of filters can be used for greybox composition

■ Adding filters changes objects extensively, but the “self” identity does not

change

■ Connectors can be made grey-box with the Filter-Connector pattern

Object
Implementation

self

29

Fakultät Informatik - Institut Software- und Multimediatechnik

41.5 Evaluation

31

CF as Composition System

Component Model Composition Technique

Composition Language

Content: Filtered objects

Binding points: ports

Static composition of filters by
multiple inheritance

Dynamic composition of filters by
filter superimposition

Dynamic adaptation by filters

Scaling by exchange of filters

Simple composition language

31

32

What Have We Learned?

► CF extends the standard object model to a new component model
FilteredComponent

■ The objects have filters and can be adapted easily

► Any component model that provides interceptors or decorators can be

used as filtered component

► Filtered components support

■ Adaptation

■ Greybox composition

32

33

The End

33

