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Generic Components

A generic component is a template from which other components can
be generated

= Generic components rely on bind operations that bind the template
parameter with a value (parameterization)

. The result is called the extent

= Ageneric class is a special case, in which types are parametric

A fully generic language is a language, in which all language constructs
can be generic, i.e., are templates from which concrete constructs can be
generated

= Then, the language need to have a metamodel, by which the parameters are
typed
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Binding Snippet Templates As Sequence of Compositions

» Template parameters (slots) must be bound by fragment values

f: Fragment Value

/ g: Fragment
Value

e+4

result = bind t.b to f,
bind t.dto g

// In Lambda-N:
result =t(b =>f,d => Q)

/I OO notation
result = t.bind(b,f).
t.bind(d,g)




Generic Programming is a Composition Technique
Relying on the Bind Operator (Parameterization)
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BETA Fragment Metaprogramming System

BETA is an object-oriented language, developed in the North (Oslo,
Copenhagen)

= BETAis the successor of Simula [BETA]
= BETA programming environment Mjolner 1994 [BETA-ENV]

Features of BETA
- Classes and methods are unified to patterns (templates)

- Classes are instantiated statically, methods dynamically
= Programming environment Mjé/ner is controlled by BETA grammar
Extension of the grammar changes all tools
= BETA is a fully generic language: all language constructs can be generic
= BETA metaprogramming system Yggdrasil

Separate compilation for all sentential forms of the grammar (all fragments
generatable by the grammar)

Essentially, a BETA module is a generic fragment of the language

BETA is a better LISP, supports typed metaprogramming



The Component Model of BETA and Mjolner
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. The basic component in the BETA system is a code fragment (code
shippet)
- Plain Fragment (snippet): Sentential form, a partial sentence derived from
a nonterminal
- Generic Fragment: Fragment that still contains nonterminals (slots, code
parameters)
- Fragment Group (fragment box): Set of fragments



Fragments (Snippets)
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A fragment (snippet) is a sequence of terminals, derived from a
nonterminal in a grammar

Grammar example:

« 4 ::= Address Salary .
» Address ::= FirstName SecondName Street StreetNr Town Country.
«= Salary ::= int.

Then, the following ones are fragments:

« Uwe Assmann Rudolfstrasse 31 Frankfurt Germany
« 34

= Uwe Assmann

But a complete sentence is

« Uwe Assmann Rudolfstrasse 31 Frankfurt Germany 34

A fragment can be given a name (named fragment)

« MyAddress: Uwe Assmann Rudolfstrasse 31 Frankfurt Germany



Generic Fragments

A generic fragment is a sequence of terminals and nonterminals,
derived from a nonterminal in a grammar, perhaps named

Example:
« Uwe Assmann <<Strasse>> Frankfurt Germany

« MyAddress: Uwe Assmann <<Strasse>> Frankfurt Germany

In BETA, the “left-in” nonterminals are called s/ots

A fragment group is a set of fragments:

=« { Uwe Assmann Rudolfstrasse 31 Frankfurt Germany
34
Uwe Assmann }

A fragment file is a file containing a fragment or a fragment group.

In BETA metaprogramming environments, all fragments are stored in the file
system in fragment files.



BETA Fragment Groups
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A fragment group is a group of sentential forms, derived from the same
nonterminal:
standardLoopIterators = {
Upwards: for (int i = 0; i < array.<<len:Function>>; i++)
Downwards: for (int i = array.<<len:Function>>-1; i >= 0; i--)
} len:Function
standardLoopIterators = {

Upwards: for (int i = 0; i < array.<<lén:Function>>; i++)

Downwards: for (int i = array.<<len:Function>>-1; i >= 0; i--)




Implicit Binding also works in BETA Fragment Groups
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Fragments can be combined with others by reference (implicit bind
operation)

Given the following fragments:

len = { size() }
standardLooplterators = {
Upwards: for (int i = 0; i < array.<<len:Function>>; i++)

Downwards: for (int i = array.<<len:Function>>-1; i >= 0; i--)
}

LoopIterators = standardLoopIlterators, len
The reference binds all used slots to defined fragments. Result:

LoopIterators = {
Upwards: for (int i = 0; i < array.size(); i++)

Downwards: for (int i = array.size()-1; i >= 0; i--)
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Advantages
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Fine-grained fragment component model

- The slots (code parameters) of a beta fragment form its composition
interface

- The BETA compiler can compile all fragments separately
- Snippets with all kinds of language constructs can be reused
- Type-safe composition with composition operation bind-a-fragment

Full genericity: A language is called fully generic, if it provides
genericity for every language construct.




Inclusion of Fragments into Fragment Groups
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Fragments can be inserted into others by the include operator
Given the above fragments and a new one

whileloopbody = WHILE <<statements:statementList>> END;

A while loop can be defined using the include operator:

whileloop = {
include LoopIterators.Upwards
whileloopbody

BETA is a fully generic language:
= Modular reuse of all language constructs

= Separate compilation: The BETA compiler can compile every fragment
separately

= Much more flexible than ADA or C++ generics!



Evaluating BETA as a Composition System
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BETA's fragment combination facilities use as composition operations:
= Animplicit bind operation (fragment referencing by slots)
= An inclusion operation (concatenation of fragments)

Hence, BETAs composition language is rather simple, albeit powerful



Generic Components (Templates) Bind at Compile Time
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New fragment-component
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Slots (Declared Hooks)
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» Slots are declared variation points of fragments.

Slots (declared hooks) are declared
by the component writer as fragment parameters

Declarations

e




Different Ways to Declare Slots
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» Slots are denoted by metadata. There are different alternatives:
Language extensions with new keywords

= SlotDeclaration ::='slot' <Construct> <slotName> "}’
= In BETA, angle brackets are used:
= SlotDeclaration ::= '<<' SlotName "' Construct '>>'
Meta-Data Attributes are language-specific
= Java: @superclass(SC)
-« C#. [superclass(SC)]
Comment Tags can be used in any language o
= Class Set /* @superClass */

Markup Tags in XML can be used for marking up code Supg%ass

= <superclasshook> SC </superclasshook>
Standardized Names (Hungarian Notation)
= Class Set extends genericSCSuperClass { }



Defining Generic Types with XML Markup
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» [Hartmann] showed that any XML language can be enriched by a slot
markup language to define slots

» Slot markup languages use hedge symbols to demarcate template and
slot (BETA: << >>, XML: < >, Here: <slot >)

» [Arnoldus] did the same for textual languages

<< ClassTemplate >> ' T << Class>>
GenericSimpleList SimpleList

clas --- List{
next
eturn next.elem;
}
}




Conditional Binding of Generic Modifiers
in XML Markup Syntax
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Slot markup languages may contain elements of a composition
language, e.g., control flow structures

A slot program expands the slot to a fragment [Hartmann]

Component methodComponent = cs.createTemplate();
Slot modif = methodComponent.findSlot(“M”);

synchronized public print () {
System.out.printin(“Hello World”); public print () {
) System.out.printin("Hello World”);

}




Universal Genericity with Slot Markup Languages
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Do not use string template engines, they render development error-
prone

Use slot markup languages to exploit their typing

With appropriate hedge symbols, a slot markup language can be
combined with a base language [Hartmann]

Principle of universal genericity:
With slot markup separated by appropriate hedge

symbols, any language may have typed generic
components, as well as full genericity.
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42.3 Template
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Template Metaprogramming (TMP)
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Template Metaprogramming (TMP) is programming with generic
fragments

TMP in C++ [CEOQ] is an attempt to realize the generic programming
facilities of BETA in C++

- C++ has templates, i.e., parameterized expressions over types, but is not a
fully generic language

- C++template expressions are Turing-complete and are evaluated at compile
time
= C++ uses class parameterization for composition
Disadvantage: leads to unreadable programs, since the template concept
is being over-used

Advantage: uses standard tools
Widely used in the
= C++ Standard Template Library STL
= boost library www.boost.org

Should be replaced by full genericity (generic fragments) or semantic
macros



http://www.boost.org

Template Metaprogramming in C++

template <int N>
struct fact {
enum { value = N * fact<N-1>::value };

};

template <>
struct fact<l> {
enum { value =1 };

};

std: :cout << "5! = " KL fact<5>::value << std::endl;



Generic Classes (Class Templates) Bind At Compile Time
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42 .4 Evaluation




42.5 Evaluating BETA and TMP as Composition Systems
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Composition technique

Composition operators:
bind (parameterize)
include

nest: nest a template into a slot




The End
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Do not use string template engines, they render development error-
prone

Use slot markup languages to exploit their typing
Look out for languages with full genericity



