Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

42. Generic Programming
with Generic Components

Lecturer: Dr. Sebastian Gtz

Prof. Dr. Uwe ABmann 42.1 Full Genericity in BETA

Technische Universitat Dresden 42.2 Slot Markup Languages

Institut flr Software- und 42.3 Template Metaprogramming ‘V
Multimediatechnik 42 .4 Evaluation v/'
http://st.inf.tu-dresden.de Concept

zzzzzzzzzzzz

Wissenschaft

18. Juni 2018


http://st.inf.tu-dresden.de/

Obligatory Reading

Invasive Software Composition, Chapter 6

[BETA-DEF] The BETA language. Free book.
http://www.daimi.au.dk/~beta/Books/. Please, select appropriate parts.

Bent Bruun Kristensen, Ole Lehrmann Madsen, and Birger Mgller-
Pedersen. 2007. The when, why and why not of the BETA programming
language. In Proceedings of the third ACM SIGPLAN conference on History of
programming languages (HOPL III). ACM, New York, NY, USA, 10-1-10-57.
DOI=10.1145/1238844.,1238854
http://doi.acm.org/10.1145/1238844.1238854



http://www.daimi.au.dk/~beta/Books/

Literature

Paul G. Bassett. Framing Software Reuse: Lessons From the Real World, Prentice Hall PTR, ISBN
013327859X

Paul G. Bassett. Frame-Based Software Engineering. IEEE Software, 1987, vol 4(4)
Paul G. Bassett. The Case for Frame-Based Software Engineering, IEEE Software, 2007, vol. 24(4)
BETA home page http://www.daimi.au.dk/~beta/

[BETA-ENV] J. Lindskov Knudsen, M. Loéfgren, O. Lehrmann Madsen, B. Magnusson. Object-Oriented
Environments. The Mjolner Approach. Prenctice-Hall, 1994. Great book on BETA and its environment,
Unfortunately not available on the internet.

Ole Lehrmann Madsen. The Mjolner BETA fragment system. In [BETA-ENV]. See also
http://www.daimi.au.dk/~beta/Manuals/latest/yggdrasil

GenVoca: Batory, Don. Subjectivity and GenVoca Generators. In Sitaraman, M. (ed.). proceedings of the
Fourth Int. Conference on Software Reuse, April 23-26, 1996, Orlando Florida. IEEE Computer Society
Press, pages 166-175

[CEOQ] K. Czarnecki, U. Eisenecker. Generative Programming. Addison-Wesley, 2000.

J. Goguen. Principles of Parameterized Programming. In Software Reusability, Vol. I: Concepts and
Models, ed. T. Biggerstaff, A. Perlis. pp. 159-225, Addison-Wesley, 1989.

[Hartmann] Falk Hartmann. Falk Hartmann. Safe Template Processing of XML Documents. PhD thesis.
Juli 2011, Technische Universitat Dresden, Fakulat Informatik. http://nbn-resolving.de/urn:nbn:de:bsz:14-
qucosa-/5342

[Arnoldus] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. 2007. Repleo: a syntax-safe
template engine. In Proceedings of the 6th international conference on Generative programming and
component engineering (GPCE '07). ACM, New York, NY, USA, 25-32. DOI=10.1145/1289971.1289977
http://doi.acm.org/10.1145/1289971.1289977

The boost C++ library project http://www.boost.org/



http://www.daimi.au.dk/~beta/Manuals/latest/yggdrasil
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-75342
http://www.boost.org/

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

42.1 Full Genericity in BETA

'@

|

DRESDEN
concept
Exzellenz aus
Wissenschaft
und Kultur

4



Generic Components

A generic component is a template from which other components can
be generated

= Generic components rely on bind operations that bind the template
parameter with a value (parameterization)

. The result is called the extent

= Ageneric class is a special case, in which types are parametric

A fully generic language is a language, in which all language constructs
can be generic, i.e., are templates from which concrete constructs can be
generated

= Then, the language need to have a metamodel, by which the parameters are
typed

Software
Technology
Group



Binding Snippet Templates As Sequence of Compositions

» Template parameters (slots) must be bound by fragment values

f: Fragment Value

/ g: Fragment
Value

e+4

result = bind t.b to f,
bind t.dto g

// In Lambda-N:
result =t(b =>f,d => Q)

/I OO notation
result = t.bind(b,f).
t.bind(d,g)




Generic Programming is a Composition Technique
Relying on the Bind Operator (Parameterization)

7

Composition
Language —
— Composition
Component .? omppsutlon Language for
Model of echnique "
- Composition
ca for Composition
Composition Language
Language Language

Composition Level

Composition
System I
Composition Composition
Component Technique Language
Model <<bind>>
template snippets parameterization
——




BETA Fragment Metaprogramming System

BETA is an object-oriented language, developed in the North (Oslo,
Copenhagen)

= BETAis the successor of Simula [BETA]
= BETA programming environment Mjolner 1994 [BETA-ENV]

Features of BETA
- Classes and methods are unified to patterns (templates)

- Classes are instantiated statically, methods dynamically
= Programming environment Mjé/ner is controlled by BETA grammar
Extension of the grammar changes all tools
= BETA is a fully generic language: all language constructs can be generic
= BETA metaprogramming system Yggdrasil

Separate compilation for all sentential forms of the grammar (all fragments
generatable by the grammar)

Essentially, a BETA module is a generic fragment of the language

BETA is a better LISP, supports typed metaprogramming



The Component Model of BETA and Mjolner

il

. The basic component in the BETA system is a code fragment (code
shippet)
- Plain Fragment (snippet): Sentential form, a partial sentence derived from
a nonterminal
- Generic Fragment: Fragment that still contains nonterminals (slots, code
parameters)
- Fragment Group (fragment box): Set of fragments



Fragments (Snippets)

10

Software
Technology
Group

A fragment (snippet) is a sequence of terminals, derived from a
nonterminal in a grammar

Grammar example:

« 4 ::= Address Salary .
» Address ::= FirstName SecondName Street StreetNr Town Country.
«= Salary ::= int.

Then, the following ones are fragments:

« Uwe Assmann Rudolfstrasse 31 Frankfurt Germany
« 34

= Uwe Assmann

But a complete sentence is

« Uwe Assmann Rudolfstrasse 31 Frankfurt Germany 34

A fragment can be given a name (named fragment)

« MyAddress: Uwe Assmann Rudolfstrasse 31 Frankfurt Germany



Generic Fragments

A generic fragment is a sequence of terminals and nonterminals,
derived from a nonterminal in a grammar, perhaps named

Example:
« Uwe Assmann <<Strasse>> Frankfurt Germany

« MyAddress: Uwe Assmann <<Strasse>> Frankfurt Germany

In BETA, the “left-in” nonterminals are called s/ots

A fragment group is a set of fragments:

=« { Uwe Assmann Rudolfstrasse 31 Frankfurt Germany
34
Uwe Assmann }

A fragment file is a file containing a fragment or a fragment group.

In BETA metaprogramming environments, all fragments are stored in the file
system in fragment files.



BETA Fragment Groups

12
A fragment group is a group of sentential forms, derived from the same
nonterminal:
standardLoopIterators = {
Upwards: for (int i = 0; i < array.<<len:Function>>; i++)
Downwards: for (int i = array.<<len:Function>>-1; i >= 0; i--)
} len:Function
standardLoopIterators = {

Upwards: for (int i = 0; i < array.<<lén:Function>>; i++)

Downwards: for (int i = array.<<len:Function>>-1; i >= 0; i--)




Implicit Binding also works in BETA Fragment Groups

13

Fragments can be combined with others by reference (implicit bind
operation)

Given the following fragments:

len = { size() }
standardLooplterators = {
Upwards: for (int i = 0; i < array.<<len:Function>>; i++)

Downwards: for (int i = array.<<len:Function>>-1; i >= 0; i--)
}

LoopIterators = standardLoopIlterators, len
The reference binds all used slots to defined fragments. Result:

LoopIterators = {
Upwards: for (int i = 0; i < array.size(); i++)

Downwards: for (int i = array.size()-1; i >= 0; i--)

Software
Technology }
Group



Advantages

14

Fine-grained fragment component model

- The slots (code parameters) of a beta fragment form its composition
interface

- The BETA compiler can compile all fragments separately
- Snippets with all kinds of language constructs can be reused
- Type-safe composition with composition operation bind-a-fragment

Full genericity: A language is called fully generic, if it provides
genericity for every language construct.




Inclusion of Fragments into Fragment Groups

15

Fragments can be inserted into others by the include operator
Given the above fragments and a new one

whileloopbody = WHILE <<statements:statementList>> END;

A while loop can be defined using the include operator:

whileloop = {
include LoopIterators.Upwards
whileloopbody

BETA is a fully generic language:
= Modular reuse of all language constructs

= Separate compilation: The BETA compiler can compile every fragment
separately

= Much more flexible than ADA or C++ generics!



Evaluating BETA as a Composition System

16

il

BETA's fragment combination facilities use as composition operations:
= Animplicit bind operation (fragment referencing by slots)
= An inclusion operation (concatenation of fragments)

Hence, BETAs composition language is rather simple, albeit powerful



Generic Components (Templates) Bind at Compile Time

17

New fragment-component




Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

42.2 Slot Markup Languages

'@

|

DRESDEN
concept
Exzellenz aus
Wissenschaft
und Kultur

4



Slots (Declared Hooks)

19

» Slots are declared variation points of fragments.

Slots (declared hooks) are declared
by the component writer as fragment parameters

Declarations

e




Different Ways to Declare Slots

20

» Slots are denoted by metadata. There are different alternatives:
Language extensions with new keywords

= SlotDeclaration ::='slot' <Construct> <slotName> "}’
= In BETA, angle brackets are used:
= SlotDeclaration ::= '<<' SlotName "' Construct '>>'
Meta-Data Attributes are language-specific
= Java: @superclass(SC)
-« C#. [superclass(SC)]
Comment Tags can be used in any language o
= Class Set /* @superClass */

Markup Tags in XML can be used for marking up code Supg%ass

= <superclasshook> SC </superclasshook>
Standardized Names (Hungarian Notation)
= Class Set extends genericSCSuperClass { }



Defining Generic Types with XML Markup

21

» [Hartmann] showed that any XML language can be enriched by a slot
markup language to define slots

» Slot markup languages use hedge symbols to demarcate template and
slot (BETA: << >>, XML: < >, Here: <slot >)

» [Arnoldus] did the same for textual languages

<< ClassTemplate >> ' T << Class>>
GenericSimpleList SimpleList

clas --- List{
next
eturn next.elem;
}
}




Conditional Binding of Generic Modifiers
in XML Markup Syntax

22

Slot markup languages may contain elements of a composition
language, e.g., control flow structures

A slot program expands the slot to a fragment [Hartmann]

Component methodComponent = cs.createTemplate();
Slot modif = methodComponent.findSlot(“M”);

synchronized public print () {
System.out.printin(“Hello World”); public print () {
) System.out.printin("Hello World”);

}




Universal Genericity with Slot Markup Languages

23

Do not use string template engines, they render development error-
prone

Use slot markup languages to exploit their typing

With appropriate hedge symbols, a slot markup language can be
combined with a base language [Hartmann]

Principle of universal genericity:
With slot markup separated by appropriate hedge

symbols, any language may have typed generic
components, as well as full genericity.




Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

42.3 Template
Metaprogramming

The poor man's generic programming

DDDDDDD
CCCCCCC
zzzzzzzzzzzz
Wissenschaft
uuuuuuuuu



Template Metaprogramming (TMP)

25

Template Metaprogramming (TMP) is programming with generic
fragments

TMP in C++ [CEOQ] is an attempt to realize the generic programming
facilities of BETA in C++

- C++ has templates, i.e., parameterized expressions over types, but is not a
fully generic language

- C++template expressions are Turing-complete and are evaluated at compile
time
= C++ uses class parameterization for composition
Disadvantage: leads to unreadable programs, since the template concept
is being over-used

Advantage: uses standard tools
Widely used in the
= C++ Standard Template Library STL
= boost library www.boost.org

Should be replaced by full genericity (generic fragments) or semantic
macros



http://www.boost.org

Template Metaprogramming in C++

template <int N>
struct fact {
enum { value = N * fact<N-1>::value };

};

template <>
struct fact<l> {
enum { value =1 };

};

std: :cout << "5! = " KL fact<5>::value << std::endl;



Generic Classes (Class Templates) Bind At Compile Time

27

New Class
Hook
class
Template
class
Hook
class




42 .4 Evaluation




42.5 Evaluating BETA and TMP as Composition Systems

29

Composition technique

Composition operators:
bind (parameterize)
include

nest: nest a template into a slot




The End

30

il

Do not use string template engines, they render development error-
prone

Use slot markup languages to exploit their typing
Look out for languages with full genericity



