
Faculty of Computer Science Institute of Software and Multimedia Technology, Software Technology Group

SS2019 – Component-based Software Engineering

Aspect-Oriented Programming (AOP)
Professor: Prof. Dr. Uwe Aßmann
Tutor: Dr.-Ing. Thomas Kühn

Task 1 Aspect-Oriented Programming (AOP)

The goal of aspect-oriented programming (AOP) is to elucidate design decisions that
cross-cut the system’s basic functionality. According to Kiczales et al. [3] aspect-oriented
programming (AOP) “makes it possible to clearly express programs involving such aspects,
including appropriate isolation, composition and reuse of the aspect code.”

a) Describe the terms scattering and tangling. Why are both effects bad?

b) What does cross-cutting mean wrt. AOP?

c) Describe the terms Pointcut, Join Point, Advice and Weaving. Give examples for
each.

d) Where is the difference between static and dynamic join points?

e) Where is the difference between static and dynamic weaving?

f) Describe the component model, composition technique and composition language of
AspectJ.

Task 2 Composition Filters

In contrast, one of the main goals of Composition Filters is to “extend existing (object-
oriented) programming models in a modular way, instead of replacing or adapting them” [1].

a) What are the basic concepts of Composition Filters? How are they related? Draw
an analysis class diagram.

b) How can Filters adapt messages before passing them one to the next Filter?

c) Can the java.util.stream library of Java be considered a Composition Filter
architecture?

d) Describe the component model, composition technique and composition language of
Composition Filters [1]?

1



Task 3 Programming with AspectJ

In this task, you will learn how learn how aspect-oriented software is implemented. You
are tasked to write simple aspects for a Java application using AspectJ, an aspect-
oriented extension to Java. Luckily, there exists direct Eclipse support by means of the
AspectJ Development Tools (AJDT) [2].

As our example we consider a tiny library that represents the structure of houses. The
library offers an interface to construct houses. In the current version any combination
of ComplexHouseParts is possible (e.g., a level can contain hallways, which can contain
levels etc.). Furthermore, rooms can either be clean or not clean. They can be cleaned
by calling the setClean(boolean clean) method. House parts can be entered and
visited. Visiting a house part means entering the part itself and visiting all the subparts.
However, as we want to use our library for any kind of domain, we want to exclude the
consistency checking code from the base implementation. Rather than, we want to use
customer-specific aspects, which are woven into the base implementation. Use AspectJ
to implement the following features.

a) Download and install AspectJ and the corresponding example.

1. Install the AspectJ Development Tools (AJDT).1

2. Download the source of the core project from the CBSE website.
3. Edit the core project to solve the task (by adding aspects).

b) Define an Aspect that logs (prints to the console) when the program starts and
stops running.

c) Define an Aspect, which restricts that levels cannot contain other levels.
d) Define an Aspect, which marks a bathroom as not clean, when it is entered.
e) Define an Aspect, which prints a warning when a room is entered which is not

cleaned.
f) Define an Aspect, which prohibits (e.g., throws an exception) any person entering

a bathroom which is not cleaned.
g) In the initialization Script (buildSimpleHouse()), a house with a private room is

created. Define an aspects, which prohibits any other person than the owner of the
house, to enter the private room.

Hand in your solution as archive *.zip before the next exercise.

1Choose the right update site wrt. your Eclipse version http://www.eclipse.org/ajdt/downloads/
index.php

2

http://www.eclipse.org/ajdt/downloads/index.php
http://www.eclipse.org/ajdt/downloads/index.php


Additional Information

• AspectJ Development Tools2

• AJDT Documentation3

• Tutorials to getting started4

• More elaborate tutorial5

References

[1] Lodewijk Bergmans and Mehmet Aksit. Principles and design rationale of composi-
tion filters. Aspect-Oriented Software Development, pages 63–95, 2004.

[2] Adrian Colyer, Andy Clement, George Harley, and Matthew Webster. Eclipse aspectj:
aspect-oriented programming with aspectj and the eclipse aspectj development tools.
Addison-Wesley Professional, 2004.

[3] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In European
conference on object-oriented programming, pages 220–242. Springer, 1997.

2https://www.eclipse.org/ajdt
3https://eclipse.org/aspectj/doc/released/progguide/starting.html
4https://eclipse.org/ajdt/demos
5https://o7planning.org/en/10257/java-aspect-oriented-programming-tutorial-with-aspectj

3

https://www.eclipse.org/ajdt
https://eclipse.org/aspectj/doc/released/progguide/starting.html
https://eclipse.org/ajdt/demos
https://o7planning.org/en/10257/java-aspect-oriented-programming-tutorial-with-aspectj

	Aspect-Oriented Programming (AOP)
	Composition Filters
	Programming with AspectJ

