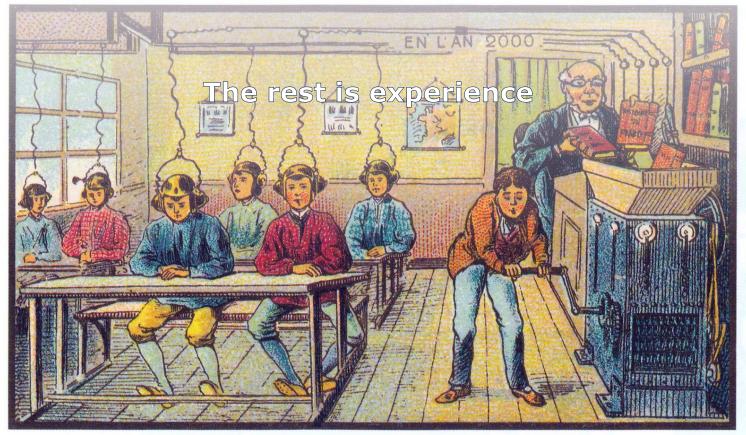


Petri Nets in Software Technologie

Scientific Presentations

Hauptseminar (SS 19)
Wednesday, 2. DS, APB/3105
Thomas Kühn (thomas.kuehn3@tu-dresden.de)

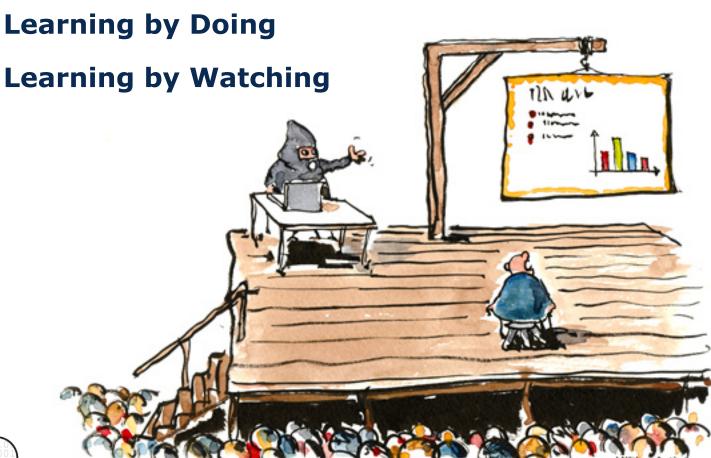


We learn ...

by ...

painting writing presenting

examining paintings reading articles watching presentations



Beginners Guide

Scientific Presentations

Beginners Guide Preparation

What is the goal of the presentation?

Why are you giving the presentation?

When will your presentation be held?

How will you support your statements?

Where will your presentation be held?

Who will be your audience?

- Rudyard Kipling, I Keep Six Honest Serving Men ...

Beginners Guide Structuring

20% Motivation 80% Core Statements

- Every Presentation tells a story
- Continuous use of one running example
- Conclude by summarizing core statements
- Prefer a linear narrative

Rough Outline

Introduction (outline, motivation, example)

Background (context, problems, history)

Core statement (idea, solution, results)

End (conclusion, outlook)

Beginners Guide Structuring

"Story Grammar" [Piesk1997]

1. Problem / Importance

Hero has unsolvable problem

2. Needs:

Hero lacks a "slice of heaven"

3. Wish:

Hero has a goal to strive for

4. Antagonist:

Antagonists pursue the same goal

5. Plan / weapon / tool:

Hero uses it to reach the goal

6. Battle:

Battle between hero and antagonists

7. Insight:

Insight is gained after battle is won

Motivation

Problems

Goals

State of the Art

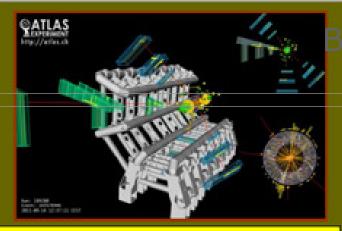
Solution

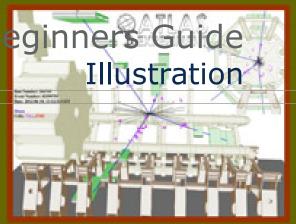
Evaluation

Results

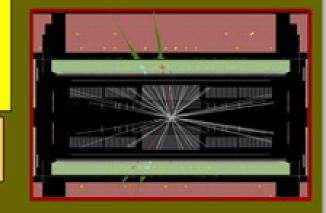
DO NOT

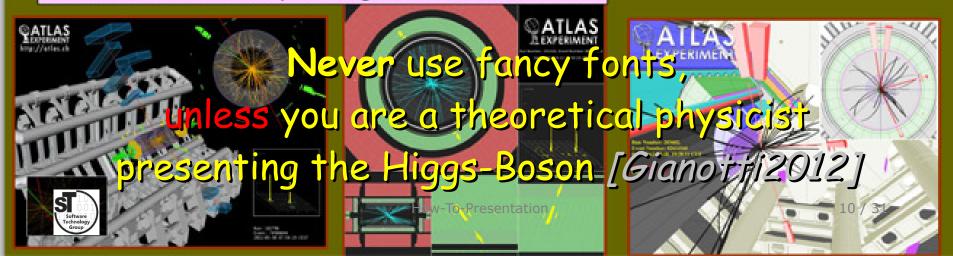
Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.





Beginners Guide Illustration





Status of Standard Model Higgs searches in ATLAS

Using the full datasets recorded in 2011 at \sqrt{s} = 7 TeV and 2012 at \sqrt{s} =8 TeV: up to 10.7 fb⁻¹

Fabiola Gianotti (CERN), representing the ATLAS Collaboration

- 1) Motivation
- 2) Concept
- 3) Implementation
- 4) Evaluation
- 5) Conclusion

- Short lists (max. 7 words)
- Use short, precise formulations
- Use clean templates (without decorations)
- Commit to one (sans serif) font
- Use (few) colors consistently

- Sharp (high-resolution) images
- Use **bold**, *italic*, <u>underline</u> for highlighting
- Use figures to illustrate complex processes
- Use animations/transition effects only to explain complex relationships
- Present only significant information

- Practice, practice, practice
- Conceive precise formulations, metaphors, examples
- Especially, practice slide transitions
- Train self-control (facial expression, gestures, intonation, ...)
- Avoid useless filler words (ehm, so, also, yes...)
- Avoid long anecdotes, stick to the point
- Find ways to calm yourself

- In which context will you give your presentation?
 - Knowledge of your audience
 - Type of event
 - Goals of the event / your presentation
- What is the core statement of your presentation?
- What story do you tell?
- Which example do you use?
- Which illustrations will you choose?

Beginners Guide

Scientific Presentations



Figure 1: Alexander von Humboldt, Wikimedia Commons (Public Domain)

High Standards for Scientific Presentations

- Complex topics
- Fixed structure (outline)
- More information in less time
- Requires correct citations
- Depiction of
 - Tables,
 - · Statistics, and
 - Mathematical formulae
- Professional audience

Scientific Presentations Structure

- Introduction *Motivation, scientific scope*
- Problem Definition
 Problems, goals, success criteria
- Concept *Idea, hypothesis, core statement, method*
- Evaluation
 Qualitative or quantitative evaluation
- Related work
- Conclusion
 Scientific contributions, future work

- Use a Corporate Design¹ templates, if available
 - Predefined slide backgrounds
 - Predefined slide layout (may customize)
 - Predefined color scheme
- Create your own prototypes
 - Refine the templates towards
 - Space-saving layout
 - Modified background (watermark)
 - Include slide numbers
 - Reuse of typical slides Title, author information, references, ...

Scientific Presentations Correct Referencing

- List referenced literature at presentation's end
- Quotation:

"Software is getting slower more rapidly than hardware becomes faster." – Niklaus Wirth [Wirth1995]

Citation:

Role-Object-Pattern [Bäumer1998]

Footnote for web links:

Eclipse¹ is a widely used Development Environment 1) www.eclipse.org

- Subtitle for figures, tables, diagrams:
 - Pay attention to copyright licenses (Creative Commons)

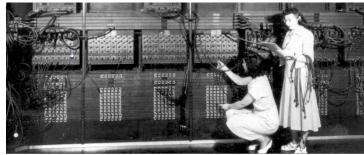


Figure 2: Programming of ENIAC [U. S. Army Photo]

Scientific Presentations Statistics and Charts

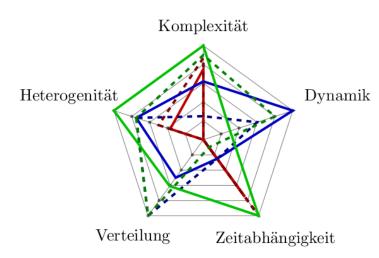


Figure 3: Radar chart [Kühn2013]

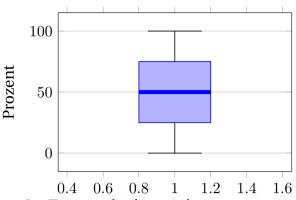


Figure 4: Example box plot

Qualitative Evaluation

- Tables unsuitable
- Focus on interesting details
- Derivation of analysis diagrams
 - Pie charts
 - Radar charts
 - •

Quantitative Evaluation

- Tables for small analyses
- Plots for larger analyses
 - Line chart
 - Box plots
 - •

Scientific Presentations Mathematical Formulae

Few Mathematical Formulae

- Simply use special characters card: $(R \rightarrow N \times N) \cup (Rel \rightarrow N \times N \times N \times N)$
- Integrated formal editor

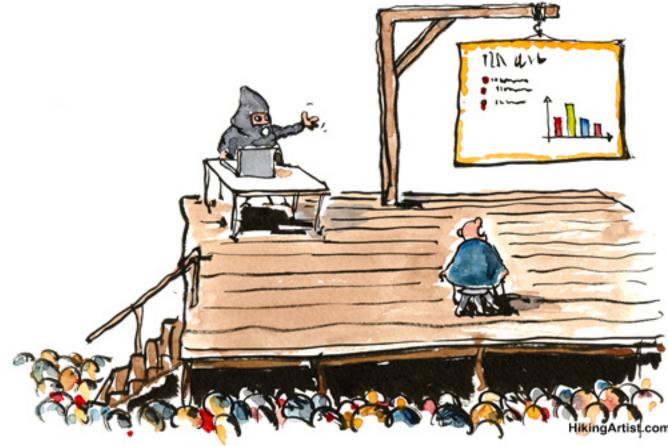
$$\sum_{m=3}^{n/2} \frac{1}{\ln m} \frac{1}{\ln (n-m)} \approx \frac{n}{2 \ln^2 n}$$

Many Mathematical Formulae and Definitions

Better use LaTeX/Beamer instead

Scientific Presentations Summary

- Take knowledge of audience/type of event into account
- A good story and example is crucial
- Avoid overloading your presentation
- Focus only on important information/facts
- Every slide must answer a question (Who?, What?, Why?, How?, ...)
- Follow scientific practices and standards
 (Citations, Bibliography, List of references)
- Use suitable illustrations for complex statements



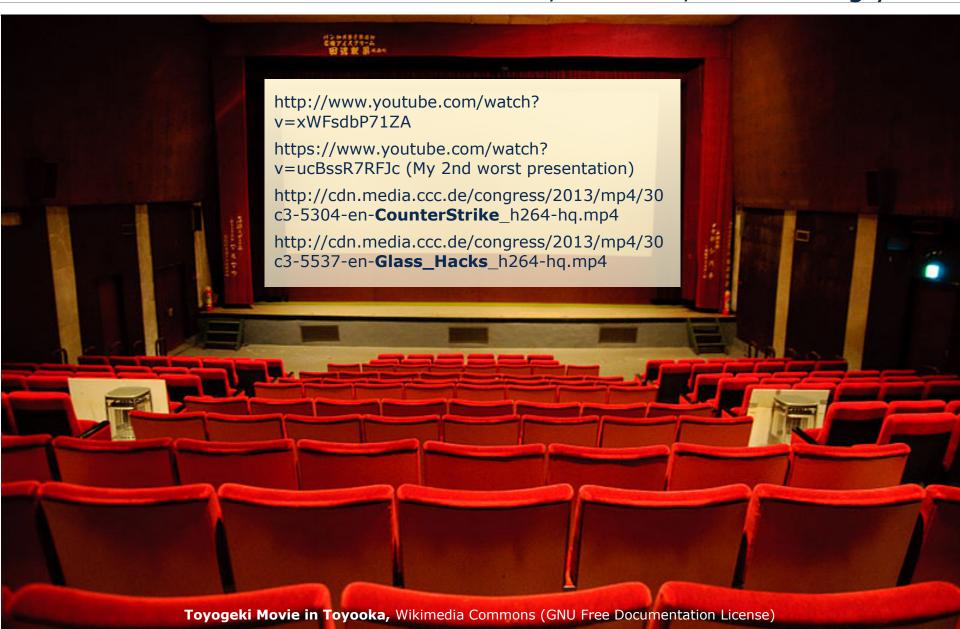
Task:

- Present 2-3 unknown slides
- Convince your audience

Cope with the stress

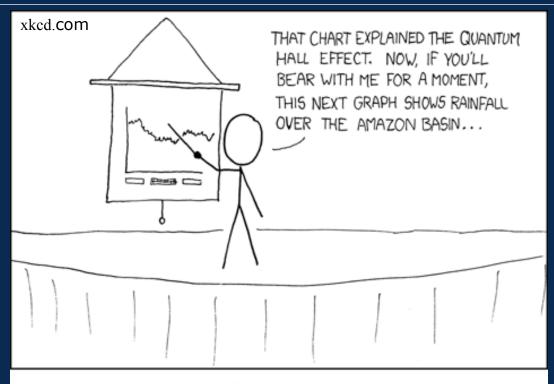
25 / 31

Learning by Watching The Good, the Bad, and the Ugly


Task:

- Why is a certain presenter good/bad?
- Who tells a story?
- Who designed the best slides?

Lernen durch Betrachten The Good, the Bad, and the Ugly


This presentation is based on:

- Academic Skills in Computer Science (AsiCS)
 Sebastian Götz and Thomas Kühn
 Lecture in summer semester
- Wissenschaftliches Arbeiten und Lerntechniken.
 Erfolgreich studieren gewusst wie!
 Christine Stickel-Wolf und Joachim Wolf
 Updated and revised edition (2009)

How To Do Scientific Presentations

IF YOU KEEP SAYING "BEAR WITH ME FOR A MOMENT", PEOPLE TAKE A WHILE TO FIGURE OUT THAT YOU'RE JUST SHOWING THEM RANDOM SLIDES.

[Bäumer1998] The Role Object Pattern

Dirk Bäumer, et al.

Washington University Dept. of Computer Science (1998)

[Gianotti2012] Status of Standard Model Higgs searches in ATLAS

Fabiola Gianotti

Representing the ATLAS Collaboration, CERN (2012)

[Kühn2013] Tools and Materials in the Context of Cyber-Physical Systems

Thomas Kühn

Diplomarbeit, TU Dresden (2013)

[Piesk1997] Natürlichsprachliche Interaktion mit autonomen 3D-Charakteren Konzeption und Implementierung eines virtuellen Darstellers als dialogfähigen Agenten.

Jens Piesk

Diplomarbeit, Köln (1997)

[Wirth1995] A Plea for Lean Software

Niklaus Wirth

Computer 28.2 (1995)

