

Softwaretechnologie (ST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

24. Entwurfsmuster für Produktfamilien
(Product Line Patterns)

Prof. Dr. Uwe Aßmann

Lehrstuhl Softwaretechnologie

Fakultät für Informatik

TU Dresden

21-1.1, 6/5/21

1) Patterns for Variability

2) Patterns for Extensibility

3) Patterns for Glue

4) Other Patterns

5) Patterns in AWT

Achtung: Dieser Foliensatz ist teilweise in Englisch gefasst, weil das Thema in der
Englisch-sprachigen Kurs “Design Patterns and Frameworks” (WS) wiederkehrt.
Mit der Bitte um Verständnis.

 ©
 P

ro
f.

U
. A

ß
m

an
n

2 Softwaretechnologie (ST)

Obligatory Literature

► ST für Einsteiger, Kap. Objektentwurf: Wiederverwendung von Mustern

► also: Chap. 8, Bernd Brügge, Allen H. Dutoit. Objektorientierte Softwaretechnik mit
UML, Entwurfsmustern und Java. Pearson.

► James W. Cooper. Java™ Design Patterns: A Tutorial. Addison Wesley, 2000, ISBN:
0-201-48539-7

■ http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.183.2228&rep=rep1&
type=pdf

■ http://www.informit.com/store/java-design-patterns-a-tutorial-9780201485394

Section Download
■ Download books at

http://www.freebookcentre.net/SpecialCat/Free-Design-Patterns-Books-Dow
nload.html

► https://refactoring.guru/design-patterns/java

►

 ©
 P

ro
f.

U
. A

ß
m

an
n

3 Softwaretechnologie (ST)

Standard Problems to Be Solved By Product Line Patterns

► Def.: A software product line (SPL) is a systematically engineered family of software products.

► Product Line Patterns are used to construct SPL, containing specific design knowledge about:

► Variability: Exchanging parts easily
– Variation, variability, complex parameterization
– Static and dynamic

– For product lines, framework-based development

► Extensibility: Add new features
– Software must change

► Glue: Adapt to overcome architectural mismatches
– Coupling software that was not built for each other

Zombie
product line

Cash cow
product line

Dream
product line

Product line life cycle in a modern software company

today In 5 years5 years ago

Producing a product family (product line) is a successful
business model for companies. Therefore, a systematic
design towards product lines can be a decisive economic
factor in the life of a company.

In a company, usually 2-3 product lines are active at the
same time:

• The “zombie” product line is the one of the past, from
which no new products are created, but old products are
in use and must be maintained. Therefore, the product
line also must be maintained

•The “cash cow” product line is the one of the present,
from which new products are created

•The “dream” product line is designed for the future.

Softwaretechnologie (ST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

24.1) Patterns for Variability

Programming complex objects in variants

Generating product families

Variability Pattern # Run-
time
objects

Key feature

TemplateMethod 1 Simple variability

FactoryMethod 1 Simple variability

TemplateClass 2 Complex object

Strategy 2 Complex algorithm object

FactoryClass 3 Complex allocation of a family
of objects

Bridge
(DimensionalClass
Hierarchy)

2 Complex object

 ©
 P

ro
f.

U
. A

ß
m

an
n

5 Softwaretechnologie (ST)

Why Do We Need Variability?

► Functional features, packages (payed vs free use), etc can be varied

► Platforms (Hardware, operating system, database, GUI package, etc.) should be varied

► Dynamic contexts (personalization, time and location) may vary

Framework

Product, perfect
technology

Product, specific
platform

Product, specific
context

Product,
unspecific context

Variability takes place on different levels:

•compile time

– functional variants

– platform variants

•instantiation time

– deployment variants (“configuration”)

•runtime

– context variants

 ©
 P

ro
f.

U
. A

ß
m

an
n

6 Softwaretechnologie (ST)

Commonalities and Variabilities

► A variability design pattern describes
■ Code common to several applications

. Commonalities lead to frameworks of product lines
■ Code different or variable from application to application

. Variabilities lead to products of a product line
► For capturing the communality/variability knowledge in variability design

patterns, Pree invented the template-and-hook (T&H) concept
– Templates contain skeleton code (commonality), common for the entire product

line
– Hooks (hot spots) are placeholders for the instance-specific code (variability)

Fixed part of design pattern
(template): commonality

Flexible part of design pattern
(hook): variability

Rest of application
not related to pattern

In a product family, common code must be extracted and
reused. To this end, commonality analysis is conducted.

Also, variant (variable) code must be extracted and
exchanged. To this end, variability analysis is conducted.

Then, put common code into

• superclasses and vary via specialication and polymorphy

•core classes and the variable code into mixins; vary with
mixin polymorphy

 ©
 P

ro
f.

U
. A

ß
m

an
n

7 Softwaretechnologie (ST)

► Define the skeleton of an algorithm
(template method)

– The template method is concrete

► Delegate parts to abstract hook methods
that are filled by subclasses

► Implements template and hook with the
same class, but different methods

► Allows for varying behavior
– Separate invariant from variant

parts of an algorithm

► Example: TestCase in JUnit

TemplateMethod Pattern is a Variability Design Pattern
(Rpt.)

...
primitiveOperation1();
...
primitiveOperation2();
...

AbstractClass

TemplateMethod()
primitiveOperation1()
primitiveOperation2()

ConcreteClass

primitiveOperation1()
primitiveOperation2()

ConcreteClassB

primitiveOperation1()
primitiveOperation2()

 ©
 P

ro
f.

U
. A

ß
m

an
n

8 Softwaretechnologie (ST)

Actors and Genres as Template Method

► Polymorphy in a common template method play()

► Binding an Actor's hook to be a ShakespeareActor or a Comedy Actor

► The behavior visible to a client will
■ be common in play()
■ but differ in two aspects, reciting and dancing

Actor

play()
recite()
dance()

ShakespeareActor

recite()
dance()

ComedyActor

recite()
dance()

Client

film()

Client

if (shakespeare)
 actor= new ShakespeareActor();
else if (comedy)
 actor =new ComedyActor();
actor.play();

actor

...
recite();
...
dance();
...

 ©
 P

ro
f.

U
. A

ß
m

an
n

9 Softwaretechnologie (ST)

Running Example: A Data Generator

► Parameterizing a data generator by frequency and kind of production

...
for (i = 0; i < howOften();
 i++) {
 ...
 produceItem();
 ...
}

DataGenerator

generate()
howOften()
produceItem()

TestDataGenerator

howOften()
produceItem()

return 5;return 5;

String word =
 grammar.recurse();
println(word);

- Grammar grammar;

ReportGenerator

- int nrForms

data =
readFromForm();
imp.generateData(data);

return 5;return nrForms;

howOften()
produceItem()

 ©
 P

ro
f.

U
. A

ß
m

an
n

10 Softwaretechnologie (ST)

Variability with TemplateMethod

► Binding the hook method(s) means to
– Derive a concrete subclass from the abstract superclass, providing their

implementation

► Controlled variability by only allowing for binding hook methods, but not overriding
template methods

Binding the hook methods
with hook values (method
implementations)Template

method
Hook

method
(abstract)

 ©
 P

ro
f.

U
. A

ß
m

an
n

11 Softwaretechnologie (ST)

24.1.2 FactoryMethod

Creator

TemplateOperation()
FactoryMethod():Product

ConcreteCreatorA

FactoryMethod():
ConcreteProductA

Product

ConcreteProductA

return new ConcreteProductA

...
Product = FactoryMethod()
...

► FactoryMethod is a variant of TemplateMethod

► A FactoryMethod is a polymorphic constructor

ConcreteCreatorB

FactoryMethod():
ConcreteProductB

return new ConcreteProductB

ConcreteProductB

Softwaretechnologie (ST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

24.1.3 Strategy (Template Class)

► The Strategy pattern is a Template Class pattern with the same
structure, but a more specific intent

 ©
 P

ro
f.

U
. A

ß
m

an
n

13 Softwaretechnologie (ST)

Template Class

HookClass

hookMethod()

ConcreteHookValueA

hookMethod()

ConcreteHookValueB

hookMethod()

TemplateClass

templateMethod()

hookObject

hookObject.hookMethod()

► The template method and the hook method are found in different classes

► Similar to TemplateMethod, but
– Hook objects and their hook methods can be exchanged at run time
– May exchange several methods (a set of methods) at the same time

► This pattern is basis of Bridge, Builder, Command, Iterator, Observer, Visitor.

 ©
 P

ro
f.

U
. A

ß
m

an
n

14 Softwaretechnologie (ST)

Strategy (Specific Template Class with Algorithm Mixin)

(Algorithmic)Strategy

doit()

ConcreteHookValueA

doit()

ConcreteHookValueB

doit()

Main

work()

strategy

strategy.doit()

► Similar to TemplateClass, but different intention
– Consistent exchange of several parts of an algorithm within a main object, not only one

method

► This pattern is basis of Bridge, Builder, Command, Iterator, Observer, Visitor.

 ©
 P

ro
f.

U
. A

ß
m

an
n

15 Softwaretechnologie (ST)

► Strategy represents an algorithm as object (but Command calls it execute())

► Ex.: complex formatting algorithm

► Strategy objects are often subobjects of complex objects

Example for (algorithmic) Strategy

Formatter

format()

SimpleFormatter

format()

TextApplication

traverse()
repair()

formatter

TeXFormatter

format()

ArrayFormatter

format()

formatter.format()

Template Hook

 ©
 P

ro
f.

U
. A

ß
m

an
n

16 Softwaretechnologie (ST)

Variants of TemplateClass:
Strategy, TemplateMethod, TemplateMixin

► TemplateMethod creates one run-time object

► TemplateClass creates two physical objects belonging to one logical object
► TemplateMixin is a TemplateClass with Mixin and Composition
► Strategy is a TemplateClass with algorithmic Hook object

...
recite();
...
dance();
...

Actor

play()
recite()
dance()

ShakespeareActor

recite()
dance()

ComedyActor

recite()
dance()

...
realization.recite();
...
realization.dance();
...

Actor

play()

ComedyActor

recite()
dance()

ActorRealization

recite()
dance()

ShakespeareActor

recite()
dance()

realization

TemplateMethod
TemplateMixin

 ©
 P

ro
f.

U
. A

ß
m

an
n

17 Softwaretechnologie (ST)

Variability with Strategy

► Binding the hook class of a Strategy means to derive a concrete subclass from the
abstract hook superclass, providing the implementation of the hook method

Binding the template
method hooks with hook
values (method
implementations)

Template
Class

Hook Class

Calls to
Hook methods

Hook
methods

Template
methods

Softwaretechnologie (ST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

24.1.4. Factory Class

 ©
 P

ro
f.

U
. A

ß
m

an
n

19 Softwaretechnologie (ST)

► Allocate a family of products {Ai, Bi, ..} in different “flavors” or “colors” {1, 2, ..}

► Vary consistently by exchange of factory and object families

24.1.4 Factory Class (Abstract Factory)

AbstractFactory

createProductA()
createProductB()

ConcreteFactory1

createProductA()
createProductB()

ConcreteFactory2

createProductA()
createProductB()

AbstractProductA

ProductA2 ProductA1

AbstractProductB

ProductB2 ProductB1

Client

init()

If (..product variant ==
YELLOW..) {
 factory = new
ConcreteFactory1();
} else {
 factory = new
ConcreteFactory2();
}

factory

 ©
 P

ro
f.

U
. A

ß
m

an
n

20 Softwaretechnologie (ST)

Example for Factory Class

WidgetFactory

createScrollbar()
createWindow()

ConcreteFactory1

createScrollbar()
createWindow()

ConcreteFactory2

createScrollbar()
createWindow()

Window

XWindow SWTWindow

Scrollbar

XScrollbar SWTScrollbar

Client

► Consistently varying a family of widgets

Softwaretechnologie (ST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

24.1.5 Bridge (Dimensional Class Hierarchies)

 ©
 P

ro
f.

U
. A

ß
m

an
n

22 Softwaretechnologie (ST)

► A Bridge represents a complex object with two layers

► The left hierarchy (upper layer) is called abstraction hierarchy, the right hierarchy (lower
layer) is called implementation

Bridge for Complex Objects (GOF-Version)

operationImpl()

ConcreteImplA

operationImpl()

ConcreteImplB

operationImpl()

operation()

imp

MoreConcrete
Abstraction1

operation()

MoreConcrete
Abstraction2

operation()

imp.operationImpl()

Implementation (Dependent)Abstraction (Main)

...Some actions for Abstraction1;
imp.operationImpl();

...Some actions for Abstraction2;
imp.operationImpl();

 ©
 P

ro
f.

U
. A

ß
m

an
n

23 Softwaretechnologie (ST)

► A Bridge represents a complex object with two layers

► The left hierarchy (upper layer) is called abstraction hierarchy, the right hierarchy (lower
layer) is called implementation

Bridge for Complex Objects (GOF-Version)

operationImpl()

ConcreteImplA

operationImpl()

ConcreteImplB

operationImpl()

operation()

imp

MoreConcrete
Abstraction1

operation()

MoreConcrete
Abstraction2

operation()

imp.operationImpl()

Implementation (Dependent)Abstraction (Main)

...Some actions for Abstraction1;
imp.operationImpl();

...Some actions for Abstraction2;
imp.operationImpl();

*

 ©
 P

ro
f.

U
. A

ß
m

an
n

24 Softwaretechnologie (ST)

► DimensionalClassHierarchies is an extension of TemplateClass

Bridge as DimensionalClassHierarchies

HookClass

hookMethod()

ConcreteHookClassA

hookMethod()

ConcreteHookClassB

hookMethod()

TemplateClass

templateMethod()

hookObject

MoreConcrete
Template1

templateMethod()

MoreConcrete
Template2

templateMethod()

Implementation 1
.. hookMethod();

Implementation 2
.. hookMethod();

hookObject.hookMethod()

•A Bridge varies also the template class in a class
hierarchy

– The sub-template classes can adapt the
template algorithm

– Important: the sub-template classes must
fulfil the contract of the superclass

• Although the implementation can be
changed, the interface and visible behavior
must be the same

•Both hierarchies can be varied independently

– Factoring (orthogonalization)

– Reuse is increased

•Basis for patterns

– Observer, Visitor

 ©
 P

ro
f.

U
. A

ß
m

an
n

25 Softwaretechnologie (ST)

► Bridge is an extension of TemplateClass

TemplateMixin as Dimensional Mixin Variation

MixinClass

hookMethod()

ConcreteHookClassA

hookMethod()

ConcreteHookClassB

hookMethod()

TemplateMixin

templateMethod()

hookObject

MoreConcrete
Template1

templateMethod()

MoreConcrete
Template2

templateMethod()

Implementation 1
.. hookMethod();

Implementation 2
.. hookMethod();

hookObject.hookMethod()

•A Bridge varies also the template class in a class
hierarchy

– The sub-template classes can adapt the
template algorithm

– Important: the sub-template classes must
fulfil the contract of the superclass

• Although the implementation can be
changed, the interface and visible behavior
must be the same

•Both hierarchies can be varied independently

– Factoring (orthogonalization)

– Reuse is increased

•Basis for patterns

– Observer, Visitor

 ©
 P

ro
f.

U
. A

ß
m

an
n

26 Softwaretechnologie (ST)

Ex. Complex Object DataGenerator as Bridge

GeneratorImpl

generateData(Data)

ExhaustiveGenerator

generateData(Data)

RandomGenerator

generateData(Data)

DataGenerator

Data data;
generate()

imp

TestDataGenerator

generate()

ReportGenerator

generate()

data =
parseTestDataGrammar();
imp.generateData(data);

data =
readFromForm();
imp.generateData(data);

imp.generateData(data)

 ©
 P

ro
f.

U
. A

ß
m

an
n

27 Softwaretechnologie (ST)

Rpt.: Why Do We Need Variability?

► Functional features, packages (payed vs free use), etc

► Platforms (Hardware, operating system, database, GUI package, etc.)

► Dynamic contexts (personalization, time and location)

Framework

Product, perfect
technology

Product, specific
platform

Product, specific
context

Product,
unspecific context

 ©
 P

ro
f.

U
. A

ß
m

an
n

28 Softwaretechnologie (ST)

► Bridge can be used to implement an object with platform-independent (left/upper
hierarchy) and platform-specific part (lower/right hierarchy)

► For every type of platform, there must be one Bridge

Platform-Independent

Use of Bridge Patterns for Separation of Platform-
Independent from Platform-Dependent Code

operationImpl()

ConcreteSpecificA

operationImpl()

ConcreteSpecificB

operationImpl()

operation()

specific

Concrete
Independent1

operation()

Concrete
Independent2

operation()

Some actions for 1;
specific.operationImpl()

Some actions for 2;
specific.operationImpl()

specific.operationImpl()

Platform-Specific

Bridges can hide inside platform-specific code (in the hook
object).

Whenever the software should be ported to a new platform, a
new variant of the hook class must be programmed. Splitting
the platform-independent from the platform-specific code
enables the developer to reuse the platform-independent code
for many platforms.If all objects in a program are programmed
with “platform bridges”, the software is very easy to port to new
platforms.

Bridge is one of the most important patterns for software
product lines.

 ©
 P

ro
f.

U
. A

ß
m

an
n

29 Softwaretechnologie (ST)

► Bridge can be used to implement an object with context-independent (left/upper
hierarchy) and context-specific part (lower/right hierarchy)

► For every type of context, there must be one Bridge

Context-Independent

Use of Bridge for Separation of Context-Independent from
Context-Dependent Code

operationImpl()

ConcreteSpecificA

operationImpl()

ConcreteSpecificB

operationImpl()

operation()

specific

Concrete
Independent1

operation()

Concrete
Independent2

operation()

Some actions for 1;
specific.operationImpl()

Some actions for 2;
specific.operationImpl()

specific.operationImpl()

Context-Specific

Context

Bridges can hide inside context-specific code that is varied
dynamically (in the hook object).

Whenever the software should work differently in a new
dynamic context, the hook object can be varied dynamically.

Bridge is one of the most important patterns for dynamic
software product lines.

Softwaretechnologie (ST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

24.2) Patterns for Extensibility

Extensibility Pattern # Run-time
objects

Key feature

Composite * Whole/Part hierarchy

Decorator * List of skins

Callback 2 Dynamic call

Observer 1+* Dynamic multi-call

Visitor 2 Extensible algorithms on a data
structure

EventBus, Channel * Complex dynamic communication
infrastructure (Appendix)

Extensibility patterns describe how to build

plug-ins (complements, extensions) to frameworks

 ©
 P

ro
f.

U
. A

ß
m

an
n

31 Softwaretechnologie (ST)

► Composite has an recursive n-aggregation to the superclass

24.2.1 Structure Composite (Rpt.)

Component

commonOperation()
add(Component)
remove(Component)
getType(int)

Composite

commonOperation()
add(Component)
remove(Component)
getType(int)

Leaf

commonOperation()

Client
childObjects

for all g in childObjects
 g.commonOperation()

} Pseudo implementations

*

Management
functions

1 Alternative?

Softwaretechnologie (ST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

24.2.2. Decorator

► The “sibling” of Composite

 ©
 P

ro
f.

U
. A

ß
m

an
n

33 Softwaretechnologie (ST)

Problem

► How to extend an inheritance hierarchy of a library that was bought in binary form?

► How to avoid that an inheritance hierarchy becomes too deep?

Library

New Features

Library

Decorator with
New Features

 ©
 P

ro
f.

U
. A

ß
m

an
n

34 Softwaretechnologie (ST)

► A Decorator object is a skin of another object

► The Decorator class mimics a class

Snapshot of Decorator Pattern

:Client

ref
A:Decorator

hidden
B:Decorator

hidden

<<RealObject>>
C:MimicedClass

While traversing from the client to the Real Object,
one passes all skin objects. Before recursing, an
prologue code (climbing down code) is executed. After
recursing, an epilogue code (climbing up code) is
executed.

Prologue and epilogue code wrap the next object in
the line.

All skin objects belong logically to the real object,
though being physically different.

 ©
 P

ro
f.

U
. A

ß
m

an
n

35 Softwaretechnologie (ST)

► It is a restricted Composite with a 1-aggregation to the superclass
– A subclass of a class that contains an object of the class as child
– However, only one composite (i.e., a delegatee)
– Combines inheritance with aggregation

Decorator – Structure Diagram

MimicedClass

mimicedOperation()

ConcreteMimicedClass

mimicedOperation()

Decorator

mimicedOperation()

mimiced.mimicedOperation();

mimiced

ConcreteDecoratorA

mimicedOperation()

ConcreteDecoratorB

mimicedOperation()

super.mimicedOperation();
additionalStuff():

1

 ©
 P

ro
f.

U
. A

ß
m

an
n

36 Softwaretechnologie (ST)

Ex.: Decorator for Widgets

Widget

draw()

TextWidget WidgetDecorator

mimiced.draw()

mimiced

Frame

draw()

Scrollbar

draw()

draw()

draw()

super.draw();
drawScrollbar():super.draw();

drawFrame():

1

Decorator is frequently used in the implementation
of widget hierarchies in GUI.

 ©
 P

ro
f.

U
. A

ß
m

an
n

37 Softwaretechnologie (ST)

Purpose Decorator

► For dynamically extensible objects (i.e., decoratable objects)
– Addition to the decorator chain or removal possible

● For complex objects

Decorated

Real

Library

Dectorator1

:Client

ref

A:Decorator1

hidden

B:Decorator2

hidden

C:Real

D2

Decorated

A combined class-object diagram shows how decorator
class hierarchies determine the form of the skin object lists.

Softwaretechnologie (ST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

24.2.3 Different Kinds of
Publish/Subscribe Patterns – (Event Bridge)

► Publish/Subscribe patterns are for dynamic, event-based
communication in synchronous or asynchronous scenarios

► Subscribe functions build up dynamic communication nets

► Callback

► Observer

► EventBus

 ©
 P

ro
f.

U
. A

ß
m

an
n

39 Softwaretechnologie (ST)

► Distinguish: Subscription of Observers to Subjects // Notification of event // Source of
event (subject) // Data to be transfered // Relation of Subject and Observer

► Therefore, Observer exists in several variants (push, pull, CallBack, EventBus,
ChannelBus)

Publish/Subscribe Patterns

a=50%
b=30%
c=20%

Window

 a
 30
 30

 10
 20
 10

 b c

 10

 60
 50
 80

 x
 y
 z

WindowWindow

 a b c

Subject

Observer

Notify on change

Pulling out the changed
state (state queries)

Publish/Subscribe Patterns describe dynamic
communications. For modern applications, they are
indispensible.

 ©
 P

ro
f.

U
. A

ß
m

an
n

40 Softwaretechnologie (ST)

Overview

Variant of Pattern “Observer”

Push Data is flowing with the call to “update”

Callback 1 observer

Observer n observer

Pull Data is pulled on demand

Callback 1 observer

Observer n observer

► A callback is a variant of the observer pattern with one observer

► With the “pull” variants, the Observer pulls the new state from the Subject

► With the “push” variants, the Subject pushes the state to the Observer

pull-Observer, the “normal” Observer from the GOF
book, combines the registration of several observers
with the pull of the changed state of the Subject.
Therefore, it is the most complicated pattern of the 4
Publish/Subscribe Patterns discussed here.

 ©
 P

ro
f.

U
. A

ß
m

an
n

41 Softwaretechnologie (ST)

24.2.3.1 Publish/Subscribe
with 1 Observer: Callback

Subject

register(Callback)
unregister(Callback)
notify()

Callback
callback

ConcreteSubject

getState()
setState()

run(Data)

ConcreteCallback

run(Data)

-CallbackState

-SubjectState

► Callbacks have only one observer, which is not known statically, but registered
dynamically, at run time

► A (push-)Callback pushes its data with the call to run

callback.run(
 getState());

subscription
interface

1

 ©
 P

ro
f.

U
. A

ß
m

an
n

42 Softwaretechnologie (ST)

► run() directly transfers Data to Observer (push)

Sequence Diagram push-Callback

:aConcreteSubject :aConcreteObserver

setState()

notify()

run(d:Data)

register()

d = getState()

 ©
 P

ro
f.

U
. A

ß
m

an
n

43 Softwaretechnologie (ST)

24.2.3.2 Structure pull-Callback (Delayed Data Transfer)

register(Callback)
unregister(Callback)
notify()

callback

ConcreteSubject

run(Subject)

ConcreteCallback

callback.run (this);

…
CallbackState =
 Subject.getState()
...

return SubjectState

► A pull-Callback pushes the Subject to the Callback to later pull the data

► Responsibility for pull lies with the Callback; Subject is passed as argument

getState()
setState()

run(Subject)

-CallbackState

-SubjectState

Subject PullCallback

 ©
 P

ro
f.

U
. A

ß
m

an
n

44 Softwaretechnologie (ST)

► Update() does not transfer data, only an event (anonymous communication
possible)

– Observer pulls data out itself with getState()
– Lazy processing (on-demand processing)

Sequence Diagram pull-Callback

setState()

notify()

update(this)

getState()

register()

<<data pull>>

much
later..

:aConcreteSubject :aConcreteObserver

 ©
 P

ro
f.

U
. A

ß
m

an
n

45 Softwaretechnologie (ST)

24.2.3.3 Structure push-Observer (Immediate Data Transfer)

register(MultiCallBack)
unregister(MultiCall
 Back)
notify(d:Data)

observers

ConcreteSubject

update(Data)
// push(Data)

ConcretePushObserver

update (Data)

-ObserverState

for all b in observers {
 b.update (d)
}

do something with Data-d:Data

*

► Subject pushes data with update(Data)

► Pushing resembles Sink, if data is pushed iteratively

no permanent back link;
instead data is pushed

Subject PushObserver

If the amount of data that is to be transferred from the subjec
to the observers is small, pushing the data with the update is
no problem.

However, when the data is huge, its transport might be done
in vain. Then, it is better to let the observer decide when to
pull the data. This leads to the pull-Observer.

 ©
 P

ro
f.

U
. A

ß
m

an
n

46 Softwaretechnologie (ST)

► Update() transfers Data to Observer (push)

Sequence Diagram push-Observer

:aConcreteSubject :aConcreteObserver :anotherConcreteObserver

setState()

notify()

update n(d:Data)

update 1(d:Data)

register()

...

...

 ©
 P

ro
f.

U
. A

ß
m

an
n

47 Softwaretechnologie (ST)

24.2.3.4 Pull-Observer (Delayed Data Transfer, The Gamma
Variant, Rpt.)

register(Observer)
unregister(Observer)
notify()

observers

ConcreteSubject

Data getState()
// or: pull()
// or: getNext()
setState()

update ()

ConcreteObserver

update ()

-ObserverState

for all b in observers {
 b.update ()
}

subject

ObserverState =
 subject.getState()

return SubjectState

-SubjectState

Difference to Bridge: hierarchies are not
complete independent; Observer knows
about Subject

*

► The pull-Observer does not push anything, but pulls data later out with
getState() or getNext() (same as in Iterator)

► Pulling resembles Iterator (Stream), if data is pulled repeatedly

Subject PushObserver

The Observer from GOF can also be called
EventBridge, because it resembles a Bridge on
which update events are transferred.

If the observer pulls data several times, the pattern
becomes very similar to Iterator.

 ©
 P

ro
f.

U
. A

ß
m

an
n

48 Softwaretechnologie (ST)

► Update() does not transfer data, only an notification (anonymous
communication possible)

– Observer pulls data out itself with getState()

– Lazy processing (on-demand processing) with large data

► pull-Observer uses Iterator, if data is pulled iteratively

Sequence Diagram pull-Observer

setState()

notify()

update n()

getState()

update 1()

getState()

register()

<<data pull>>

<<data pull>>

register()

:aConcreteSubject :aConcreteObserver :anotherConcreteObserver

Registration

data pull much
later..

Notification

Softwaretechnologie (ST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

24.2.4. Visitor (VisitingAlgorithm)

Visitor provides an extensible family of algorithms on a data structure

Powerful pattern for modeling Materials and their Commands

 ©
 P

ro
f.

U
. A

ß
m

an
n

50 Softwaretechnologie (ST)

► Implementation of complex object with a 2-dimensional structure
■ First dispatch on dimension 1 (data structure), then on dimension 2 (algorithm)
■ The Visitor has a lot of Command methods

► Beauty: visiting algorithms can be added without touching the DataStructure

Visitor (VisitingAlgorithm)

Visitor (VisitingAlgorithm)

runWithDataA(DataStructure)
runWithDataB(DataStructure)

ConcreteVisitor1

runWithDataA(DataStructure)
runWithDataB(DataStructure)

ConcreteVisitor2

runWithDataA(DataStructure)
runWithDataB(DataStructure)

DataStructure

acceptVisitor(Visitor)

Concrete
DataStructureA

acceptVisitor(Visitor)

Concrete
DataStructureB

acceptVisitor(Visitor)

// Visitor call
v.runWithDataA(this);

// Visitor call
v.runWithDataB(this);

Visitor is a somewhat obscure pattern. The usual
principle of object-orientation tells us to
encapsulate algorithms with data. The only reason to
split off the visiting algorithms from the data is to
be able to extend the set of algorithms over time, or
if this extension cannot be foreseen.

For instance, if a new customer wants a new
feature of a product, a Visitor hierarchy can be
extended very easily, without retesting the
DataStructure hierarchy nor the old visiting
algorithms, because they all stay the same.

Therefore, Visitor is an evolution pattern.

 ©
 P

ro
f.

U
. A

ß
m

an
n

51 Softwaretechnologie (ST)

Sequence Diagram Visitor

► First dispatch on data, then on visiting algorithm

aConcreteClient aConcreteDataObject aConcreteVisitor

acceptVisitor(aConcreteVisitor)

acceptDataObject
(aDataObject)

Dispatch 1

Dispatch 2

“Double dispatch” is offered in some programming
languages as a language concept (“multi-methods”).
In such a programming language, the Visitor pattern
is built in.

 ©
 P

ro
f.

U
. A

ß
m

an
n

52 Softwaretechnologie (ST)

Intermediate Data of a Compiler:
Working on Syntax Trees of Programs with Visitors

NodeVisitor

visitAssignment(AssignmentNode)
visitVariableRef(VariableRefNode)

CodeGenerationVisitor

visitAssignment(AssignmentNode)
visitVariableRef(VariableRefNode)

SyntaxNode

accept(NodeVisitor)

AssignmentNode

accept(NodeVisitor b)

VariableRefNode

accept(NodeVisitor b)

Program

b.visitAssignment (this) b.visitVariableRef (this)

Syntax Tree of a
program
(Material)

Algorithms on
the syntax tree
(Tools)

TypeCheckingVisitor

visitAssignment(AssignmentNode)
visitVariableRef(VariableRefNode)

PrettyPrintVisitor

visitAssignment(AssignmentNode)
visitVariableRef(VariableRefNode)

Syntax Trees are a central data structure in
compilers, refactoring tools, integrated development
environments like Eclipse. Syntax trees represent the
programs you write. Software tools work on syntax
trees.

Therefore, Visitor appears in all tools for software
development.

Usually, also all forms of documents (text documents,
slides, spreadsheets, pdf documents, etc.) can be
represented by syntax trees. Thus, syntax trees are
also a central data structure in Word-like editors,
Powerpoint-like slide editors, Spreadsheet tools,
Acrobat-readers....

Softwaretechnologie (ST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

24.3) Patterns for Glue -
Bridging Architectural Mismatch

Glue Pattern # Run-time
objects

Key feature

Singleton 1 Only one object per class

Adapter 2 Adapting interfaces and protocols that
do not fit

Facade 1+* Hiding a subsystem

Class Adapter 1 Integrating the adapter into the adapteel

Proxy (Appendix) 2 1-decorator

 ©
 P

ro
f.

U
. A

ß
m

an
n

54 Softwaretechnologie (ST)

24.3.1 Singleton (dt.: Einzelinstanz)

Singleton

– theInstance: Singleton

getInstance(): Singleton

class Singleton {

 private static Singleton theInstance;

 private Singleton () {}

 public static Singleton getInstance() {
 if (theInstance == null)
 theInstance = new Singleton();
 return theInstance;
 }
}

The usual constructor
is invisible

► Problem: Store the global state of an application
– Ensure that only one object exists of a class

Softwaretechnologie (ST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

24.3.2 Adapter

 ©
 P

ro
f.

U
. A

ß
m

an
n

56 Softwaretechnologie (ST)

► An object adapter is a kind of a proxy mapping one interface, protocol, or data format
to another

Object Adapter

Goal

operation()

Client

AdaptedClass

specificOperation()

Adapter

operation()

...
adaptedObject.specificOperation()
...

adapted
Object

Decorator-like
inheritance

Adapted class does
not inherit from goal

ObjectAdapter

Goal

Adapter Adaptee

Adapter is one of the most useful patterns when an
old system should be coupled to new classes. Adapter
adapt interfaces, data formats and protocols.

 ©
 P

ro
f.

U
. A

ß
m

an
n

57 Softwaretechnologie (ST)

Example: Use of an External Class Library For Texts

GraficObject

frame()
createManipulator()

DrawingEditor

TextDisplay

largeness()

return text.largeness()

Linie

frame()
createManipulator()

Text

frame()
createManipulator()

return new TextManipulator

External Library

*

 ©
 P

ro
f.

U
. A

ß
m

an
n

58 Softwaretechnologie (ST)

24.3.3 Facade Hides a Subsystem

► A facade is a specific object adapter hiding a complete set of objects (subsystem)
■ The facade has to map its own interface to the interfaces of the hidden objects

Abstract
Facade

operation()

Client

HiddenClass2

specificOperation()

Concrete
Facade

operation()

....
adaptedObject.specificOperation()
adaptedObject2.specificOperation()
....

adapted
Object2

HiddenClass1

specificOperation()

adapted
Object1

HiddenClass3

specificOperation()

adapted
Object3

....
adaptedObject.specificOperation()
adaptedObject2.specificOperation()
....

HiddenSubsystem

Facades are very much linked with layers, an
architectural concept (architectural style).

 ©
 P

ro
f.

U
. A

ß
m

an
n

59 Softwaretechnologie (ST)

Refactoring a Legacy System Towards a Facade

Clients

Subsystem

Facade

► After a while, components are too much intermingled

► Facades serve for clear layered structure

One of the most important restructuring operations
in old systems is to introduce modules, subsystems,
or packages by encapsulating them by a facade
object.

Then, the subsystem can be exchanged behind the
facade, and no client will be disturbed.

In the situation of the left side, this is not possible,
because too many explicit dependencies exist from
the subsystem to the clients.

 ©
 P

ro
f.

U
. A

ß
m

an
n

60 Softwaretechnologie (ST)

► If classes of the subsystem are again facades, layers result
■ Layers need nested facades

The Layer Pattern

Clients

Lower layer

Facade

Upper layerFacade

 ©
 P

ro
f.

U
. A

ß
m

an
n

61 Softwaretechnologie (ST)

► Instead of delegation, class adapters use multiple inheritance

24.3.4 Class Adapter

GoalClass

operation()

Client AdaptedClass

specificOperation()

Adapter

operation()
specificOperation()

ClassAdapter

Goal

Adapter

Adaptee

May also be
an interface

Softwaretechnologie (ST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

24.4 Other Patterns

 ©
 P

ro
f.

U
. A

ß
m

an
n

64 Softwaretechnologie (ST)

What is discussed elsewhere...

► Iterator, Sink, and Channel

► Composite

► TemplateMethod, FactoryMethod

► Command

Part III:

► Chapter “Analysis”:
– State (Zustand), IntegerState, Explicit/ImplicitIntegerState

► Chapter “Architecture”:
– Facade (Fassade)
– Layers (Schichten)
– 4-tier architecture (4-Schichtenarchitektur, BCED)
– 4-tier abstract machines (4-Schichtenarchitektur mit abstrakten Maschinen)

 ©
 P

ro
f.

U
. A

ß
m

an
n

65 Softwaretechnologie (ST)

► For the exam will be needed:

Relations between Design Patterns

Composite

Decorator

Observer

TemplateMethod Strategy Bridge

Adapter

State IntegerState

ExplicitIntegerState

ImplicitIntegerState

Iterator

Facade

Singleton

FactoryMethod
Visitor

AbstractFactory

Command

The yellow marked patterns will be important for the
exam.

Try to find out a “beauty feature” for every pattern:
Why does the pattern describe a beautiful solution
for a standard ugly problem?

 ©
 P

ro
f.

U
. A

ß
m

an
n

66 Softwaretechnologie (ST)

Other Important GOF Patterns

Variability Patterns

► Visitor: Separate a data structure inheritance hierarchy from an algorithm
hierarchy, to be able to vary both of them independently

► AbstractFactory: Allocation of objects in consistent families, for frameworks
which maintain lots of objects

► Builder: Allocation of objects in families, adhering to a construction protocol
► Command: Represent an action as an object so that it can be undone,

stored, redone

Extensibility Patterns

► Proxy: Representant of an object

► ChainOfResponsibility: A chain of workers that process a message

Others

► Memento: Maintain a state of an application as an object

► Flyweight: Factor out common attributes into heavy weight objects and
flyweight objects

Softwaretechnologie (ST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

24.5 Design Patterns in a Larger Library

 ©
 P

ro
f.

U
. A

ß
m

an
n

68 Softwaretechnologie (ST)

Design Pattern in the AWT/Swing Library

► AWT/Swing is the GUI part of the Java class library
– Uniform window library for many platforms (portable)

► Employed patterns
– Pull-Observer (for widget super class java.awt.Window)
– Compositum (widgets are hierarchic)
– Strategy: The generic composita must be coupled with different layout

algorithms
– Singleton: Global state of the library
– Bridge: Widgets such as Button abstract from look and provide behavior

● Drawing is done by a GUI-dependent drawing engine (pattern bridge)
– Abstract Factory: Allocation of widgets in a platform independent way

 ©
 P

ro
f.

U
. A

ß
m

an
n

69 Softwaretechnologie (ST)

Why is the Frauenkirche Beautiful?

► ..because she contains a lot of patterns from the baroque pattern language...

 ©
 P

ro
f.

U
. A

ß
m

an
n

70 Softwaretechnologie (ST)

What Have We Learned?

► Design Patterns grasp good, well-known solutions for standard problems

► Variability patterns allow for variation of applications
– They rely on the template/hook principle

► Extensibility patterns for extension
– They rely on recursion
– An aggregation to the superclass
– This allows for constructing runtime nets: lists, sets, and graphs
– And hence, for dynamic extension

► Architectural Glue patterns map non-fitting classes and objects to each other

 ©
 P

ro
f.

U
. A

ß
m

an
n

71 Softwaretechnologie (ST)

The End

► Course “Design patterns and frameworks”, WS, contains more material.

► © Pictures originallycovered by the teaching license from the CD “Design Patterns” of
AWL; Uwe Aßmann, Heinrich Hussmann, Walter F. Tichy, Universität Karlsruhe,
Germany, used by permission

Softwaretechnologie (ST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

Appendix

Softwaretechnologie (ST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

24.A.1 Proxy

 ©
 P

ro
f.

U
. A

ß
m

an
n

74 Softwaretechnologie (ST)

► Hide the access to a real subject by a representant

Proxy

Subject

operation()

Client

...
realSubject.operation()

RealSubject

operation()

Proxy

operation()

realSubject

:Client

ref

A:Proxy

realSubject

B:RealSubject

successor

Object Structure:

 ©
 P

ro
f.

U
. A

ß
m

an
n

75 Softwaretechnologie (ST)

Proxy

► The proxy object is a representant of an object
– The Proxy is similar to Decorator, but it is not derived from ObjectRecursion
– It has a direct pointer to the sister class, not to the superclass
– It may collect all references to the represented object (shadows it). Then, it is a

facade object to the represented object

► Consequence: chained proxies are not possible, a proxy is one-and-only

► It could be said that Decorator lies between Proxy and Chain.

 ©
 P

ro
f.

U
. A

ß
m

an
n

76 Softwaretechnologie (ST)

Proxy Variants

► Filter proxy (smart reference):
– executes additional actions, when the object is accessed

► Protocol proxy:
– Counts references (reference-counting garbage collection
– Or implements a synchronization protocol (e.g., reader/writer protocols)

► Indirection proxy (facade proxy):
– Assembles all references to an object to make it replaceable

► Virtual proxy: creates expensive objects on demand

► Remote proxy: representant of a remote object

► Caching proxy: caches values which had been loaded from the subject
– Caching of remote objects for on-demand loading

► Protection proxy
– Firewall proxy

 ©
 P

ro
f.

U
. A

ß
m

an
n

77 Softwaretechnologie (ST)

Adapters and Facades for COTS

► Adapters and Facades are often used to adapt components-off-the-shelf (COTS) to
applications

► For instance, an EJB-adapter allows for reuse of an Enterprise Java Bean in an
application

► -> course Component-Based Software Engineering (SoSe)

Serialization

EJBhome

Packaging

Metadata

HTML-Doku

EJBobject Handle

EJB-references

SessionBean

SessionContext

EntityBean
MessageBean

NamingContext

Transaction
Context

Client interface

Container-
component-
interface

 ©
 P

ro
f.

U
. A

ß
m

an
n

78 Softwaretechnologie (ST)

.. contact EJBHome for EJB...

.. if not there, create EJBObject

EJB Adapter

EJBhome MetadataEJBobject Handle

Client interface

Bill

addItem(Item)
calculateSum()

BillingApplication
EJBHome

getBean()

OtherBill

addItem(Item)
calculateSum()

EJBBill

fetchBean()
addItem(Item)
calculateSum()

*

.. EJBObject = fetchBean();

.. addItem(EJBObject, Item)

.. EJBObject = fetchBean();

.. sum up (EJBObject)

EJBObject

EJBMetaData

EJBHandle

 ©
 P

ro
f.

U
. A

ß
m

an
n

79 Softwaretechnologie (ST)

24.A.2 Observer with ChangeManager
(EventBus)

Subject

register(Observer)
unregister(Observer)
notify()

Observer
Observer

ChangeManager

register(Subject,Observer)
unregister(Subject,Observer)
notify()

Subject-Observer-graph

update (Subject)

for all s in Subjects
 for all b in s.Observer
 b.update (s)

mark all observers to be updated
update all marked observers

manager.notify()

manager

Subjects

manager.register(this,b)

SimpleChangeManager

register(Subject,Observer)
unregister(Subject,Observer)
notify()

DAGChangeManager

register(Subject,Observer)
unregister(Subject,Observer)
notify()

* *
Model Controller View

Subject-
Object-
graph

 ©
 P

ro
f.

U
. A

ß
m

an
n

80 Softwaretechnologie (ST)

Observer with ChangeManager is also Called
Event-Bus

► Basis of many interactive application frameworks (Xwindows, Java AWT, Java
InfoBus,)

► Loose coupling in communication
– Observers decide what happens

► Dynamic extension of communication
– Anonymous communication
– Multi-cast and broadcast communication

:EventBus (Mediator)

:Subject :Subject :Subject

:Observer :Observer :Observer

 ©
 P

ro
f.

U
. A

ß
m

an
n

81 Softwaretechnologie (ST)

A Variant of EventBus is the n:m-Channel

► push-Subjects and pull-Observers can be connected by Channel, to emphasize the
continuous pushing and pulling

► Then Subjects write the Sink of the Channel and Observers pull the Stream of the
Channel

■ Channel has a buffer

:Channel

:Subject :Subject :Subject

:Observer :Observer :Observer

Sink

Stream (Iterator)

 ©
 P

ro
f.

U
. A

ß
m

an
n

82 Softwaretechnologie (ST)

What Does a Design Pattern Contain?

► A part with a “bad smell”
– A structure with a bad smell
– A query that proved a bad smell
– A graph parse that recognized a bad smell

► A part with a “good smell” (standard solution)
– A structure with a good smell
– A query that proves a good smell
– A graph parse that proves a good smell

► A part with “forces”
– The context, rationale, and pragmatics
– The needs and constraints

“bad smell” “good smell”

forces

 ©
 P

ro
f.

U
. A

ß
m

an
n

83 Softwaretechnologie (ST)

Refactorings Transform Antipatterns (Defect Patterns, Bad
Smells) Into Design Patterns

► Software can contain bad structure

► A DP can be a goal of a refactoring, transforming a bad smell into a good smell

Defect pattern
(Bad smell)

Design pattern
(good smell)

Step 1
refactoring 1 Refactoring 2 Refactoring 3

 ©
 P

ro
f.

U
. A

ß
m

an
n

84 Softwaretechnologie (ST)

Structure for Design Pattern Description (GOF Form)

► Name (incl. Synonyms) (also known as)

► Motivation (purpose)
– also “bad smells” to be avoided

► Employment

► Solution (the “good smell”)
– Structure (Classes, abstract classes, relations): UML class or object diagram
– Participants: textual details of classes
– Interactions: interaction diagrams (MSC, statecharts, collaboration diagrams)
– Consequences: advantages and disadvantages (pragmatics)
– Implementation: variants of the design pattern
– Code examples

► Known Uses

► Related Patterns

 ©
 P

ro
f.

U
. A

ß
m

an
n

85 Softwaretechnologie (ST)

► Big technical objects can have thousands of parts (piecelists, or part lists)

A.2 Example for Composite: PieceLists in Cars

CarPart

int calculateCost()
addPart(CarPart)

ComposedCarPart

int calculateCost()
addPart(CarPart)

AtomicPart

int calculateCost()

Client
children

for all g in children
 sum += g.calculateCost()

} Pseudo implementations

*

return local my cost;

 ©
 P

ro
f.

U
. A

ß
m

an
n

86 Softwaretechnologie (ST)

Piece Lists of Complex Technical Objects

abstract class CarPart {

 int myCost;

 abstract int calculateCost();

}

class ComposedCarPart extends CarPart {

 int myCost = 5;

 CarPart [] children; // here is the n-recursion

 int calculateCost() {

 for (i = 0; i <= children.length; i++) {

 curCost += children[i].calculateCost();

 }

 return curCost + myCost;

 }

 void addPart(CarPart c) {

 children[children.length] = c;

 }

class AtomicCarPart extends CarPart {

 int calculateCost() { return myCost; }

 void addPart(CarPart c) {

 /// impossible, dont do anything

 }

}

class Screw extends AtomicCarPart {

 int myCost = 10;

}

class SteeringWheel extends AtomicCarPart {

 int myCost = 200;

}

Iterator algorithms (map)
Folding algorithm (folding a tree with a

scalar function)

// application
int cost = carPart.calculateCost();

Piece lists (Stücklisten) are usually hierarchic, i.e.,
should be called “piece trees” or “Stückbäume”.

Technical objects can have thousands of parts, and
Composite can manage all parts under a common
interface of the “Component” abstract class.

Examples:

•Any product produced by a factory

•Any business object in a business software (ERP
software): Bestellungen, Formulare, Rechnungen,
Kataloge, ...

 ©
 P

ro
f.

U
. A

ß
m

an
n

87 Softwaretechnologie (ST)

Composite for Part/Whole Hierarchies (Structured Piece
Lists)

► Part/Whole hierarchies, e.g., nested graphic objects (widgets)

► Dynamic Extensibility of Composite
– Due to the n-recursion, new children can always be added dynamically into a

composite node
– Whenever you have to program an extensible part of a framework, consider

Composite

:Picture

:Picture :Rectangle:Line

:Picture :Rectangle:Line

common operations: draw(), move(), delete(), scale()

