
Graph Rewriting

Applications of Graph Rewriting and the Graph Rewriting Calculus

Jan Lehmann
University of Technology Dresden
Department of Computer Science

Jan.Lehmann@inf.tu-dresden.de

ABSTRACT
This paper will give an overview over different approaches
for graph rewriting, namely term graph rewriting, the graph
rewriting calculus and an algebraic approach presented in
[3]. Whereas term graph rewriting is little more than a
slightly improved version of term rewriting, the graph rewrit-
ing calculus is a powerful framework for manipulating graphs.

1. INTRODUCTION
Rewriting in general is widely used. Not only in computer
science but also in everydays life. Assume you want to buy
two pieces of chocolate and each piece costs 0, 70e. In order
to calculate the amount of money to pay, you write down
(or think of) 2 ∗ 0, 70e. The result of this, not really dif-
ficult, computation is 1, 40e. How this is correlated with
rewriting? Formally your computation is the application of
the following rewrite rule:

2 ∗ 0, 70 → 1, 40 (1)

As presented in [4] term rewriting is a quite powerful tool to
rewrite terms and can be widely used, for example in func-
tional languages or logical languages. So why do we need
an additonal theory for graph rewriting? The reason is,
that terms can be represented as trees and trees have some
severe limitations like the lack of sharing and cycles. Espe-
cially sharing can be useful when optimizing programming
languages. Sharing means, that a node in the graph is refer-
enced more than once. This is not possible in trees, because
in a tree every node has only one incoming edge. However in
a graph a node can have several incomming edges, allowing
to point to this node from several other nodes in the graph.
For example, when building the abstract syntax graph of a
programming language, one only needs to reference a vari-
able once, regardless of the number of occurences in the
source code.

The possiblility to use cycles allows you to define rewrite

rules like this:

x → f(x) (2)

As one can see here, the rule produces a right hand side
which regenerates the left hand side again. The application
of this rule would result in an endless cycle of function f
calling itself:

f(f(f(. . .))) (3)

Another advantage of the graph rewriting approaches is,
that they are higher order, what means that rewrite rules
can be generated with other rewrite rules. This also means
that one can match a variable to a function symbol. Imagine
the rewrite rule from above is held more general:

2 ∗ x → double(x) (4)

Lets also assume that the price of our piece of chocolate is
given without VAT (value added tax). The VAT will have
to be added by a function vat(). Due to the ability to assign
function symbols to variables, one can match the left hand
side of 4 with

2 ∗ vat(0, 59) (5)

In order to be able to buy more than one piece of chocolate
you need the higher order capabilities of term graph rewrit-
ing or the graph rewriting calculus, both presented in this
paper. A nice side effect of being able to match variables
with functions is, that you can share whole subgraphs in
graph rewriting. In addition to saving memory, you need to
evaluate the shared subgraph only once.

2. TERM GRAPH REWRITING
This section will provide an operational approach on graph
rewriting, defining a graph as set of nodes, a successor func-
tion and a labeling function.

2.1 Notation
Term graphs are graph representations of (algebraic) terms.
They can be represented as tuple G = (N, s, l) where N is a
set of nodes in the graph. s is defined as function returning
the direct successor of a given node: s : N → N∗ and l
provides a label for each node in N . There is a special
label for empty nodes: ⊥. Typically empty nodes are nodes
representing variables.

Term graphs may contain roots and garbage. If a term graph
has a root, it will be denoted as G = (r, N, s, l) where r ∈ N
is the root node of the graph. Nodes are called garbage if

Figure 1: f(x, g(h(x), y))

there is no path between the root and these nodes. Garbage
can be removed via garbage collection.

2.2 Representation
This leads to the question, how one can represent term
graphs graphically. Lets take algebraic expressions as ex-
ample. Every part of the expression becomes a node in the
graph. Constant values or algebraic variables like x in f(x)
are seen as empty nodes and drawn as ·.

Example 1: The term f(x, g(h(x), y)) will lead to the fol-
lowing term graph: G1 = (n1, N, s, l) where:

• N = {n1, n2, n3, n4, n5}

• s : s(n1) = n2n3, s(n3) = n4n5, s(n4) = n2, s(n2) =
s(n5) = e

• l : l(n1) = f, l(n3) = g, l(n4) = h, l(n2) = l(n5) = ⊥

The rules above define a graph with 5 nodes. The nodes n2

and n5, representing the variables x and y are leafes of the
graph. The resulting graph looks like in figure 1.

2.3 Rewriting
To be able to rewrite term graphs, we need some kind of
formalism to define that two term graphs are equal. This
formalism is called graph homomorphism and means a func-
tion that maps the nodes of one graph G1 to the nodes of a
graph G2. A variable in one graph may be mapped to any
kind of subgraph of the other graph. That means that the
following homomorphism is possible:

G1 : add(x, x) → G2 : add(s(y), s(y)) (6)

Figure 2 shows which parts of G1 are matched against which
parts of G2.

The actual rewriting is defined by rewrite rules. A rewrite
rule is a triple of form (R, l, r). R is a term graph and l, r
are the roots of the left and right hand sides respectively.
Therefore gc(l, R), which means the term graph R with l as
root node after garbage collection, is the state of the term
graph to rewrite (or a subgraph of it) before the rewriting
and gc(r, R) after the rewrite step.

The rewriting itself is done as follows:

Figure 2: G1 � G2

• Find a subgraph that matches to the left hand side.

• Copy the parts of the right hand side to the graph to
rewrite when there are no occurences yet.

• Redirect all pointers to the root of the left hand side
to the root of the right hand side.

• Run garbage collection to remove parts of the left hand
side, that are not reachable anymore.

Example 2 ([2]) shows the application for rewriting a graph
defining the addition of two natural numbers. The term
to rewrite is add(s(0), s(0)) where add is the addition of two
natural numbers and s denotes the successor of a number. In
fact this term simply formalizes the addition 1+1. This term
as graph will look like the left graph in figure 3. To rewrite
this term we use the rule add(s(x), s(y)) → s(add(x, s(y))).
This rewrite rule is drawn as graph 2 in figure 3. This nota-
tion is a little bit confusing because both, the left hand side
and the right hand side are drawn into one graph. To see
the left hand side one has to set the left upper node as root
and run garbage collection, which removes all nodes that are
not reachable from this root. The same could be done for
the right hand side. Now we can match the left hand side of
the rule to the graph to rewrite. the left • will be mached
to x and the right • will be mached to s(y). Now we copy
all nodes of the right hand side of our rewrite rule to graph
1 and reset the root to the root of this right hand side. Af-
ter doing this, we remove all nodes, which are not reachable
anymore. This are the left nodes labeled add and s. As
result of this operation we get a graph looking like graph 3
in figure 3 representing the term s(add(0, s(0))). In order
to finish the addition one would define a second rewrite rule
like add(0, x) → x to declare that the addition of 0 and a
number equals to the number.

Figure 3: Example 2

3. THE GRAPH REWRITING CALCULUS
The approach of term graph rewriting is rather simple and
understandable, but also rather weak. Weak means in this
case, that one has no control about the application of the
rewriting rules. Rules are always applied where possible.
This is because the application of rewrite rules is done at
meta level, not at object level. There exist more sophisti-
cated methods to deal with graph rewriting. One is the ex-
tension of the ρ calculus, the so called ρg calculus or Graph
Rewriting Calculus as presented in [2].

3.1 Overview
The ρg calculus is a higher order calculus, which main fea-
ture is to provide an abstraction operator, that is capable of
handling more complex terms on the left hand side, than just
simple variables. An example of an abstraction is f(x) → x.
As one can see, an abstraction is denoted by ”→”. Such an
abstraction can be seen as rewrite rule. The application of
an abstraction is written as follows:

(f(x, x) → 2x)f(a, a) (7)

This means that the abstraction inside the first paranthesis
is applied to the term f(a, a). As in ρ calculus the appli-
cation of such an abstraction is done via a constraint. The
application in (7) would result in

2x[f(x, x) � f(a, a)] (8)

Every application of a rewrite rule to another term is done
like this. First the right hand side of the rewrite rule is writ-
ten as term and than the matching of the left hand side of the
rewrite rule and the term, the rule was applied to, is writ-
ten as constraint to this right hand term. The operator []
is called a constraint application. These constraint applica-
tions are useful for matching terms, that will be explained
in the subsection about reducing terms. It also allows us to
describe sharing of constants, as mentioned in the section
about graph rewriting. There is not nessessarily only one
constraint in ρg calculus but a list of constraints, which are
separated by comma. Such a constraint list can be gener-
ated when a constraint is applied to a term inside another
constraint or if a function of arity ¿ 1 is matched. In the last
case every parameter of the left hand side of the matching
is matched against the corresponding parameter of the right
hand side of the matching.

Another operator I did not consider so far is o. It is the so
called structure operator which by default has no fixed se-
mantics. This fact shows, that the graph rewriting calculus
is more framework than a ready to use tool.

3.2 Further formalisms
Before actually showing how the example above is rewriten,
I have to give some additional formalisms. One referes the
operator � . This operator is called matching operator,
which means it tries to match the left and the right hand
side. A special form of matching operator ist = , that
can be seen as association, for example x[x = a] means that
variable x is associated with value a.

Another important thing is the theory of bound and free
variables. A bound variable is a variable that occurs on a left
hand side of a matching constraint. The table below shows
how the free (FV) and bound variables (BV) are determined.

G BV(G) FV(G)

x (var) ∅ {x}
k (const) ∅ ∅
G1G2 BV(G1) ∪ BV(G2) FV(G1) ∪ FV(G2)
G1 oG2 BV(G1) ∪ BV(G2) FV(G1) ∪ FV(G2)
G1 → G2 FV(G1) ∪ BV(G1) FV(G2) \ FV(G1)

∪ BV(G2)
G0 [E] BV(G0) ∪ BV(E) (FV(G0) ∪ FV(E))

\ DV(E)

In a constraint E there is an additional type of variables,
the defined variables DV.

E BV(E) FV(E) DV(E)

ε ∅ ∅ ∅
x = G0 x ∪ BV(G0) FV(G0) {x}
G1 � G2 FV(G1) ∪ BV(G1) FV(G2) FV(G1)

∪ BV(G2)
E1, E2 BV(E1) ∪ BV(E2) FV(E1) DV(E1)

∪ FV(E2) ∪ DV(E2)

The distinction of free and bound variables is important for
the so called α-conversion. This means renaming of vari-
ables when evaluating a term. Renaming might become
nessessary when applying a rewrite rule to a term which
has equaly named variables as these rewrite rule. In order
to prevent free variables to become bound accidently they
are renamed before the actual matching. Lets assume you
have a ρg term of form G → H where G and H are ρg terms
themselfes. In case of α-conversion every free variable in G
gets another, not yet used, name in order to prevent it from
becoming bound accidently. This is similar for constrainted
terms. There the term where the constraint is applied to
will get it’s free variables renamed if there is a equaly named
variable in one of the left hand sides in the constraint list.

3.3 Graphical Representation
As long as there are no constraints in the graphical repre-
sentation of ρg -terms is just as defined in the section about
term graph rewriting above. Recursion can be represented
as (self-)loops and sharing as multiple edges. A little bit
problematic is the representation of matching constraints.
These constraints are terms which can be drawn as graphs
themselfes but they do not really belong to the main graph.
[2] suggests drawing of these matching constraints as sepa-
rate boxes. The boxes can be nested, due to the fact, that
matching constraints can be nested, too. The roots of the
boxes and sub-boxes are marked with ⇓. Figure 4 visualizes
the rewrite rule mult(2, s(x)) → add(y, y)[y = s(x)] An in-
teresting question on this example is: Why isn’t the s(x) on
the left hand side shared, too? This was not done in order to
keep the term wellformed. The condition of wellformedness
demands that there is no sharing between the left and the
right hand side of a ρg-term.

3.4 Rewriting
So how to do the rewriting in ρg calculus? To demonstrate
this lets take our example from the term graph rewriting
section. The rewrite rule we want to apply is

add(s(x), y) → s(add(x, y)) (9)

Figure 4: mult(2, s(x)) → add(y, y)[y = s(x)]

and it is applied to the term

add(s(0), s(s(0))) (10)

which is in fact the very complicated computation 1+2. The
rewriting goes as follows. I will describe the steps after the
example.

(add(s(x), y) → s(add(x, y)))add(s(0), s(s(0)))
s(add(x, y))[add(s(x), y) � add(s(0), s(s(0))]
s(add(x, y))[s(x) � s(0), y � s(s(0))]
s(add(x, y))[x � 0, y = s(s(0))]
s(add(x, y))[x = 0, y = s(s(0))]
s(add(0, s(s(0))))

The first two lines follow the claims I made in the Overview
part of this section. It is the application of the rewrite rule
in (9) to the term in (10). In line three the function add was
matched and splits up into two constraints which are applied
as list to the term before []. In the fourth step this is done
a second time with the successorfunction. The matching
operator between y and s(s(0)) is replaced by the application
operator. This can be done because y is a variable in the
term and there is no need or possiblity to further match it
in any way. The same is done in line 5 where x equals to
0. The last line is finally the result of the rewriting. Unlike
the pure ρ-calculus the ρg-calculus does not require the last
step, which may be an advantage if one wants to preserve
the sharing of equal parts.

3.5 Confluence and Termination
As presented in [4] there is no guarantee that the application
of rewriting steps in term rewritings terminates. One can
easily see that this also holds for the ρg calculus. First of all,
graphs may contain cycles. If a rewrite rule matches one of
these cycles but does not eliminate it, it will be applied over
and over again. A second example to show that a rewriting
may not terminate is the following set of rules:

f(x) → x
x → y
y → f(x)

The reduction always comes to it’s starting point and restarts

again.

In general there is also no clue that (graph-)rewriting is
confluent. However the graph rewriting calculus restricts
the left hand sides of it’s rewrite rules in order to achieve
this property. The restriction is that the left hand sides
have to appliy to linear patters. A linear pattern is formally
defined as follows:

L := X |K | (((K L0)L1) . . .)Ln | L0[X1 = L1, . . . ,Xn = Ln]
(11)

where 2 patterns Li and Lj are not allowed to share free
variables if i 6= j. Furthermore a constraint of form [L1 ≪
G1, . . . , Ln ≪ Gn], with ≪ is either � or =, is called
linear if all patterns Li are linear. The complete proof of
confluence in the linear ρg calculus can be found in [2].

4. AN ALGEBRAIC APPROACH
Another approach for rewriting of graphs was presented in
[3]. The paper describes graphs as logical structures and
their properties with help of logical languages. Graphs are
described as classes D(A), where D is the class and A is an
alphabet containing the labels for the edges of graphs in D.
Such a graph can be represented as follows:

|G|1 := 〈VG, EG, (edgaG)a∈A〉
|G|2 := 〈VG, EG, (labaG)a∈A, edgG〉

Where VG and EG are the sets of vertices and edges respec-
tively, labaG(x) means an edge x labeled with a, edgG(x, y, z)
is an edge x from vertex y to vertex z and edgaG(x, y, z) de-
scribes the combination of labaG(x) and edgG(x, y, z).

4.1 Properties of graphs
In order to match graphs for rewriting, one has to define
isomorphisms between graphs. [3] defines two graphs as iso-
morphic if there exist bijections from VG to VG′ and from
EG to EG′ . A property of a graph is a predicate over a class
of graphs. Such predicates may be expressed by logical lan-
guages like first order logic, second order logic and so on.
The more powerful a language is, the better is it’s expes-
siveness. A discussion about the expressiveness of several
logical languages can be found in [3]. The following exam-
ple expresses the property that there are no isolated vertices
in a graph, that means that every vertex is linked somehow
with the other parts of the graph.

∀x∃y∃z
h_

edga(z, x, y) ∨ edga(z, y, x)|a ∈ A ∧ ¬(x = y)
i

(12)

4.2 Graph manipulations
In this approach graphs are not manipulated directly but
overlayed with so called hypergraphs. Each hypergraph con-
sists of hyperedges which are defined through a label and
zero to many edges of the graph. There are three operations
defined over these hypergraphs. The first is the addition of
two hypergraphs denoted by ⊕. This operation merges the
edges and vertices of two hypergraphs into one. The opera-
tion θδ,n describes the merge of two vertices, i.e θ1,3 means
that vertices 1 and 3 are merged into one vertex. Finally the
operation σα,p,n describes renaming of vertices. The expres-
sion σ1,4 means that vertex 1 is renamed to 1 and vertex 4 is
renamed to 2, according to their positions in the subscript.

Figure 5: Rewrite of a SQL execution graph

With these basic operations one can define derived opera-
tions like the series-composition of hypergraphs:

G ·G′ = σ1,4(θ2,3(G⊕G′)) (13)

First the hypergraphs G and G′ are added together. Then
the θ-operation merges the second vertex of G (2) with the
first vertex of G′ (3) and finally the first vertex and the
last vertex of the resulting hypergraph get new labels. The
vertex in the middle is not labeled at all.

5. APPLICATIONS
Now we know what possiblities we have to rewrite graphs,
but where is this useful? Graph rewriting is especially useful
for optimization purposes. Everything that can be repre-
sented as graph can be optimized with help of graph rewrit-
ing, where the optimizations are encoded as rewrite rules
(see also [1]). An example for this may be an SQL state-
ment. Each statement can be transformed into a query exe-
cution plan, which essentially is a tree or graph. There exist
several rules of thumb, like the rule, that a selection should
be executed as early as possible in order to keep the amount
of tuples as small as possible. This kind of optimization
is called static because it does not use any knowledge of
the data to transform. Lets assume we have a simple SQL
statement like

SELECT *

FROM table1 t, table2 s

WHERE t.id = s.id;

AND t.answer = 42;

A query execution plan may look like in figure 5.1. The
application of the rule in figure 5.2 would result in the graph
of figure 5.3.

Another example, similar to the one above, is the execution
graph of functional languages. One can imagine that there
are similar rules as in the SQL example. The representation
as graphs will save a severe amount of space because vari-
ables (in the second case) or whole subqueries (in the first
example) can be shared.

The third application of graph rewriting, i would like to men-
tion, is optimization and analysis of syntax graphs in lan-
guages like C] or Java. Rewriting can assist you in refactor-
ings, too. The desired refactoring can be encoded as graph
rewrite rule and will be applied to the syntax graph.

6. CONCLUSION
As we have seen, there exist several approaches for graph
rewriting. All of them have some properties, like sharing

and the possibility to handle cycles, in common, which make
them to powerful tools for changing the structure of graphs.
However, these approaches use different ways for defining
rules and graphs and therefor differ in power and flexibility.
The most intuitive way is term graph rewriting, but it’s also
a bit limited. The graph rewriting calculus is a powerful
framework, which allows to build an own calculus on top of
it. Common to all approaches is, that you can finally buy
more than one piece of chocolate.

7. REFERENCES
[1] U. Assmann. Graph rewrite systems for program

optimization. ACM Trans. Program. Lang. Syst.,
22(4):583–637, 2000.

[2] C. Bertolissi. The graph rewriting calculus : confluence
and expressiveness. In G. M. P. Mario Coppo,
Elena Lodi, editor, 9th Italian conference on Italian
Conference on Theoretical Computer Science - ICTCS
2005, Siena, Italy, volume 3701 of Lecture Notes in
Computer Science, pages 113–127. Springer Verlag, Oct
2005.

[3] B. Courcelle. Graph rewriting: An algebraic and logic
approach. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science: Volume B: Formal
Models and Semantics, pages 193–242. Elsevier,
Amsterdam, 1990.

[4] A. Rümpel. Rewriting. 2007.

