Introduction to formal semantics

- Enrico Leonhardt
structure

• Motivation - Philosophy
 – paradox
 – antinomy
 – division in object und Meta language

• Semiotics
 – syntax
 – semantics
 – Pragmatics

• Formal semantics in Computer Science
Motivation - Philosophy

• Problem of truth
 – is sentence or statement true?
 “I”, “we”, “now”… → different meaning in different situations
 → investigate only statements

 – (intuitive) TARKSI scheme: “X is true if and only if p”

 – definition of the ‘true’ predicate in S
paradox

• Paradox definition

A suicide murderer kills all that do not kill themselves.

• Paradox act commandment

Give somebody a shed of paper with “please turn around” on both sites.

→ No logical problems
antinomy

• Logical paradox or antinomy

A suicide murderer kills all that do not kill themselves.

→ if there is a prove that such person exists

• Antinomy by Tarski ("X is true if and only if p")

This statement is not true.
antinomy

• Conditions to create an antinomy

 1. Language is semantically closed
 – statements in the language can contain its own ‘true’ predicate

 2. Basic laws of logic
division in object und meta language

- To solve antinomies divide natural language

Object language: to describe anything (‘true’, ‘false’,…)

<table>
<thead>
<tr>
<th>Order one</th>
</tr>
</thead>
</table>

Meta language: Object language + ‘true’, ‘false’…

<table>
<thead>
<tr>
<th>Order one</th>
</tr>
</thead>
</table>

The sun is shining today.
The statement above is true.
The second statement here is true.

<table>
<thead>
<tr>
<th>Order one</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Order two</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Order three</th>
</tr>
</thead>
</table>
division in object und meta language

- To solve antinomies divide natural language

The statement of order one on slide 8 is not true.

There is a statement of order one on slide 8 that is false.
structure

• Motivation - Philosophy
 – paradox
 – antinomy
 – division in object und meta language

• Semiotics
 – syntax
 – semantics
 – pragmatics

• Formal semantics in Computer Science

“X is true if and only if p”

The color is late.
Semiotics

- The study of signs and symbols
- Study of how meaning is constructed and understood
- Can be empirical or ‘pure’

historical languages
artificial languages

- syntax
- semantics
- pragmatics

Motivation | Semiotics | Formal semantics in CS |
syntax

• Study of the rules, or “patterned relations”

| The color | is | late. |
| subject | verb | adjective |
semantics

- Study of the aspects of meaning

- the relation that a sign has to other signs

- the relation that a sign has to objects and objective situations, actual or possible
semantics

- Semantic levels:
 - each word (lexical semantics)
 - relationship between words (structural semantics)
 - combination of sentences
 - texts of different persons (dialog)

- Connection between semantic levels:

\[
\text{MEANING}(\text{the color is late}) = f(\text{MEANING}(\text{the}), \text{MEANING}(\text{color}), \text{MEANING}(\text{is}), \text{MEANING}(\text{late}))
\]

Frege principle
Pragmatics

- Considers the environment
- Sentence meaning \leftrightarrow speaker's meaning
- Interested in sentences
- Empirical factors:
 - Psychological activity by speaker
 - Historical identifiable language habit
Semiotics

- The study of signs and symbols
- Study of how meaning is constructed and understood
- Can be empirical or ‘pure’

historical languages
- syntax
- semantics
- pragmatics

artificial languages
- syntax
- semantics
- pragmatics
syntax

• defines a **formal grammar**, or simply **grammar**

• sets of rules for how strings in a language can be generated

• rules for how a string can be analyzed to determine whether it is a member of the language
semantics

• defines a mathematical model
 – describes the possible computations
 – three major classes:
 • Denotational semantics
 • Operational semantics
 • Axiomatic semantics
pragmatics

• defines the behavior in environments

- Compiler
- OS
- Machine

artificial languages
structure

• Motivation - Philosophy
 – paradox
 – antinomy
 – division in object und meta language

• Semiotics
 – syntax
 – semantics
 – pragmatics

• Formal semantics in Computer Science

“X is true if and only if p”

The color is late.

(empirical + ‘pure’)
Formal semantics in CS

- mathematical model of programming language by
 - Denotational semantics
 - each phrase in the language is translated into a *denotation*, i.e. a phrase in some other language
Formal semantics in CS

• mathematical model of programming language by

 ▪ Denotational semantics
 – each phrase in the language is translated into a *denotation*, i.e. a phrase in some other language

 ▪ Operational semantics
 – execution of the language is described directly (rather than by translation)
Formal semantics in CS

• mathematical model of programming language by

 ▪ **Denotational semantics**
 – each phrase in the language is translated into a *denotation*,
 i.e. a phrase in some other language

 ▪ **Operational semantics**
 – execution of the language is described directly
 (rather than by translation)

 ▪ **Axiomatic semantics**
 – rules of inferences to reason from meaning of input
 to meaning of output
Formal semantics in CS

• mathematical model of programming language by

 ▪ **Static semantics**
 – properties that cannot change during execution

 ▪ **Dynamic semantics**
 – properties that may change

```plaintext
Var a : boolean;
...
If a THEN
...
ELSE
...
```
Conclusion

• Motivation - Philosophy
 – paradox
 – antinomy
 – division in object und Meta language

• Semiotics
 – syntax
 – semantics
 – Pragmatics

• Formal semantics in Computer Science

"X is true if and only if p"

The color is late.

(empirical + ‘pure’)
Conclusion

Questions?