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ABSTRACT
The term ‘formal semantics’ is quite important in computer
science since it is used to define programming languages.
The techniques behind this term are very powerful but hard
to understand. To get a better understanding of the whole
area it might be beneficial to have a wider impression of
semantics in general. This paper tries to present why and
how semantics is used in philosophy and what the correla-
tions are to semantics in computer science.
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1. INTRODUCTION
Semantics (Greek semanticos, giving sings, significant), in
general, refers to the aspects of meaning that are expressed
in either a natural or an artificial language.

Nowadays, semantics are important in many fields such as
linguistics, philosophy, psychology, information theory, logic,
and computer science. It is used in different ways whereby
in linguistics and philosophy, the most established lines of
meaning investigations are published. Many of them discuss
the meaning of complex terms that are deviated from sim-
ple terms in consideration of syntax, and try to answer the
question whether a phrase is true or not, which is known as
semantic theory of truth.

To investigate a natural language, philosophy abstracts the
content from natural phrases to build a formal language,
and uses logical concepts.

The remainder of the paper is organized as follows. In Sec-
tion 2, the problem of truth in philosophy is presented with
some methods of resolutionis. Followed by a short overview
of the diffrent areas of semiotics in Section 3. Section 4 talks
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about formal semantics in Computer Science and finally Sec-
tion 5 gives the conclusion.

2. THEORY OF TRUTH
One goal in philosophy is to find a formal definition for the
‘true’ predicate according to the term of truth. By doing this
for linguistic entities the difference between “sentence” and
“statement” must be clarified as Stegmüller pointed out [2].
Sentences can contain so-called indicators such as ‘I’, ‘you’,
‘now’ etc. that create different statements with different
meanings depending on speakers and situations. So, it is
not possible to decide whether the sentence

“He is not here, today.”

is true or false.

In order to give a consistent definition of “truth” it is neces-
sary to formalize languages or use formal languages without
such indicators.

2.1 TARSKI Scheme
Only the theoretical meaning of the ‘true’ predicate is of im-
portance here. As the logician and philosopher Alfred Tarski
[3] pointed out, this is comparable with the intuitive associ-
ation of ‘truth’ of a statement, which argues that something
is so and so, and at the end it is really so and so (in the
real world). Although this might be satisfying in terms of
simpleness, it is a kind of fungous definition and not really
clear and correct. In order to achieve a better ‘correctness’
Tarski came up with a scheme that is:

“X is true if and only if p.”

Where p can be replaced by any statement, and X refers to
the name of it. One example where this scheme can be used
is an intuitive verbalization such as:

“The statement ‘the sun is shining’ is true

if and only if the sun shines.”

Here, the use of the Tarski scheme, where p is ‘the sun is
shining’ inclusive the quotation marks and X is some iden-
tifier for p, gives a partial definition of the ‘true’ predicate
because the theoretical meaning of true is defined for this
particular statement.

2



However, a partial definition is not a definition of the ‘true’
predicate within a colloquial language (natural language),
which is in demand and has the requirements:

• adequate in respect of content

• formal correct

Adequate in respect of content means that “every state-
ment” such as the example above with a ‘true’ predicate in
it used with the Tarski scheme is logical determinable. Even
though this is possible for some examples it does not work
for “every statement” because of paradox, or antinomies re-
spectively that is presented in the next section.

2.2 Antinomies of Truth
A paradox or antinomy is something where a conflict is gen-
erated in spite of faultless using logical and mathematical
deductive methods of reasoning.

Mostly the terms paradox and antinomy are set equally.
However, there is a difference between them, which should
be clarified. An antinomy for instance is a logical paradox
whereas there also paradox definitions and paradox act com-
mandments exist.

2.2.1 Paradox definition
One example for a paradox definition is:

“ A suicide murderer kills all

that do not kill themselves."

Since the question “Does he kills himself or not?” can be
answered in both ways, there is a conflict. However, this
situation only results from the assumption that such a per-
son really exists. On the other hand, the inference says that
such a person can not exists because the question above
would generate a conflict.

For this reason, it is not an antinomy since there is no proof
that such a situation exists. Respectively there is no logical
problem.

2.2.2 Paradox act commandment
It is also possible to use the term paradox for act command-
ments that never ends. An example for such an endless act
commandment is

‘‘Give someone the commandment

‘follow the instructions on a sheet of paper’

where and on both sites is written

‘please turn around’."

Even though this really exists, it does not generate a logical
problem as well.

2.2.3 Logical paradox - Antinomy
In contrast to paradox definition, a logical paradox or anti-
nomy arises once there is a proof for the statement S, whereas
S contains two parts. The part of a statement that claims
the opposite of another part Si is called the negation ¬Si.
So, a proof for S exists if there are proofs for both sites
because S is the ‘and’- catenation of its parts (Si.¬Si).

From section 2.1 it is clear that a formal definition of the
‘true’ predicate must satisfy the requirement ‘adequate in
respect of content’. This fails once a partial definition with
the Tarski scheme is not logical determinable.

Now, if the ‘true’ predicate is used in such a statement anti-
nomies can be created. One “popular” example is

“All Greeks are liars, said a Greek.”

Another more accurate version is from Lukasiewicz:

“The statement on page 8 is not true.”

As Stegmüller pointed out on page 26 the use of the Tarski
scheme and the faultless use of logical deductive methods of
reasoning ends in a conflict for these examples.

Therefore, it is not possible to give a formal definition of the
‘true’ predicate in this way, which is also proven by some
other different antinomies. However, all of them have two
conditions in common as Tarski pointed out:

• the languages that are used to construct antinomies
contain ‘true’ predicates

• the validity of logical basic laws

To find a solution for the problem of antinomies one of these
conditions must be eliminated. Since it is not possible to
eliminate or give up the validity of logical basic laws, the
elimination of the first condition is inescapable.

2.3 Division of Object and Meta language
For this reason, Tarski divided the natural language in two
languages. The first one can be used to describe anything
in the objective world. This is called the object language.
It does not contain any ‘true’ predicates and cannot say
anything about other statements. An example is:

“The table is white.”

The second one can be used to say everything. This is called
Meta language and contains ‘true’, ‘false’ predicates etc.
that might be used in order to say something about other
statements (that could also formulated in object language).

“The previous example is not true.”

In addition, a statement in object language is called state-
ment of order one whereas a statement in Meta language is
at least of order two. If a statement refers to another, which
is already of a higher order the actual statement is one order
above (table 1).
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Table 1: Order hierarchy of statements
Statement Order

“The sun is shining today.” one
“The statement above is true.” two
“The second statement here is true.” three

Through this division of the natural language, the construc-
tion of antinomies is not possible anymore as Stegmüller
presented on page 40 for the antinomy of a statement such
as

“The statement on page 8 is not true.”

By using object and Meta language, the order must be in-
cluded in the statement:

“The statement of order one on page 8 is not true.”

Assuming there is a page 8 and only this statement is writ-
ten there an empirical verification would show that there is
no sentence of order one on page 8. The decision whether
that statement is true or not depends now on the method
of analyzes.

Since the method by B Russel is well accepted, the statement
is false by using it because it contains the partial statement:

“ There is a statement of order one on page 8

that is false.”

In this way, it is possible to eliminate antinomies. However,
this is not a proof that a definition of the ‘true’ predicate is
working in that way. There are still sentences possible that
are not determinable such as:

“The color is too late.”

In order to investigate a language and solve the truth prob-
lem in philosophy it is necessary to formalize languages and
prevent those situations. This is done by the following three
different techniques that are part wise mutually, also called
“semiotics”:

3. SEMIOTICS
Semiotics, in general, is the study of signs and symbols. It
can be used for every scientific investigation of language sys-
tems whereas there are two different approaches for different
fields. Semiotics can be empirical or “pure”. The empirical
semiotics is used in order to investigate historic traditional
language systems. On the other hand, the “pure” semi-
otics helps to create new artificial language systems and in-
vestigate them as well. In both areas semiotics have three
branches, namely (1) syntax, (2) semantics, and (3) prag-
matics.

3.1 Empirical semiotics
Empirical semiotics is used in Linguistics and Philosophy.

3.1.1 Syntax
Syntax concentrates only on the formal structure of a state-
ment. It is the study of rules, or “pattern relations”. For
instance the sentence

‘‘The color is late."

is a correct English sentence construction in terms of “pat-
tern relations” (subject + verb + adjective).

To find general laws that govern the syntax of all natural
languages, modern research attempts to systematize a de-
scriptive grammar.

3.1.2 Semantics
Semantics is the study of aspects of meaning. It analyzes
the meaning of a statement only by its colloquialism and its
content whereas two different sorts of meaning a significant
expression may have:

• the relation that a sign has to other signs (sense)

• the relation that a sign has to objects and objective
situations, actual or possible (reference)

For the example “The color is late.” the sense considers the
relation between the subject “color” and adjective “late”.
Does it make any sense? The reference investigates the
meaning that this statement has in the objective world.

In addition, there are different syntactic levels of semantics:

• the meaning of each individual word is analyzed by
lexical semantics

• relationships between objects within a sentences is re-
ferred by structural semantics

• combination of sentences as real or hypothetical facts

• texts of different persons that interacts somehow (dis-
cussion, dialog,)

The connection between these levels is realized by the Frege
principle, which says that the meaning of a complex sign is
a function of meanings of their sub meanings.

MEANING(the color is late) = f(MEANING (the),

MEANING (color), MEANING (is), MEANING (late))

3.1.3 Pragmatics
Pragmatics is the most extensive technique. It considers
all factors of the environment such as (1) the speaker, (2)
the colloquialism (statement structure), and (3) the content
that is focused by the speaker.

3.2 Pure semiotics
To define new artificial language systems or formal lan-
guages in logic, mathematics, information theory and com-
puter science “pure” semiotics also called formal semiotics
is used.

3.2.1 Syntax
Syntax defines the formal grammar, or simple grammar. It
provides sets of rules for how strings in a language can be
generated, and rules for how a string can be analyzed to
determine whether it is a member of the language or not.
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3.2.2 Semantics
Semantics defines a mathematical model, which describes
the possible computations of a formal language especially
programming languages in computer science. The different
approaches of semantics are called:

• Denotational semantics

• Operational semantics

• Axiomatic semantics

Whereas in logic other modern approaches of semantics are
important e.g.:

• Model-theoretic semantics

• Proof-theoretic semantics

• Truth-value semantics

• Game-theoretical semantics

• Probabilistic semantics

3.2.3 Pragmatics
As pragmatics of empirical semiotics, pragmatics for formal
languages considers the environment. Such environments
are e.g. different compilers, operating systems or machines.

4. FORMAL SEMANTICS
In computer science ’pure’ semiotics are used to define arti-
ficial languages respectively programming languages.

The syntax defines formal grammars that are often context-
free, to describe the set of reserved words and possible token-
combinations of a programming language.

Where semantics defines a mathematical model of compu-
tation by the following techniques:

• Denotational semantics is used to translate each
phrase in the language into a denotation, i.e. a phrase
in some other language. Denotational semantics loosely
corresponds to compilation, although the “target lan-
guage” is usually a mathematical formalism rather than
another computer language. For example, denotational
semantics of functional languages often translates the
language into domain theory;

• Operational semantics is used to describe the ex-
ecution of the language (rather than by translation).
Operational semantics loosely corresponds to interpre-
tation, although again the “implementation language”
of the interpreter is generally a mathematical formal-
ism. Operational semantics may define an abstract
machine (such as the SECD machine), and give mean-
ing to phrases by describing the transitions they in-
duce on states of the machine. Alternatively, as with
the pure lambda calculus, operational semantics can
be defined via syntactic transformations on phrases of
the language itself;

• Axiomatic semantics is used one gives meaning to
phrases by describing the logical axioms that apply
to them. Axiomatic semantics makes no distinction
between a phrase’s meaning and the logical formulas
that describe it; its meaning is exactly what can be
proven about it in some logic. The canonical example
of axiomatic semantics is Hoare logic.

The distinctions between the three broad classes of approaches
can sometimes be blurry, but all known approaches to formal
semantics use the techniques above, or some combination
thereof.

However, it would be wrong to view at these styles sep-
arately. In fact, all of them are highly dependant on each
other as Winskel pointed out [4]. For example, showing that
the proof rules of an axiomatic semantics are correct relies
on an underlying denotational or operational semantics.

4.1 Dynamic and Static Sematics
Apart from the choice between denotational, operational, or
axiomatic approaches, there are two more formal semantics
introduced by Consel and Danvy [1]:

• Static semantics considers all properties that do not
change during the execution.

• Dynamic semantics considers all properties that might
change during the execution.

5. CONCLUSION
In this paper a rough overview is given about how impor-
tant semantics are in philosophy and how this is related to
computer science.
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ABSTRACT
Beside the syntax, semantic is a very important part of pro-
gramming languages. Without a semantic a program would
no longer be a program but a lifeless sequence of characters
which is part of the language.
The dynamic semantic properties of a program are deter-
mined during execution at runtime. Typically they directly
depend on the input values of the program. By contrast
the static semantic properties of a program are computed at
compile-time when it is translated from source code repre-
sentation into some kind of goal representation. The static
semantic of a programming language is used to determine
those properties.

The concept of attributed context-free grammars (Attribute
Grammars) addresses this aspect. It enables a user to create
complete specifications of static semantics. This article gives
a short introduction on the topic of attributed context-free
grammars. It shows how to define such a construct and in-
troduces the concept of synthesised and inherited attributes
which can be associated to grammar symbols. Furthermore
it will be shown how semantic rules on attributes can be de-
fined. The final part of the paper gives an introduction into
different types of attribute grammars and attribute evalua-
tors.

1. INTRODUCTION
Attribute Grammars(AGs) are a widely known approach
to express the static semantics of programming languages.
They were first introduced as a formal mechanism by Don-
ald E. Knuth in 1968 [1]. Previously they already have been
used informally by many compiler developers to define the
static semantics of a programming language: In the 1960s
there has been a big discussion about how to specify the
semantics of context-free languages. Many experts tried out
to find a declarative concept but did not succeed while com-
puters went better, and programming languages went more
complex. Hence the compiler parts which dealt with the
semantics began to become very complex and nearly un-

maintainable.
Finally, in 1967 [4], Knuth realised that many people used
the same concept of attributes in compilers and that there
are especially attributes which only flow from top-down or
bottom-up through a parse tree - the idea idea of attribute
grammars was born.
Today most compiler-generators use AGs to generate the
components for the semantics analysis phase out of a user’s
specification automatically. In the process of compilation
the semantics analysis is the third phase following lexical
and syntactical analysis which only deal with context free
(syntactic) properties of a language. A lexical analyser(lexer)
converts an input stream of characters into a stream of to-
kens or rather, a stream of terminal symbols. Tokens are
the smallest unit a parser can handle. Hence a syntacti-
cal analyser(parser) converts an input stream of tokens into
a(n) (attributed) syntax tree. The third phase addresses
context dependent properties, especially those which carry
static semantic. So, in the case of attribute grammars, a se-
mantic analyser(attribute evaluator) takes an unevaluated
attributed syntax tree as input and has the evaluated at-
tributed syntax tree as output. Note that typically an at-
tribute evaluator is not the only part of the semantic analysis
phase.

A context dependent property of a programming language
has static semantics if it can be computed at compile-time of
a program. Such a property might be the type information
of variables or the result type of arithmetic expressions. In
difference to that, a property with dynamic semantic must
be computable during execution at runtime. Hence such
properties often depend on the input values of a program
directly and might change during multiple program execu-
tions.

The first of the next three sections deals with the notation
and the definition of Attribute Grammars and shows how
a context free grammar can be enriched by semantic con-
structs. Afterwards a simple example is introduced which
is used in the whole article to enhance the readers under-
standing of the different topics. The second section deals
with the circularity of Attribute Grammars. Different ways
for detecting cycles in AGs are explained. The standard
approaches for attribute evaluators presented in the third
section have no abilities to evaluate AGs containing cycles.
Hence it might be useful to find them before an evaluation
takes place. The last section gives an overview on dynamic
and static attribute evaluators. Additionally it introduces L-
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attributed grammars as a more restrictive class of Attribute
Grammars.
I would recommend readers to be at least familiar with the
concept of context free grammars and top-down LL parsing
approaches.

2. DEFINING ATTRIBUTE GRAMMARS
The concept of AGs extends the notion of context free gram-
mars through two different kinds of attributes. Inherited
attributes are used to specify the flow of information from
a node in the abstract syntax tree top-down to lower nodes.
Contrary synthesised attributes characterise an information
flow in bottom-up direction. Relations between attribute
values of different nodes are expressed with semantic rules.
Let G = (N, T, P, S) be a context-free grammar with

N - a set of non-terminal symbols,
T - a set of terminal symbols,
P - a set of grammar production rules,
S - the starting symbol,
and N ∩ T = Ø, p ∈ P : X0 → X1 . . . Xi . . . Xnp (X0 ∈
N, Xi ∈ (N ∪ T )), S ∈ N .

The value np represents the count of production elements
on a grammar-rule’s right side. It might be equal to 0 so
that the right side is empty. Such a production is called an
ε-production deducing the empty word. In the following we
use V = N ∪ T to represent the grammar vocabulary.

For defining an Attribute Grammar we have to extend the
context-free notation with

INH - a set of inherited attributes,
SY N - a set of synthesised attributes,
INHX - a set of inherited attributes for X ∈ V ,
SY NX - a set of synthesised attributes for X ∈ V ,
f - semantic rules bound to syntactic rules and attributes,
and INH ∩ SY N = Ø, INHX ⊆ INH, SY NX ⊆ SY N .
Additionally every attribute a ∈ INH ∪ SY N has to be as-
sociated with a range of values Ta which one could imagine
as type T of a.

Defining f formally is slightly more difficult. If p = (X0 →
X1 . . . Xi . . . Xnp) is a production of the context-free gram-
mar then f has to be defined for every a0 ∈ SY NX0 and it
has to be defined for every ai ∈ INHXi(1 ≤ i ≤ np). The
arguments of f might consist of any value of any attribute
of any grammar symbol in p. The notation f(p,i,a) denotes
that a definition of f evaluates the attribute a of the gram-
mar symbol on the ith position in the production p. What
does that mean? If p2 is a production like A → XA in any
AG G with

INHA = {i1}
INHX = {i2}
SY NA = {s1}
SY NX = {s2}

then exactly the semantic rules f(p2,0,s1), f(p2,1,i2) and f(p2,2,i1)

have to be defined for p2 and none else.

The evaluation of attributes takes place on the abstract syn-

Figure 1: an elemental tree

tax tree (AST) which can be regarded as a composition of
elemental trees. For every production p in G an elemental
tree tp can be created whose root is X0 and whose leaves
are {Xi|1 ≤ i ≤ np} (fig. 1).
So any possible AST can be created by repeatedly merging
leaves of a subtree with the root of an elemental tree which
is labelled by the same non-terminal symbol. In most com-
pilers the parser does this work.

Every production p of a grammar occurs only once but
tp can occur multiple times in an AST. Hence all occur-
rences embody the same attributes but different attribute
exemplars. This means that similar nodes carry different
attribute values.

Now we can use the definition from above to construct a
concrete instance of an AG. The example will contain a con-
text free grammar which describes a potential representation
of hexadecimal numbers enriched by semantic information
for computing the decimal value of those numbers. It is a
variation of the example binary notation used by [1]. The
form of notation leans against the syntax for AGs used in [2].

attribute grammar AGhex

nonterminals

N = {NUMBER, NUM1, NUM2, HEX}
S = NUMBER

terminals

T = {., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}

attributes

INH = {position : int}
SY N = {dvalue : real}
SY NNUMBER = {dvalue}, INHNUMBER = Ø
SY NNUM1 = SY NNUM2 = {dvalue}, INHNUM1 =

INHNUM2 = {position}
SY NHEX = {dvalue}, INHHEX = Ø

rules

r1: NUMBER → NUM1
NUMBER.dvalue = NUM1.dvalue
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NUM1.position = 0

r2: NUMBER → NUM1 . NUM2
NUMBER.dvalue = NUM1.dvalue+NUM2.dvalue
NUM1.position = 0
NUM2.position = 1

r3: NUM1 → NUM1 HEX
NUM10.dvalue = HEX.dvalue∗16NUM10.position+

NUM11.dvalue
NUM11.position = NUM10.position + 1

r4: NUM1 → ε
NUM1.dvalue = 0

r5: NUM2 → HEX NUM2
NUM20.dvalue=HEX.dvalue∗16−NUM20.position+

NUM21.dvalue
NUM21.position = NUM20.position + 1

r6: NUM2 → ε
NUM2.dvalue = 0

r7: HEX → {0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}
HEX.dvalue = getV alueForChar()

Note that in this example the semantic rules are directly
annotated below the syntactic rule they correspond to. In
practice semantic rules can become very large thus they nor-
mally would be stored in programming-libraries.
The grammar defines a number to consist of one part if it
is a whole number or two parts separated by a point if it is
a real number. The left-recursive non-terminal NUM1 rep-
resents the integer part while the right-recursive NUM2 is
used to represent the real part. It would be possible to use
only one of both non-terminals but then one would have to
introduce an other inherited attribute counting the length
of a side at first.
Hence AGhex uses two attributes only. The synthesised at-
tribute dvalue is used to accumulate the computed decimal
values of the hexadecimal cyphers. Those values are pub-
lished by every NUM1 or NUM2 node in the AST to its
predecessor. The attribute position is an inherited attribute
which is used to count the actual position in a hexadecimal
number. It is incremented and published top down to the
corresponding NUM1 or NUM2 node. There it is used in
the exponent of the computation of the decimal values. Fi-
nally after all attributes have been evaluated the result can
be found in the root of the AST.
It is very likely that any meaningful context-free grammar
contains productions with multiple occurrences of the same
grammar symbol - at least in recursions. So there must be a
possibility to distinguish between them. Otherwise it would
not be possible to define semantic rules for such productions.
Typically this problem is solved by introducing an implicit
numeration as it was done in the example. For instance an
argument A0 of a semantic rule would correspond to the
first occurence of the grammar-symbol A in a syntactic rule
r = (A → XAY ) while A1 addresses the second exemplar.
Another interesting property of AGhex can be found. If an
attribute occurs on a left side of a grammar production’s se-
mantic rules it never occurs on the right side and vice versa.
This property is called the normal form of an AG. More

formally:

Let AG be an attribute grammar and p ∈ P a production
then AG is in normal form if all arguments arg of seman-
tic rules can be found in (INHX0 ∪ SY NXi)(1 ≤ i ≤ np).

Let us take a look on the concrete evaluated derivation tree
Tex for the number string h =′ 08.15′(fig.2). Obviously
08.15hex seems to be equal to 8.082dec as it is stored in
NUMBER.dvalue. In this notation synthesised attributes
are always noted to the right of a node while inherited at-
tributes are noted to the left.

Figure 2: example: attributed abstract syntax tree
for h=’08.15’

Inherited attributes are not necessarily needed. So for ev-
ery attribute grammar A(INH 6= Ø) it is possible to create
at least one equivalent attribute grammar B(INH = Ø) by
introducing a synthesised attribute c to transfer all informa-
tion about the nodes in the tree at the root [1]. However
a usage of synthesised attributes only often leads to very
complicated semantic rules and an additional overhead for
the evaluation of the attribute c at the root. Hence typ-
ically inherited attributes lead to a better readability and
less computation effort.
Nevertheless there are exceptions to that rule. For instance
in our example it would be possible to use synthesised at-
tributes without introducing much more effort. Therefore
we could invert the recursion in the rules r3 and r5. Addi-
tionally we would have to convert the position attribute into
a synthetic attribute. Furthermore the semantic rules of r1
and r2, which are responsible for initialization of position,
have to be replaced by similar methods in r4 and r6.

3. DEPENDENCIES AND CYCLES
Testing for circularity is a very important topic for AGs be-
cause it is impossible to evaluate attributes which depend on
themselves. Fortunately there are methods to pre-calculate
dependencies of attribute exemplars at generation time, e.g.
when a compiler is generated or written by hand. Hence the
information can be used to solve two problems.
First of all a grammar can automatically be checked on er-
rors before anything will be created. So it can be used to
support the users of compiler-compilers to solve conflicts in
grammars. Secondly a cycle free dependency information
may be used to pre-compute an order of evaluation steps for
a static attribute evaluator.

For any deducible derivation tree T of a grammar G an
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evaluator has to take into account all relations between at-
tribute exemplars. Those relations can be expressed by a
dependency graph D(T ). The nodes of D(T ) correspond to
attribute exemplars in T and can be written as N.a, where
N is a node in T while a is an attribute of the grammar
symbol being the label of N in T . Let X1 = label(N1)
and X2 = label(N2) be the grammar symbols which are
label of N1 and N2, then D(T ) contains directed edges
from N1.a1 to N2.a2 if there is a applicable semantic rule
X2.a2 = f(.., X1.a1, ..) for a production p with X1 ∈ p and
X2 ∈ p in this context. According to our example, D(Thex)
is the graph in figure 3.

Figure 3: dependency graph D(Thex)

The transitive closure D+(T ) contains an edge from a node
N1.a1 to a node N2.a2 if, and only if, there is a path be-
tween both nodes. If D+(T ) does not contain any edge of
the type (N.a, N.a), D(T ) contains no cycles and can be
evaluated.

An attribute grammar G is well-formed if D(T ) contains
no cycle for every possible derivation tree T .

It is impossible to pre-compute all D(T ) because typically
it is possible to create an infinite number of derivation trees
for G. Hence the dependency information has to be com-
puted directly out of the grammar rules. So it is useful to
regard the local dependency graph D(p) for a production
p. Let p be a production then D(p) contains nodes N.a
for every grammar-symbol X ∈ p with X = label(N) and
all attributes a with a ∈ INHX ∪ SY NX . There is an arc
from N1.a1 to N2.a2 in D(p) only if there is a semantic
rule X2.a2 = f(.., X1.a1, ..) defined for p. D(p) can be con-
structed for every production in a grammar and any possible
D(T ) can be created through pasting various D(p) together.
Figure 4 shows the D(p)s according to our example. None of
them contains any cycle. So AGhex is locally free of cycles
which is the weakest condition for a cycle free grammar: an
AG contains no local cycles if every graph in {D(p)|p ∈ P}
is free of cycles. As every normalized AG contains no local
cycles the test for this property is a co-product of the nor-
malization process [3].

In order to test globally if an attribute grammar contains
any cycle some additional constructs are needed [3]. The
operation root-projection rp(D) applied on a dependency
graph D(T ) results in graph which only contains nodes which
correspond to the attributes of the underlying tree’s root.
Additionally rp(D) contains all edges which lead from an
attribute of the root node to an attribute of the root node.
Another important operation is the overlay operation. Let
p be a production, and for 1 ≤ i ≤ np let Gi be any
directed graph with nodes {a|a ∈ SY NXi ∪ INHXi} then

Figure 4: local dependency graphs of AGhex

D(p)[G1, . . . , Gnp] is the local dependency graph for p over-
layed with the edges of Gi.
Figure 5 shows both operations applied on some local de-
pendency graphs of our example. The grey edges in that
figure do not belong to any graph. They only shall clarify
the importance of the order of D(p)[. . .]’s arguments.

With these operations we can calculate sets S(X) for every

Figure 5: rp() and D(p)[. . .]

grammar-symbol X of an attributed context free grammar.
Such a set contains every possible dependency graph be-
tween the attributes of X. This information will be enough
to determine if any dependency graph D(T ) can contain any
cycle. We use the following algorithm to compute the S(X):

1. foreach n ∈ N : set S(n) = Ø
2. foreach t ∈ T : set S(t) = {(SY Nt ∪ INHt, Ø)}
In other words: Initialize the S(X) for all grammar-symbols.
S(X) for non-terminals contains no graph while for termi-
nals S(X) is initialized with a graph having nodes only. Typ-
ically terminals are not attributed, hence in most cases S(X)
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will be empty too.

3. repeat

- choose a production p ∈ P
- for 1 ≤ i ≤ np choose Gi ∈ S(Xi)
- compute the overlay D(p)[G1, . . . , Gnp]
- compute the root-projection r for the transitive

closure
rp(D(p)+[G1, . . . , Gnp])
- add r to S(X0) if, and only if !(r ∈ S(X0))

until there are no more possibilities to create a new graph
which could be added to any S(X).
In other words: Try to construct new graphs by overlaying
any rule dependency graph with root-projected graphs which
already have been created and add them to S(X). If no new
graphs can be added the algorithm terminates.

Now our circularity test is nearly complete. We only have to
check if any overlayed graph D(p)[G1, . . . , Gi, . . . , Gnp] with
Gi ∈ S(Xi) contains any cycle.
If not, the grammar is free of cycles. Unfortunately the al-
gorithm seems to have a high time complexity because there
are many combination possibilities to create a new graph in
S(X). Fortunately there is an other criterion which is even
more strict and causes less computation effort. Instead of
the set S(X) only one graph s(X) per X can be created.
It could be regarded as a merge of all graphs in S(X). For
computing the s(X)s the above algorithm has to be slightly
modified: instead of repeatedly adding graphs to S(X) these
will be stepwise merged in s(X) until none of the s(X) can
be changed any more. Afterwards we have to check if any
overlayed graph D(p)[G1, . . . , Gi, . . . , Gnp] with Gi = s(Xi)
contains any cycle.
If not, the grammar is absolutely free of cycles.

It should be said that if an AG is absolutely free of cycles
the grammar also is free of cycles but not vice versa! The
test for absolute cycle freedom might fail while the standard
test for cycle freedom does not fail. Hence a test procedure
for cycles in a compiler generator might look like in the fol-
lowing:

1. Try to transform the AG into normal form,
if that fails return ’grammar contains cycles’
otherwise continue with step 2.

2. Apply the test for absolute cycle freedom, if
that fails continue with step 3 otherwise re-
turn ’grammar is free of cycles’.

3. Apply the test for cycle freedom, if that fails
return ’grammar contains cycles’.

The results of that test do not have to be thrown away.
Instead the s(X) could be used by an attribute evaluator at
compile-time. Therefore some more theoretical constructs
are needed which will not be discussed here. For deepening
I would recommend to read [2,chapter 9.4].

4. ATTRIBUTE EVALUATORS

At a glance there are two groups of attribute evaluators. The
group of dynamic evaluators computes attribute dependency
information on runtime only. In contrast static evaluators
use dependency information which has been computed dur-
ing generation time of a compiler. The basic ideas for that
were shown in the last section.
Some of the approaches lead to restrictions on the attribute
definition. Hence they also lead to some more restricted
classes of AGs.

Data-driven evaluator
This is a very intuitive approach for a dynamical evalua-
tion. It can be applied to all possible attributed context
free grammars regardless of if they contain cycles or not -
data-driven evaluation can detect cycles dynamically.
An evaluation takes place on the AST where, in every iter-
ation, the algorithm searches for evaluable attributes. Ini-
tially those could be found as synthesised attributes of the
leafs or on any other node where constant values have been
assigned to an attribute. In case of our example this meets
attributes of nodes which are evaluated by one of the seman-
tic rules f(r1,1,position), f(r2,1,position), f(r2,2,position), f(r4,0,dvalue),
f(r6,0,dvalue) and f(r7,0,dvalue).
The algorithm works as follows:

1. foreach node n ∈ T : assign all directly
computable values to the corresponding at-
tributes

2. if there are more evaluable attributes continue
with step 1, else goto step 3.

3. if there are still unevaluated attributes return
’grammar contains cycle’, else return ’all at-
tributes evaluated’

Obviously the algorithm has to iterate over all attribute ex-
emplars in the AST during a single pass. In the worst case it
finds only one attribute it can evaluate per step. So the time
complexity would be c2 (if c is the number of attributes).

Demand-driven evaluator
This dynamical approach is slightly different from the data-
driven approach. It tries to evaluate attributes on the AST
regardless if they can be computed directly or depend on
other ones. In the case that an attribute depends on oth-
ers which not have been evaluated too, a demand-driven
evaluator tries to evaluate those recursively. Typically the
algorithm starts with the synthesised attributes on the root
of the AST .
In the abstract syntax tree of our example (fig. 2) the com-
putation could start on the attribute dvalue of the NUMBER
node.

Due to
f(r1,0,dvalue) = NUM1.dvalue + NUM2.dvalue

the algorithm continues with
f(r3,0,dvalue) = HEX.dvalue∗16NUM10.position+

NUM11.dvalue

and computes it’s first value with
f(r7,0,dvalue) = getV alueForChar().
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After that the computation continues with the evaluation of
f(r3,0,dvalue)’s second part. Typically the implementation is
a simple recursive function like (for more detail see [3]):

public AttrValue Node::eval(Attribute attr){

if(values.get(attr)!=null)

return values.get(attr);

if(working.get(attr)==true)

throw new Exception("contains cycle");

working.set(true);

//find out which semantic rule must be applied

{....

//recursion

someOtherNode.eval(someAttribute);

....}

values.set(attr,resultValue);

working.set(attr,false);

return resultValue;

}

The algorithm terminates if all attributes which are reach-
able from the root could have been evaluated - unreachable
attributes are ignored. It also detects cycles in the moment
when the method body is entered a second time before hav-
ing the corresponding attribute evaluated.

L-attributed grammars
L-attributed grammars belong to a class of AGs which can
be evaluated during syntax analysis. They do not require
an explicit construction of the syntax tree. Instead at-
tribute values are annotated to elements on the parser stack.
Hence compilers which use this technique typically become
very efficient. Unfortunately some restrictions on how at-
tributes are allowed to be defined must be introduced. The
well-established deterministic parse algorithms for LL and
LR grammars ’traverse’ on the parse-tree from top-down in
a depth-first manner. Hence attributes have to be evalu-
ated in the same order. This means that a node n in the
parse-tree (or grammar-symbol which is currently derivated)
should only carry attributes which directly depend on syn-
thesised attributes of nodes which are left siblings of n.
Of course it may depend on inherited attributes of its fa-
ther and on the synthesised attributes of its direct chil-
dren too. Figure 6 shows such a situation for a production
p = (X0 → X1 . . . Xi . . . Xnp).

Figure 6: allowable attibute flows from siblings to
Xi

More formally a normalized attribute grammar G is called
L−attributed if for each p ∈ P with p = (X0 → X1 . . . Xnp)X
and for every a ∈ INHXj (1 ≤ j ≤ np) the semantic rule
f(p,j,a) has arguments b ∈ (

⋃
SY NXk )(1 ≤ k ≤ j − 1) or

b ∈ INHX0 only.

LL-attributed grammars
L-attributed grammars having an underlying context-free
LL(1) grammar are called LL-attributed grammars.
Hence it is possible to extend the standard parsing tech-
niques for LL(1). In the table driven approach a parser
holds only minimal information per step. This information
has to be enriched by a kind of label which marks when
all symbols in a production have been completely derived
and the synthesised attributes of the production’s root X0

can be evaluated. This might be done by a special symbol
placed behind a production on the parser stack. Addition-
ally the attributes themselves have to be stored somewhere
because after every shift step a grammar-symbol is removed
or replaced from the parser stack. Hence the parse tree has
to be built-up somehow in parallel, at least temporary. For
instance symbols on the stack could be associated with pro-
duction elements in the derivation queue which such a parser
normally builds up. There attribute values could be stored
and later be read. An other option would be an explicit par-
tial build-up of the parse tree with nodes currently needed
only.
A recursive descent parser for LL(1) would have all these
things included automatically. Such a parser can easily be
constructed from recursive functions which directly corre-
spond to the grammar productions. Due to the recursive
calls a partial parse tree is implicitly constructed on the
runtime-stack. A production has been completely derived
when a function returns.
Unfortunately our AG AGhex is not a LL(1) grammar. So
we use only the right recursive part of our grammar to
demonstrate how to create an attribute evaluator:

attribute grammar AGhexLL1

. . .
rules

r1: NUMBER → NUM
NUMBER.dvalue = NUM.dvalue
NUM.position = 1

r2: NUM → HEX NUM
NUM0.dvalue=HEX.dvalue∗16−NUM0.position+

NUM1.dvalue
NUM1.position = NUM0.position + 1

r3: NUM → ε
NUM.dvalue = 0

r4: HEX → {0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}
HEX.dvalue = getV alueForChar()

With this we can construct a very simple recursive descent
LL(1) parser.

public real number(){
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int position=1;

return num(position);

}

public real num(int position){

if(getLookAhead().isHexValue()){

return hex()*pow(16,-position)+num(position+1);

}

else if(getLookAhead().isEndOfStream()){

return 0;

}

throw new Exception("Unexpected character");

}

public real hex(){

return getValueForChar();

}

As one can see it seems to be very intuitive to create such a
parser. It might be a suitable solution for small problems.
Creating a L-attributed LR(1) is much more complicated,
because such parsers do not explicitly ’expand’ grammar
productions as LL(1) parsers do. Additionally there might
be unresolvable conflicts between different items in a parser
state on how to compute inherited attributes of another
item. So we do not discuss LR attributed grammars here. It
just should be said that a SLR(1),LR(1) or LALR(1) gram-
mar possibly might not be L-attributable!

S-attributed grammars
S-attributed grammars are a subclass of L-attributed gram-
mars containing synthesised attributes only. Hence there
are no more restrictions concerning inherited attributes. So
a S-attributed LL(1) grammar can always be called LL-
attributed as well as a S-attributed LR(1) can always be
called LR-attributed.

Ordered attribute grammars
This type of attribute grammars can be evaluated using a
statically precomputed total order for the attributes of ev-
ery grammar symbol of an AG. An evaluator visits every
node in an abstract syntax tree multiple times. During a
visit, at least one attribute of a node has to be evaluated. A
visit oriented evaluator enters a node in the tree after it has
computed one or more dependent values in the upper tree.
Then it computes some values of attributes in that node
which might be important for lower nodes and descents to
visit some of the lower nodes. This is called a sequence of
visits. Such a sequence can be determined by regarding the
attribute dependency graphs of grammar symbols. The set
s(X) from the above cycle test can be used. Unfortunately
s(X) only contains attribute flow from inherited attributes
of a grammar symbol X to synthesised attributes of X. So
it only has information about the attribute flow through
subtrees in which X is label of the root. For computing a
complete attribute dependency information R(X) one has
to consider the upper attribute flow t(x) too. The compu-
tation of t(X) is described in [2] and will not be regarded
here. R(X) is defined as R(x) = s(X) ∪ t(X). Figure 7
shows R(NT ) for a hypothetical non-terminal NT with at-
tributes INHNT = {x} and SY NNT = {y, z}.
Each i-th visit V iX of nodes N with X = label(N) consists

of a set of inherited attributes and a set of depending synthe-
sised attributes. These attributes will be evaluated during
a visit by computing the inherited ones first. For instance

Figure 7: R(X) for a non-terminal NT

V 1NT of our short example would contain V 1NT .INH = Ø
because y in V 1NT .SY N = {y} does not depend on any
inherited attribute of NT . After the second visit V 2 with
V 2NT .INH = {x} and V 2NT .SY N = {z} the attributes of
NT are completely evaluated.
Typically visit oriented evaluators are implemented as a re-
cursive procedure on the nodes of the AST. Note that it
might not be possible to compute a sequence of visits for a
grammar out of the R(X). Unfortunately this can not easily
be checked,e.g. it can not be checked by introducing some
syntactical restrictions as L-attributed grammars do.

5. CONCLUSION
Attribute grammars seem to be a good choice for defining
the static semantics of a context free language. The concept
of inherited attributes and synthesised attributes is quite
simple and easily applicable.
Attribute evaluators can be generated automatically, but
not all methods can be used for that. For instance ordered
attribute grammars and LR-attributed grammars introduce
restrictions which are not only of syntactical kind. Hence
those methods might be difficult to use for developers who do
not have in-depth knowledge in compiler construction. So in
most cases and for small maybe domain oriented languages
it would be better to use more simpler methods like the
demand-driven approach or LL-attributed grammars.
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ABSTRACT
Attribute grammars are a common way to specify the se-
mantics of formal languages. They are very powerful but
their evaluation and especial specification tend to become
confusing as the semantic specifications have to meet syntac-
tical necessities and different semantical parts are blended.
If they are only used to specify the semantic of a language
on paper and the implementation is done imperative its even
harder to recognize, track and understand semantic evalua-
tions in the final implementation covering syntactical and se-
mantical analyses mixed together. Attribute grammar tools
try to solve this problem as they assist the user to specify
semantics in an easy way and distinct semantic modules.
One of this tools is JastAdd, which will be introduced in
this text.

JastAdd is a modern and very powerful tool to specify se-
mantics with attribute grammars. It extends the basics in-
troduced by Knuth in 1967 in several ways. It supports ref-
erences to attributes far away in the parsing tree so its a ref-
erenced attribute grammar tool (RAG). Circular attribute
evaluation dependencies are possible and can be evaluated
if they are terminating confirming fix point semantics. This
supports recursive evaluation specifications. Parsing trees
can be rewritten based on declarative graph rewriting rules
before and during attribute evaluation. Parameterized at-
tributes are possible. Last but not least semantic specifica-
tions can be done both ways imperative as well as declar-
ative. All features are embedded in an object oriented de-
sign. This paper examines all the functionalities above, their
specification and usage, advantages and disadvantages and
introduce into the JastAdd system in a formal way.

Categories and Subject Descriptors
F. Theory of Computation [F.3 Logics And Meanings Of
Programs]: F.3.2 Semantics of Programming Languages;
F. Theory of Computation [F.4 Mathematical Logic And
Formal Languages]: F.4.2 Grammars and Other Rewrit-
ing Systems; D. Software [D.2. Software Engineering]:

D.2.13 Reusable Software

General Terms
semantic generator

Keywords
semantic specification, semantic evaluation, attribute gram-
mar, circular attribute grammar, referenced attribute gram-
mar, compiler generator, aspect oriented programming, ob-
ject oriented programming

1. INTRODUCTION
The task to transform a most times text based input, which
confirms against a specification into some well defined out-
put is a common task in computer science. If the output
confirms the input specification of another translator or is
an executable program or program parts such translators
are well known as compilers. But compilers are only a part
of the translator hierarchy, like pretty printer, interpreter,
filter etc.

Always a syntax specification for the input exists, most
times its a context free grammar. A lot of work and re-
search has been done to develop techniques to read the in-
put, check it against its syntax specification and represent
it in some structured way enriched with input informations,
so that it can be further analysed without to worry about
its syntactical correctness. This is done by lexers which
recognise the inputs atomic elements, also called tokens and
parsers which take a token stream and construct a parsing
tree, representing the order of specification rules applied to
create this input as well as the token informations associ-
ated with each applied rule. There are well known theories
about language specifications and how to check in an accept-
able time if an input word is part of a language, like LL(k),
LR(k), SLR(k) and LALR(k). It is possible to implement
generators which are taking a context free language speci-
fication and automatically create lexers and parsers for it.
The output of the generated parser is most times a parsing
tree, where nodes represent non terminals and leaves termi-
nals of the grammar. The children of each node are the right
sides of a grammar rule for this non terminal. The terminal
leaves contain the associated input token informations. So
the complete syntactical process can be easy specified and
syntactical analyse tools generated.

But every syntax is nothing without some meaning, its asso-
ciated semantic. To specify, analyse and apply the semantic
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of a language is a much harder task. A common way to do
so are attribute grammars. They allow to overcome the gap
between a context free syntax and its context sensitive se-
mantic, as well as a formal specified way how to describe the
grammars semantic. The formal theory behind leads to tech-
niques for checking if an input word confirms the languages
semantic rules and to evaluate its semantic if possible. The
following text will introduce JastAdd 1 , an attribute gram-
mar based semantic tool, which can be used to specify the
semantic of a context free grammar as well as to compute an
input words semantic. The basic input for its semantic eval-
uator are parsing trees, so a parser generator can be used
to create a parser for a given context free grammar and the
generated parser computes the parsing trees of input words.

In the following we will show JastAdds features, their us-
age and specification. To do so we will start with a short
overview about JastAdd’s design goals, then showing its fea-
tures and extensions for attribute grammars concluding into
a summary how JastAdd reaches its design goals. After do-
ing so we can examine in detail how JastAdd specifications
look like. At least we will give a short summary and sub-
jective conclusion about JastAdd.

2. ATTRIBUTE GRAMMAR TOOLS GOALS
AND JASTADDS FEATURES

2.1 Attribute grammar tools design goals
To specify and implement the semantic for a given context
free syntax is a time consuming and not easy task. To sup-
port language developers and guide them through the devel-
opment process of attribute grammars main guidelines have
been developed. It is common to do the following steps :

1. Identification of semantic categories. This are all val-
ues or properties of interest gathered from tokens or
computed based on other such values. Each necessary
value is associated with an attribute and can be a syn-
thetic or inherit ones.

2. Association of semantic categories with syntactic cat-
egories, so which syntactical symbol (most times non
terminals) has to have which attributes. As informa-
tion has to flow through the parsing tree there are often
temporary attributes with copy rules.

3. Checking of each context and constructing its local
evaluation graph. Every grammar rule is a context and
its left sided synthetic attributes have to be evaluated
in a given context as well as its right sided inherit
ones. If a grammar rule is represented as sub tree,
an evaluation graph has to be constructed, showing
on which other attributes a given attribute depends or
if its value is an atomic one (taken from a token or
statically constant).

4. Specifying concrete evaluation functions.

1The JastAdd attribute grammar tool had been developed
at the Computer Department of Lund University, Sweden.
Its predecessor tool was the referenced attribute grammar
(RAG) tool APPLAB (APPlication language LABoratory)
developed at Lund University as well. JastAdds first final
version was ready for public in 2003. This text is based on
the version released at 15. Septemper 2006.

It has been discovered that there are a lot of common se-
mantic tasks specified for most languages like checking if an
identifier is declared, computing declaration levels, checking
type safety, identifying parameter lists, evaluating mathe-
matical expressions and many others. It would be a good
idea to save development time and resources if those tasks
are specified in an universal way, so their solutions can be
reused. This covers common specifications as well as evalu-
ating functions.

Another overhead in the development of attribute grammars
are above mentioned copy rules. They have to be specified
but do nothing useful at all instead passing attributes from
one node to another. Additionally they waste time and
memory while attribute evaluation. The memory wastage
can be solved if pointers are used. But RAGs, referenced
attribute grammars, are a much better way. They allow to
link attributes of far parts in the parsing tree together, so
a node can get needed attributes for its attribute evalua-
tion directly. The needed attributes don’t have to be passed
along the parsing tree.

”Never change a running system” may be a nice statement
but we all know that systems have to be expanded and de-
veloped further. There may be a need to expand an existing
language with additional functionalities or just some syntac-
tical sugar. It would be great if those additions can be added
separated from already existing language specifications and
implementations and if its easy to extend a given language
with additional syntax and the associated semantic.

We already mentioned reuse a lot but we can even ask for
more, the possibility to mix existing semantic components to
build or extend a new language processing systems like com-
pilers. It is a different if some specification or code fragment
can be used in several projects or if some kind of component
model is supported to mix and assemble software systems in
a well defined way.

Another problem are the evaluation functions for attributes.
Often recursive like specifications are needed or are much
easier to do than iterative ones. But recursive attribute
evaluations means, that the attribute grammar is circular.
Another annoying point is, that even the easiest evalua-
tion functionalities have to be implemented. It would be
good, if a declarative way to specify attribute dependencies,
as know from specifications on paper, which automatically
leads to the implementation of the specified evaluations is
possible. Also the specification languages and implemen-
tation languages for evaluation functionalities should look
identical, so users don’t have to learn several syntaxes. If
specification and implementation could be easy exchanged
and all the work is done in one language, some kind of meta
specification for attribute grammars can be supported as
known from composition systems, where the composition
recipe language is the same as the language in which the
components are written and recipes can be composed from
other recipes (meta composition). The languages for specifi-
cation and implementation of the attribute grammars should
at least look familiar with well known programming or spec-
ification languages.
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Often a languages context free grammar has to be changed
in some way, so that it can be syntactical analysed. For
example it needs to be factorized for LL analyses. As at-
tribute evaluations are associated with grammar rules, the
semantic analyse is influenced by syntactical necessities. If
the grammar can be specified more easy for semantic anal-
yse it would be good if a translation of parsing trees from
the parser into easier parsing trees for the semantic analyse,
so called abstract syntax treess (AST), can be done.

2.2 JastAdds design goals
2.2.1 Main design goals and their realisation
JastAdd has the following main design goals, which all focus
around some kind of reuse, so that it is possible just to
add additional semantics and their evaluation by expanding
existing specifications or by using already existing ones :

1. Separation of different semantic tasks / aspects and
reuse of already specified semantic aspects.

2. Straight forward specifications of attribute evaluation
rules focusing on the problems semantic and not their
exactly solving implementation. This means, that at-
tribute evaluation specifications have to be easy to
write and straight forward to implement without the
need to translate from intuitive specifications on paper
into real code implementations.

3. Abstracting from syntactical necessities of parsing trees
and focusing only on semantics of a grammar for a lan-
guage.

4. The user shouldn’t have to worry how attribute eval-
uation is done and if attribute dependencies are eval-
uated in the right order.

In the following we will discuss how JastAdd realises these
goals.

1) JastAdd supports the reuse of semantic specifications
and evaluation functions by a module based system. The
modules specifying the evaluation of attributes can contain
declarative as well as imperative specifications 2. Every
module specifies some semantic aspect, so the modules are
called aspects. Systems can be easy expanded by just adding
already implemented semantic modules. But these modules
are not linked together like modules known from existing
programming languages like C, C++ or Java classes / pack-
ages. The different modules are weaved together by an as-
pect weaver. The aspect weaving of different semantic mod-
ules allows to group the same semantic aspect alone into one
module and to distinguish different semantic tasks in a given
language, helping to keep overview of the specifications.

2) JastAdd module specifications can be done in a declar-
ative way as well as attribute evaluations, allowing much
smaller specifications, their automatically implementation
and easier evaluation changes. To make the declarative,
but also possible imperative specifications smaller and to fo-
cus on problem solving, referenced attributes are supported.

2The JastAdd designer call this intertype declarations.

There is no need for copy rules. Circular declarative spec-
ifications are possible, resulting in smaller, easier to under-
stand and implement attribute evaluations. To make at-
tribute grammar specifications as familiar as possible Jas-
tAdd uses a Java similar syntax and an object oriented de-
sign. But its necessary to mention that even the used spec-
ification language is similar to Java, its still a proprietary
one. Also the meta specifications mentioned in 2.1 is not
real supported and possible, as there is no kind of compo-
nent model. JastAdd is still only aspect based. Imperative
specifications are done in the Java programming language,
so they support some kind of meta specification, but are
limited to Java’s component model. They also loose the ad-
vantages of declarative specifications, that’s the easy way
to develop them. Of course their real code implementation
is done manually, as these specifications are real Java code.
Imperative and declarative specifications can be mixed, so
the JastAdd developer call their evaluation specifications in-
tertype declarations.

3) Abstracting from syntactical necessities can be done by
declarative graph (parsing tree) rewriting rules, which make
parsing trees easier for semantic analyse. To focus on se-
mantics only, the context free grammar used for syntactical
analyse can be changed for an easier one. To do so, an
abstract grammar specification is supported, which has to
be specified for every attribute grammar realised with Jas-
tAdd. Parsing trees from the parser have to confirm this
one. An automatic mechanism to create confirming parsing
trees is not supported, but it is most times easy to cre-
ate those trees by introducing small translation actions into
the parser generator specifications. A method called syn-
taxCheck, which checks if a given parsing tree confirms the
specified abstract semantic is supported. There is no prob-
lem to use any parser generator to generate a parser for
the syntactical analyse. Its only necessary, that the parser
generates abstract parsing trees, so it has to generate a Java
class object composition. That’s why Java parser generators
are easier to glue with JastAdd.

4) Attribute evaluation specifications, even in different as-
pect modules, can be specified without the need to worry
about dependencies between them and the weaving of them,
as well as the evaluation of given parsing trees is done au-
tomatically. Rewriting rules and attribute evaluation rules
are computed in the right order by JastAdd. Rewriting rules
are applied as soon as they can. No evaluation is done, if
the graph can be rewritten, until the rewriting has been
done. The JastAdd attribute evaluator guarantees that al-
ways an attribute is accessed its correct value is computed
before. Additional the attribute evaluator is demand driven
and attribute values are only computed once and cached
afterwards. If an attribute has already been accessed its
cached result is returned instead computing it another time.
But there are also a few drawbacks. Firstly demand driven
evaluation also means that not all attributes have to be com-
puted. Attributes not needed for the main results (the syn-
thetic attributes at the root) and not accessed by their access
method will not be computed at all. On the other hand at-
tributes may be accessed several times, even they are only
computed once. Most times this is a good thing, but if side
effects are expected while attribute evaluation, because the
user implemented them in evaluation functions, its possible
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A ->B C A ::= B C;

abstract B;

B ->token1 B1 : B ::= <token1>;

B ->C token2 B2 : B ::= C <token2>;

C ->token3 C ::= <token3>;

Figure 1: Grammar rules and their corresponding
AST specification

class A {
B getB() {...};
C getC() {...};

}

abstract class B {
}

class B1 extends B {
String getToken1() {...};

}

class B2 extends B {
C getC() {...};
String getToken2() {...};

}

class C {
String getToken3() {...};

}

Figure 2: The generated AST-classes

that they do not occur, as the evaluation function was never
called or they may occur several times, if the side effects are
triggered while accessing the attribute. Also its not possible
to tell the evaluation order statically. JastAdd guarantees
that the evaluation will be done in a right order, but there
may exist several orders to compute the semantics of a pars-
ing tree. At all this are no big draw backs, as the semantic of
a programming language, specified by an attribute grammar
should never relay on side effects. Additionally this are no
restrictions for possible attribute grammars. Its still pos-
sible to specify and evaluate any kind of correct attribute
grammar.

2.2.2 Implementation of basic attribute grammar con-
cepts

Above we examined, which JastAdd feature is essential to
reach which design goal, but we didn’t check until now
how JastAdd realises the implementation of the basic at-
tribute grammar concepts as introduced by Knuth in 1967!
Of course JastAdd implements the basic attribute gram-
mar concepts, that’s synthetic and inherit attributes and at-
tribute evaluation functions realising information flow along
the parsing tree and computation of attributes by equiva-
lences. The basic concepts are implemented in an object
oriented way.

Attributes are declared in abstract syntax tree classes (AST-

classes) realizing the association of semantic categories to
syntactical ones. Their values are computed, as known, by
equations. Those equations are using AST-class methods if
they are complex. An AST-class represents a non terminal
or an abstraction, if a non terminal has several rules. For
each non terminal rule exists a class implementation of the
class abstraction for this non terminal. Every AST-class
object is a node in the abstract parsing tree, so abstract
parsing trees are represented by object oriented class hier-
archies in a composition. The access to attributes is done by
a method named like the attribute, with the guarantee that
this method will always return the correct attribute value.
This object oriented design has all the advantages of object
oriented modelling, the abstraction and concretion of rela-
tionships by a ”is a” relationship, resulting in the possibility
to :

• Swap concrete implementations of syntactical categories.

• Outsourcing of general and default semantics in super
classes. Subclasses can reuse this semantics (semantic
evaluation methods) as well as overwrite them.

• Subclasses automatically inherit semantic categories of
super classes, that means, they inherit the attributes
associated with super classes.

2.2.3 Extensions of the basic attribute grammar con-
cepts and summary of JastAdds features

JastAdd extends the basic attribute grammar concepts by :

• reference valued attributes (RAG)

• parameterized attributes

• circular defined attributes

• non terminal attributes and rewriting rules for AST’s

Most of these concepts have been discussed in the part ”2.2.1.
Main design goals and their realisation”. We will only men-
tion additional informations here.

RAG’s are not more powerful than basic attribute gram-
mars. There specifications are just smaller, so the specifica-
tions are easier to implement and there is no need for copy
rules. That saves memory and time while evaluation. The
object oriented design together with the ability to use ref-
erenced attributes also makes the collecting of informations
into data structures much easier. Its no hard task to imag-
ine that the Java class libraries well designed Collections
can be used to create collections of references of attributes
scattered across the parsing tree. Referenced attributes al-
low to break the rule, that the attribute flow has to follow
the parsing trees structure.

Parameterized attributes are attributes with some function-
ality, so attributes behave like methods. This together with
referenced attributes is a nice feature making specifications
much more easy to implement and understand. It also al-
lows to model more object oriented. But at the end its just
syntactical sugar and doesn’t introduce additional power.
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Table 1: AG tool design goals and their realisation in JastAdd
Tool feature Feature realisation in JastAdd

familiar specification languages Java like specifications; object oriented modelling
easy implementation of attribute declarative specifications; object oriented design;
evaluation functions parameterized attributes; referenced attributes
easy attribute handling and referenced attributes; correct evaluation order
collection
preparation of the syntactical parsing abstract grammar and AST specification;
tree for semantic analyse focusing graph rewriting
on semantic aspects only
reusability of implementations declarative / imperative semantic modules (aspects);
for semantic tasks independency of semantic modules;

aspect oriented weaving to implement different
semantic modules at the same time;
no need to worry about attribute declaration,
their usage in different modules and evaluation

manageable evaluation demand driven evaluator; caching evaluated attributes

Circular defined attributes together with the ability to spec-
ify specifications in a declarative way make life much more
easy. They realise iterative evaluations without the need to
know how termination is done. Just let the fix point the-
ory solve this problem. Of course if there’s no fix point the
evaluation will not terminate, but that’s exactly the seman-
tic of a not terminating recursion : Its undefined. Every
circular defined attribute evaluation can be translated into
an iterative evaluation function, so no additional power is
introduced.

It is possible to extend the AST during semantic analyse
based on declarative rules with additional AST nodes. The
JastAdd developer call this non terminal attributes and dis-
tinguish it from the JastAdd rewriting feature even it is
some special kind of it. Declarative rewriting rules allow to
change the AST in any way. The rewriting is done automat-
ically as soon as possible and rewriting rules can be based
on each other, so one rewriting step may lead to another.
As mentioned in ”2.2.1. Main design goals and their realisa-
tion” rewriting allows to prepare the parsing tree from the
parser for semantic analyse.

Let us summary how JastAdd reaches it design goals of
reuse, extensibility, easy implementation and familiarity. There
are three main ideas :

1. Object oriented design : AST’s are implemented by
object oriented Java class hierarchies. AST-class ob-
jects represent AST nodes.

2. Static aspects : Extension of AST’s with additional
features without the need to change their code man-
ually. Extensions are done automatically by weaving
semantic aspects into the AST-classes (the aspects are
already implemented in modules).

3. Declarative computations : JastAdd supports declar-
ative specifications to describe the semantic of a lan-
guage. Attributes, rewriting rules as well as attribute
evaluation functions can be specified declarative. The
user doesn’t need to worry in which order attributes

or rewriting rules of even different aspect modules are
evaluated for concrete AST’s. This allows to split the
program in independent aspect modules. Declarative
specifications are also much smaller and easier to im-
plement than imperative ones. Of course JastAdd still
allows imperative specifications done in Java.

3. IMPLEMENTING JASTADD SPECIFICA-
TIONS AND USING JASTADD

Every JastAdd specification relays on two main parts : 3

1. AST specification (*.ast)

2. Declarative / imperative semantic specifications (*.jadd
/ *.jrag). Declarative and imperative specifications
can be mixed in the same module and are always as-
sociated with an AST-class specified in the AST spec-
ification, thats why the JastAdd developers call their
attribute evaluation specifications intertype declara-
tions. The JastAdd developer introduced *.jadd files
for imperative apsects and *.jrag for declarative ones.
Both can contain the same kind of specifications. But
it is good design to distinguishe between declarative
and imperative modules, where declarative modules
add attributes, equations, and rewrites to the AST
classes and imperative modules add ordinary fields and
methods to the AST classes.

The AST specification is always needed. Declarative or im-
perative semantic specifications don’t have to occur 4. The
result of a generated semantic evaluator for a given language
are the AST-classes.

3The semantic modules are parts of the semantic specifica-
tions. So we talk sometimes about semantic modules and
sometimes about specifications, but both is the same. Only
specifications on paper may be different from the modules.
Also the modules are called semantic aspects, as its the idea,
that every module specifies one semantic aspect.
4Its often useful to specify base attribute structures and
evaluations declarative and let imperative operations work
on them.
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The interface for the results of the syntactical parser is the
AST specification. All parsing trees the parser delivers have
to confirm the AST specification and are a composition of
objects of this specification. They are a composition of AST-
class objects, the parser generated. So AST-classes and this
way parsing trees are type save. At all the AST specification
represents an abstract grammar and allows independendt
from the underlaying parser the semantic specification and
implementation.

The AST-classes code is the semantic of the language imple-
mented. The final AST-classes are generated by weaving the
modules (aspects) together into the skeletons of the AST-
classes generated out of the AST specification. Attributes
are specified in the semantic modules. 5

We will now examine each of the specifications in detail.

3.1 AST specifications
AST specifications are written in *.ast files. They represent
an abstract grammar. To explain them we will introduce
some automatic translation process, which translates con-
text free grammars and their rules into AST specifications.
This process can be used to translate the context free gram-
mar used for a parser generator into an AST specification,
so that the integration of a parser with JastAdd can be
done, if the parser just generates every time it reduces with
a grammar rule the corresponding AST-class object and sets
its references 6. Of course, in reality an AST specification
abstracts form the context free grammar as syntactical ne-
cessities are not needed for semantic analyse.

For every non terminal grammar symbol, which has several
rules

r1 = A− > α, . . . , rn = A− > β

an abstract non terminal class A is defined and n concrete
non terminal classes 7 X are defined, which implement the
abstract A. Every of the n X implements another of the
rules 8

r1, . . . , rn.

The productions are translated into a sequence of abstract
non terminal classes, non terminal classes and token. The
translated sequence of a production is specified together
with the corresponding non terminal class specification.

5To be exactly the semantic aspects are translated into or-
dinary Java code, which is than weaved into the AST-class
skeletons, which had been generated themself before, by
translation the AST specification into ordinary Java code.
6So the parser generates the abstract syntax tree, which is
in JastAdd a Java object composition of AST-class objects
7We will call concrete non terminal classes, which are imple-
mentations of abstract non terminal classes in the following
just non terminal class. The abstract non terminal classes
will be called by full name. It is necessary to take naming
seriously. Firstly we have the context free grammar, just
called grammar and its grammar rules, just called rules or
productions. Secondly we have the corresponding specifica-
tion for this grammar, consisting of abstract non terminal
classes, non terminal classes and token.
8We call the rules also productions. If we do so, we mean
the right side of a rule.

Lets examine how the productions are translated into se-
quences :

• For every token in the production a part <Token-
Name> is generated in the sequence at the position,
which corresponds the one of the token in the pro-
duction. TokenName is the name of the token in the
production.

• For every non terminal in the production a part in
the sequence called like the grammars non terminal
corresponding abstract non terminal class is generated
at the position, which corresponds the one of the non
terminal in the production.

If the non terminal in the production has only one rule, no
abstract non terminal class is needed, instead an non termi-
nal class with the grammar’s non terminal name is specified
and used every where, where usual the abstract non terminal
class would be used.

The following formalism are used in the specification, to
explain the operations mentioned above.

1. ::= . . . The equal symbol, which the production trans-
lation follows. On the Left side is a non terminal class
name or a construct like 3.

2. abstract NonTerminalClassName; . . . Specifies an ab-
stract non terminal class.

3. NewNonTerminalClassName : AbstractNonTerminal-
ClassName . . . The NewNonTerminalClassName is a
non terminal class implementation of the abstract non
terminal class AbstractNonTerminalClassName and rep-
resents one of the rules for the non terminal Abstract-
NonTerminalClassName.

The syntax for a non terminal class specification is :

NonTerminalClassName ::= ProductionTranslation;

where NonTerminalClassName is a construct like 3. or a
new non terminal class name.

We recommend to check ”Figure 1 : Grammar rules and
their corresponding AST specification” for a short example.

Of course the specification scheme above is expanded with
syntactical sugar. There are four possible main subcompo-
nents 9 for non terminal classes :

1. list . . . class : superclass ::= superclass*;

2. optional . . . class ::= [superclass];

3. token . . . class ::= <token>;

4. aggregate . . . class ::= class2 class3 class class4; An
aggregate may have any production sequence contain-
ing other non terminal classes / abstract non terminal
classes or token.

9productions
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This syntactical sugar helps, to make AST specifications as
short and easy as possible and to become rid of syntactical
parsing tree components not needed.

The additional operations in AST specifications do the fol-
lowing :

• NonTerminalClassName* . . . Specifies, that the abstract
non terminal class NonTerminalClassName can occur
several times. A : B ::= B*; and C : B ::= <t> equals
B ->t B and B ->ø with ø is the empty word.

• [NonTerminalClassName] . . . Specifies, that the (ab-
stract) non terminal class NonTerminalClassName can
occur but doesn’t have to do so. A ::= [N] equals A
->N and A ->ø with ø is the empty word.

The AST specification is automatically translated into the
AST classes skeletons. We are not going to describe these
translation process here in detail. Instead we just name a
few properties of the generated AST classes. Keep in mind,
that the AST specification only generates the AST class
skeletons, without semantic module weaving into the AST
classes.

Non terminal classes inherit all the methods and attributes
implemented in abstract non terminal classes they imple-
ment as known from object oriented programming. Every
non terminal class also knows its sub components. This
means it has access to the production elements and offers
type save access methods allowing typed traversal of AST
parsing trees. This access methods are generated automat-
ically and they return the type of the AST class of the
production element they correspond to. Their signature is
ClassTypeOfSubcomponent.getSumcomponentname() 10. It
may be, that some terminal or non terminal occurs several
times in a production. In this case the symbol must be
named. This is done by writing UniqueNameInProduction:
before the symbol, where UniqueNameInProduction is the
new unique name for the symbol. The grammar production
A ->S S S will be handeled like A ->S1 S2 S2 if the AST
specification for it is something like A ::= S1:S S2:S S3:S;.
Of course the naming of symbols doesn’t change the abstract
grammar at all. If it is unknown how often a subcompo-
nent may occur 11, a method int getNumSymbolname() is
offered, which returns how often the symbol occured. The
access method for the sub components has an additional
parameter of type int, telling which sub component to ac-
cess. The method signature in this case is Symbol getSym-
bol(int number). If a production contains token, for every
token contained a method String getTokenname() is gener-
ated, which returns the token’s lexem in the input stream
the parser parsed. If a production element is optional, it
has an additional method boolean hasSymbolname(), which
returns true, if the symbol occurred while parsing and false
otherwise.

3.2 Semantic module specifications
10Most times the sub component class is the Sumcomponent-
name. This may only be different if a sub component got
renamed.

11* operator

The semantic of an attribute grammar is specified by asso-
ciating attributes with grammar symbols and defining their
evaluation functions. In JastAdd attributes have to be bound
to AST-classes and evaluation functions are specified as Java
expressions or methods. The semantic of a complete lan-
guage can be separated in different semantic aspects. We
call the semantic aspects just aspects. Every aspect has its
own module, that’s a *.jadd or *.jarg file and is a part of
the specification for the semantic of an abstract grammar.
Aspects can be developed independently from each other
and don’t have to know about each other. This also means,
that an aspect may change, evaluate and use attributes and
evaluation functions defined in another aspect.

An aspect may consist of attribute declarations, declarative
or imperative evaluation functions and declarative rewrit-
ing rules. Every Java package can be imported. A JastAdd
project consists of any number of different aspects. All this
aspect modules will be automatically translated into ordi-
nary Java code and than be weaved into the Java AST-class
skeletons generated out of the AST specification.

Let us now examine step by step, in a recursive way how
the syntax of semantic aspects look like and what the syn-
tactical constructs do. An aspect module has the following
structure :

JavaImportStatements

aspect firstAspectName {
//aspect body for first aspect

}
aspect secondAspectName {

//aspect body for second aspect

}

...

aspect lastAspectName {
//aspect body

}

JavaImportStatements can be imports of any number of Java
packages used in the aspect module. The aspect module
itself can contain as many aspects as the user desires but
most times it will be one aspect. Every aspect is specified
by his aspect body.

The aspect body may contain usual Java class and interface
implementations, as well as static attributes and methods.
More interesting is, how attributes are bound to AST-classes
and how their evaluation is specified. We have to distinguish
between declarative and imperative parts in the aspect body,
which can be mixed in any order. Let us start to look at the
declarative way to specify semantics.

Attributes are distinguished in inherit and synthetic attributes.
This is shown by the two declarative keywords inh and syn.
To bind an attribute at some AST-class and all its subclasses
the notation ASTClassName.attributeName(AttributeParameterList)
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is used. The AttributeParameterList is just any kind of pa-
rameter list as known from Java. Of course an attribute has
some type. This can be any Java standard type or even a
self designed class. Additional an attribute may be com-
puted lazy, that means its value will be cached and only
computed once. To do so the keyword lazy can be used. A
short example of attribute declarations and bindings :

syn lazy String RomanNumeral.value();

syn int ArabicNumeral.value();

syn boolean Block.

localEnvironment(String identName);

inh lazy A.x();

In attribute grammars, the evaluation of attributes is bound
to contexts. A context is a grammar rule. Such a context can
be displayed as a graph of depth one, where the left side of
the grammar rule is the parent node and the grammar pro-
duction symbols are the child nodes, occurring in the same
order. As the attributes are bound to grammar symbols,
the question arises, which attributes have to be evaluated in
a context. All the synthetic attributes of the parent node
have to be evaluated and all the inherit attributes of the
children. 12

Attributes declared and bound to grammar symbols have
to be computed. To specify an attribute evaluation in a
declarative way the keyword eq followed by the context, the
attribute name and the evaluation description is used. The
context for a synthetic attribute is just an AST-class, as
not abstract AST-classes represent a non terminal and one
of the productions for this non terminal and abstract AST-
classes are just generalizations of concepts specified for all
their implementations. The evaluation description can be a
= followed by a Java expression or a Java block containing a
return statement at the end, which returns an object of the
same type the attribute evaluated is. The second method
can be used, if the attribute evaluation is more complex, but
its also a more imperative one.

eq ASTClass.AttributeOfASTClass =

Java-Expression;

eq ASTClass.AttributeOfASTClass {
//Java code

return AttributeOfASTClassType;

}

The context for a inherit attribute is an AST-classes sub
component. So declarative attribute evaluation specifica-
tions for inherit attributes look like :

eq ASTClass.getSubcomponent.

AttributeOfSubComponentASTClass =

Java-Expression;

eq ASTClass.getSubcomponent.

AttributeOfSubComponentASTClass {
//Java code

12For german readers : The attributes to calculate are the
innen Attribute.

return AttributeOfSubComponentASTClassType;

}

Of course declaration and evaluation of attributes can be
specified in one step :

syn lazy Type ASTClass.attribute() =

Java-expression;

inh Type ASTClass.ASTClassSubcomponent.

attribute() {
//Java code

return Type;

}

Also refining semantics defined in other aspect modules is
possible. This is done by the keyword refine. So methods
can be overwritten. Of course the refined method can be
called, similar to the Java keyword super. The syntax is :

aspect B {
refine OtherAspect void ASTClass.method() {

//Java code

OtherAspect.ASTClass.method(); //super

//Java code

}
}

Circular attribute evaluation can be specified by using the
keyword circular followed by a starting value in [ and ]
brackets while attribute declaration :

syn Type ASTClass.

circularAttributeName(ParameterList)

circular [starting value of type Type];

eq ASTClass.circularAttributeName(Type value) =

direct/indirect recursive Java-Expression;

Graph rewriting is done in a declarative manner. The key-
word rewrite is used followed by the AST-class node A in
the parsing tree to rewrite. In the following block possible
rewriting processes for the specified AST-class A are listed,
with the conditions when they are applied, as well as the
AST-class the original AST-class A node will be replaced
with. Every rewriting process consists of a block with Java
statements, which are mainly used to rewrite the sub com-
ponents of the original AST-class A node. Such a block
has to return the new AST-class, A will be replaced with.
The keyword to NewASTClassNode is used to specify which
AST-class type A is rewritten to.

rewrite A {
when (Java-condition1)

to B {
//Java code

return exp1;

}
when (Java-condition2)

to C {
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//Java code

return exp2;

}
}

Keep in mind, that rewriting rules are applied as soon as
possible. So if parsing trees are traversed manually, all
rewriting processes will already be applied. After a rewrit-
ing process is done, it is checked if another rewriting process
can be applied. The rewriting conditions are checked in the
following order :

1. conditions in superclasses are evaluated before condi-
tions in subclasses

2. conditions within an aspect file are evaluated in lexical
order

3. conditions in different aspect files are evaluated in the
order the files are weaved into the AST-class skeletons.
That’s the order the files are listed in the jastadd com-
mand.

It is also possible to do unconditional rewrites. In this case
the condition keyword and its Java-condition is left.

Imperative specifications are based on the fact, that the
parsing tree is a composition of AST-classes, where every
AST-class knows its sub components and its parent node, if
it isn’t the root. They are done, by implementing impera-
tive attribute evaluation methods directly, like the attribute
access methods and most times using the access methods or
imperative evaluation methods for subcomponents and par-
ent nodes. The implemented methods can have any Java
visibility keyword like private and public. The visibility is
interpreted in the way that an aspect corresponds a class.
The imperative attribute evaluation methods may have any
kind of parameter list. They are associated with AST-classes
in the same way declarative specifications are, by writing
ASTClass.methodName. Imperative specifications have the
following structure :

visibility Type ASTClass.methodName(ParameterList) {
//Java code

return Type;

}

As imperative specifications are based on traversing the pars-
ing tree (the AST-class composition) they can also be imple-
mented by using the visitor pattern. But the visitor pattern
has a few disadvantages compared to declarative specifica-
tions. The visit method has only one return value and its
parameter list is always the same. Its not possible to adjust
the visit method for different contexts. Also the attributes
associated with parsing tree nodes can not just be bound
into the visit method. If aspect oriented weaving and declar-
ative specifications are used this drawbacks don’t occur.

4. CONCLUSIONS13

13THE FOLLOWING PART IS A SUBJECTIV IMPRES-
SION.

The JastAdd system provides a modern way to implement
semantic specifications and evaluations based on attribute
grammars for languages. It is powerful enough to solve all
the common problems and easy to use. The specifications
look very familiar and the tool at all doesn’t seem cryptic.
Its easy to get started with and while using it, additional
features introduced will be explored, without to worry about
them if not used at all. Of course a few of the additional
features have their drawbacks. So its not easy to debug
not terminating evaluations in bigger projects. Are it not
terminating declarative recursive attribute evaluations or a
cycle of rewriting rules? Additional features and power also
means more complexity to understand how to use the tool
and introduces a more theoretical background. It doesn’t
mean (in the case of JastAdd) that the specifications become
more complex. They are less complex in JastAdd and small,
but they do a lot. JastAdd allows nearly to specify as known
from paper or at least as close as possible. The advantages
of a modern programming language like Java with its huge
class library are added.

The advantages mentioned above are introduced in a natural
way, just by using the existing Java environment and syntax.
Referenced attributes are no hard task to implement and un-
derstand when Java is used, a language based on references.
Object oriented design is common as well and Java only
supports this design method. Additional nice development
environments for Java exist like eclipse. The development
of JastAdd specifications can be integrated into eclipse with
a few configuration steps. The JastAdd developer not only
made the implementation of JastAdd more easy by using
existing Java solutions, they also made it more easy for new
users to understand the system and to experiment around
with it.

JastAdd fulfils its task to support semantic reuse and makes
it easy. Aspect oriented weaving of semantic tasks is the way
to go instead only module based imperative reuse. But it
may be a bit better if a common aspect oriented system,
which allows the full power of aspect oriented programming
is used instead an own implementation. For example As-
pectJ could be used. The JastAdd developers already men-
tioned this and announce they are looking into this possibil-
ity.

The JastAdd developer focused on the tools main task :
specifying and evaluating semantics using attribute gram-
mars. There is no tool function not supporting this task.
This is fine because the system is not going to become a big
addle apple. There are a few attribute grammar tools out
there, which try to do everything : lexing, parsing, evalu-
ating, interpreting, modularization, specifying, prototyping
and whatever you might think about. Well, they are just
going to smash you, taking a lot of time to get started with,
only to recognize you would do much better using specified
tools for the different tasks.

At least JastAdd is an active project. New versions are still
released. That’s always a good sign and gives a good feeling
about its future.
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1. INTRODUCTION
This text gives some basic knowledge about denotational
semantics. It is intended as a rough but hopefully broad
overview of the topic.

While reading it, one might acquire the needed background
knowledge. To get this knowledge it might be necessary to
consult additional material. Everytime this is needed a hint
will be given.

The reader of the text should definitely know about the
concepts of syntax. He should have heard about semantics.

2. WHAT IS DENOTATIONAL SEMANTICS
There are three main formalisms for defining the seman-
tics of programing languages. These formalisms are the ax-
iomatic semantics, the operational semantics and the de-
notational semantics. The axiomatic and the operational
semantics are also called definitional semantics. The deno-
tational semantics is the one you will read about now. It
tries to translate mathematical objects into programs.

2.1 What is it needed for?
Denotational semantics is needed by programmers and mostly
by compiler and compiler-compiler builders. The seman-
tics of many programming languages were and are only in-
formally specified in natural language. Because of natural
language being sometimes abigous, this leads to problems
while implementing these languages. Formal notations, like
the BNF-Notation, make the syntax of code easy to describe.
Formal notations of the semantics would also make the prov-
ing of the correctness more easy. Denotational semantics
gives a mathematical formalism to specify the meaning of
syntax and thus solves these issues.

Allision (All89) describes briefly how to implement a parser
for denotational semantics. He shows practical implemen-
tations of compiler-compilers for a subset of PASCAL and
PROLOG.

Denotational semantics worth for programmers is limited
since the rules are very complex applied to a specific pro-
gram. It is however conceivable to run proves of programs.
This way you can guarantee the correctness of critical pro-
grams or program parts and find difficult bugs in complex
programs.

2.2 What is the meaning of denotational se-
mantics

To get an impression of what denotational semantics is you
have to analyze know what the two words ’denotational’ and
’semantics’ stand for.

2.2.1 Semantics
What someone wants if he talks about semantics is to assign
a meaning to an otherwise meaningless expression. Lets
give an example. I could say: “Das Ergebnis von vier plus
vier ist acht.” and because I am german I would know the
meaning of this sentence. But a person only speaking english
needs me to give him the semantics which actually would be
’4 + 4 = 8’. Of course this is only another notation and
strictly speaking we still have syntax here. Semantics are
what something means in your head or in the circuits of a
computer but somewhere we need to make a point. This
point should be made, when everyone who needs to, knows
about what is meant by the expression. The rest I will leave
to the philosophers.

2.2.2 Denotational
The word ’denotational’ comes from ’to denote’ but there is
not much more you can take from this.

But what are they denoting? Well if you want to analyze
the semantics of a computable program such a program in
the simplest case takes some input, processes it and produces
some output. If one of these three steps is missing you have a
very boring program either doing nothing, producing always
the same or not giving any information.

So you get - with some borrowing from axiomatic notation
- something which Allison (All89) notes the following way:

{I}Program{O}

Well but if you rewrite this to Program(I) = O you get a
very familiar notation, which can be abstracted to f(x) = y.
So a program is nothing else than an algorithm for a mathe-
matical function. The problem with mathematical functions
is that they are usually infinite mappings of input to output,
which is not usable by computers.

To express that a program is only a partial mapping and
not the whole function, which is expressed by its semantics,
we can say that the total mathematical function denotes the
partial function of the algorithm implemented by a program.

1
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A program is a partial function denoted by a total func-
tion from input to output. Now you know why it is called
denotational semantics.

This can be driven even further. A program consists of
statements and expressions and the like. Each of these are
also simple mappings or functions. They map from one state
of the program, before the execution of the statement to
another after the execution. What a state is is not important
now and will be explained later. You should only understand
that everything, that you write down while you are writing a
program is - in terms of denotational semantics - a function
and even functions are composed of other functions.

3. THE λ CALCULUS
Before delving now into the depths of denotational semantics
you should know about another concept, very often used to
write down its rules. As meta language for denotational se-
mantics, the basics of the lambda calculus will be presented
here. But note that lambda calculus is, though the most
widely spread, only one meta language for denotational se-
mantics.

Informally saying lambda calculus is a very simple but also
very powerful method of writing down functions.

More formally spoken it is a formal model similar to func-
tional programming languages. This relation is similar to
that of the Turing Machine’s to imperative programming
languages.

Well but what is a calculus? A calculus consists according
(aut) to out of the following two parts:

• A language for the calculus, which means:

– an alphabet of the basic symbols

– a definition of the well-formed expressions

• A deduction framework, consisting of:

– axioms out of the well formed expressions of the
language (terms)

– deduction rules for transforming expressions

The language formulated as abstract syntax in BNF looks
the following way as presented in (Feh89):

Λ ::=C| (1)

V| (2)

Λ Λ| (3)

λV.Λ (4)

The C is an arbitrary constant (c,d,e. . . ), V a variable (x, y, z, . . .)
and Λ an arbitrary λ-term (M,N,L,. . . ).

The term (4) is called abstraction. This abstraction can be
understood the following way. The function

f = (2 + 2)2

is the constant function with the value 16. It is very con-
crete because there is only one value as solution of the com-
putation. To express a more general function which also

represents this computation you simply would write:

f(x) = (x + x)2

But for λ-calculus there is no difference between x and 2.
They are only symbols without any meaning1. To do the
abstraction step above you have to bind the desired variable
to a λ. So that the term:

(x + x)2

can be abstract the following way:

λx.(x + x)2

or

λ2.(2 + 2)x

Looks a little weird but you will get familiar with this soon.

The term (3) is called application and means that some ar-
gument is applied to a λ-term. For instance:

f2 ≡ (λx.(x + x)2)2

applies 2 to f. Now let us see some other examples of valid
λ terms:

c x (xc) (λx.(xc)) (y(λx.(xc))) ((λv.(vc))y)

Such terms, which you can define yourselves, are the axioms
of the calculus.

3.1 Currying
A problem you get with the basic λ-calculus is that you can
not define functions of more than one variable.

Consider

plus(x, y) = x + y

which is only expressible with two nested λ-terms.

plus = λx.(λy.x + y)

But was does this mean? To calculate the sum of 2 and 3
with the function plus you can directly add the two numbers
or you can construct a function p1 which returns a function
p2 that adds a variable to a constant. Now you can call p1
with the argument 2 and get a function that adds something
to 2. The second function called with 3 now adds 2 and 3
produces the desired output 5.

plus : N× N 7→ N
p1 : N 7→ (N 7→ N)

p1(2) = p2(y) = 2 + y

p2(3) = 5

This concept is called currying after Haskel B. Curry and
was invented by the mathematician Schönfinkel.

More formally spoken currying works the following way:

(A×B) 7→ C ≡ A 7→ (B 7→ C)

1To simplify notation we will assume that literals such as
2 will have the usual meaning but strictly spoken they are
only meaningless symbols in λ calculus.
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Such functions that do return other functions are called
higher-order functions. They are seen very often while work-
ing with denotational semantics. But for the λ-calculus this
is a little bit annoying so for simplicity we define:

λx1.(λx2.(. . . (λxn.M))) ≡ λx1 x2 . . . λxn.M

3.2 Bound and free variables
λ-expressions contain two types of variables. One type is
bound by λ’s and the other is free. The free variables are
like global ones in programming languages, while the bound
are the parameters of a function.

Consider

(λx.xy)x

where y is a free variable and x is both. Inside the brackets
x is bound by λx and outside it is free because there is no
λ to bind it.

Definition 1. The Set of free variables FV(M) of a λ-
term M is inductively defined by the form of M:

FV (x) = {x}
FV (c) = ∅

FV (MN) = FV (M) ∪ FV (N)

FV (λx.M) = FV (M) \ {x}

3.3 Reduction rules
The following basic reduction rules are used to reduce λ-
terms to normal form. This means they are evaluated as far
as possible. They define the deduction rules of the calculus.

The most important ones are α-conversion and β-reduction.
The δ- and η-reduction are seldomly applied and are not
mentioned in most publications. They will only be men-
tioned in brief.

3.3.1 β-reduction
The first rule is used to apply application. It substitutes all
variables bound by a λ in a term which are free variables in
the remaining subterm to witch it is applied. Look at the
following example:

(λy.(λx.x + y))2 3
β→ (λx.x + 2)3

β→ 3 + 2

β→ 5

Before the first reduction step y is bound by the first λy but
it is a free variable in the remaining term so 2 is applied to
all occurrences of y in this term and the λy at the beginning
is discarded. The second step does the same for x and 3.

3.3.2 α-conversion
The second rule is called alpha conversion2. It is used to re-
name variables that have the same name but different mean-
ings in one lambda term. It is based on the fact that the

2Actually this is the first rule. Presenting it as second one
it is easyer to understand.

names of variables in λ calculus are only symbols and can
be changed without changing the semantics of the λ-term.

Consider:

(λy.(λx.x y))x

if you apply β-reduction to this lambda term the count
of free variables in the remaining term drops from 1 to 0.
Abruptly x is occurring two times inside the λ-term. This
should not happen because the x outside the brackets is not
the same as the one inside.

Using α-conversion each variable that is used two times in
one λ-term is renamed to show their different meanings. The
above term would be reduced the following way:

(λy.(λx.x y))x
α→ (λy.(λx1.x1 y))x

β→ λx1.x1 x

This results in the correct solution.

The notation for replacing one symbol in a λ-term with an-
other is the following:

M[x/y]

This means that in M each occurrence of y is replaced with
x. It will be needed later again.

3.3.3 δ-reduction
The δ-reduction also called constant-reduction is applied in
two cases. The first is when some base operations have to
be calculated on constants like:

2 + 2
δ→ 4

The second is the application of combinators3, which are
actually only high-order constants. Principly they are func-
tions of high-order but they got names and can now be han-
dled like base operations. For example look at the following
expression:

id t
δ→ t

3.3.4 η-reduction
Each λ-term

λx.(M x)

can be reduced the following way, if x is not free in M

λx.(M x)
η→ M

The interesting fact with η-reduction is that one can handle
every expression as a function. This is reached because η-
reduction proofs that

y ≡ λx.(y x)

3.4 Combinators
Combinators or closed λ-terms are those terms which do not
have free variables. This means FV (M) = ∅.
3They are described in the next section.
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One example might be the identity combinator:

Id = λx.x

Applied to an arbitrary λ-term it produces the same λ-term
again.

(λx.x)M ≡ M

There are much more combinators, which realize boolean
values, integer numbers and arithmetic and logical constructs.
Often they are given a name so one has not to write them
down over and over again.

3.4.1 boolean combinators
To express conditions a λ-term for if-then-else constructs
can be given.

At first functions for the values true and false are needed.
These two values are not really functions but remember that
everything can be expressed as a function and the basic λ-
calculus has no method of expressing literal values. The
function for true is

λx y.x = true

a projection on the first argument and false is

λx y.y = false

a projection on the second argument.

Now an if-construct can be defined the following way:

λz x y.z x y

The variable z is true or false while x and y give the ’then’
and the ’else’ branch.

Consider the following example form (aut) to get a feeling
for the usage:

(λz x1 x2.z x1 x2)(λx y.x)y1 y2

β→(λx1 x2.(λx y.x)x1 x2)y1 y2

β→(λx2.(λx y.x)y1 x2) y2

β→(λx y.x)y1 y2

β→(λy.y1)y2

β→y1

This construct can now be used in a more readable form in
every λ-term like

if z then x else y

3.4.2 Fixed-point combinator
Because in λ-calculus you can not use a function f before
it is defined there is some problem with using recursion.
But to define the semantics of an arbitrary programming
language we will most likely need recursion, if only to define
the semantics of while statements but probably also that of
recursive functions and procedures.

Fortunately this problem is solvable. What does a recursive
function do? It takes the result of itself to compute its result.
The result of the whole call is called fixed-point because the

function can only have a valid solution if there is a point
where it produces no new values. The value is fixed at this
point.

Consider

f(x) = 5 The only fixed-point is 5.

g(x) = x2 − 2 The fixed-points are 2 and -1.

h(x) = x This has an infinite fixed point.

So it is clear that the formal definition for a fixed point looks
the following way:

Definition 2. Fixed-point

fix(f) = f(fix(f))

In λ-calculus this would be expressed as:

fix f = f fix f

The only remaining problem is the structure of fix. For this
the interesting fact is used that the λ-term:

λx.(x x)

Produces - if applied to itself - itself as output:

(λx.(x x))(λx.(x x))
β→ (λx.(x x))(λx.(x x))

The only thing that has to be added to get fix or Y as it is
usually called is a parameter that takes the function f and
reproduces this function:

Y = λy.(λx.y(x x))(λx.y(x x))

And now it is possible to express recursion with the λ cal-
culus.

4. A SIMPLE DENOTATIONAL SEMANTIC
4.1 Syntactic domains
At first, look at the the input values for the semantic func-
tions. Since you cannot assign a meaning to anything you do
not know, you have to build the sets of syntactic constructs.
For theses sets you can and will build functions which will
assign a sense to the syntax later.

These sets of syntactic constructs are called syntactic do-
mains. To get a feeling for these constructs and how they
will be evaluated by denotational semantics you will see a
simple example.

One type of syntactic domain might simply be all integer
constants.

Num = . . . ,−2,−1, 0, 1, 2, . . .

They form a language constructed by the alphabet {0, 1, 2,
3, 4, 5, 6, 7, 8, 9} and the following context-free grammar 4:

ν ::=νδ|δ
δ ::=0|1|2|3|4|5|6|7|8|9

4Because we want to talk about semantics there will be not
much explanation of syntax and grammars here. Please refer
some other material if you do not know these concepts.
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If you do not have any semantics for them something like
’395’ means nothing more then the word build of concate-
nating the three digits 3, 9 and 5 one after the other. The
numerals of the alphabet are usually standing for integer
constants. This means there is a function V:

V : Num 7→ Int

VJνδK = 10 ∗VJνK + VJδK
VJ0K = 0 VJ1K = 1

VJ2K = 2 VJ3K = 3

VJ4K = 4 VJ5K = 5

VJ6K = 6 VJ7K = 7

VJ8K = 8 VJ9K = 9

These rules give the semantics for each syntactic construct.
The syntax is surrounded by J and K to distinguish it from
the elements of the meta language. The numerals in between
the brackets are strings while the ones outside are in italics
and are standing for the real integer constants.

You might say that this is really obvious but the strength of
good formalisms is that they are correct, even for the most
simple example and that you can depend on them when the
examples are not that obvious.

The point is that you should have understood, that any
programming language would correctly report an error when
you try to do something like 0 =′ 0′

4.2 Semantic domains
One application of the function V results in an integer value
computable by a machine which is one out of the big do-
main of all computable integer values which approximate
all mathematical integers. They only do approximate them
because the mathematical integers are an infinite domain
and a computer can only work with finite numbers, as was
already mentioned.

Such a domain is called semantic domain. Each element of
the semantic domains defines the meaning of certain con-
structs from the syntactic domains. But semantic domains
are not only discrete values like integers or booleans, but
also the basic functions over the integers and the partial
functions approximating the basic functions on a finite in-
terval.

Semantic domains form a lattice or complete partial order
which means among other thing that they all have a relation
v called ’approximates’.

Lets take the function f(x) = x out of the semantic do-
main of all functions over the integers. The function g(x) =
x where xεZ is an approximation of f because it is limited
to the positive integers but in the domain it is defined for it
corresponds with f . This means g v f .

For each semantic domain there is also a least element called
⊥ ’bottom’. This is the element that is according to v
smaller than any other element in the semantic domain. It
gives no information and is used for things like infinite loops

that do not even produce some information while looping.

Knowing all this a formal definition for semantic domains
can be given like Fehr (Feh89) and others did.

Definition 3. The structure A = (A,vA) is a semantic
domain (cpo) (complete partial order) if:

1. The relation vA is a partial order on A (called ap-
proximation relation), meaning vA is reflexive, anti-
symmetric, and transitive. If A is obvious from the
context vA is shortened to v.

2. The set A contains regarding to the relation v a min-
imal element ⊥A, meaning that the relation ⊥Av a is
valid for each aε A. The element ⊥A is also shortened
to ⊥ if A is obvious from the context.

3. Each chain of elements K ⊆ A has regarding to the
order ⊥A a least upper bound

F
K in A, where K is

called chain if for each two elements k1, k2ε K applies:
k1 v k2 or k2 v k1.

4.2.1 State
For denotational semantics one of the most important se-
mantic domains is the domain of all states a program can
get in. Since not all semantics are as simple as integers a
more complex syntactic construct needs a state to work on.

Such a state is a function from variable identifiers ξ to cor-
responding values

As was already mentioned, every expression, every command
and every program, consisting out of commands and expres-
sions, transforms one state into another thereby changing
the allocation of values to identifiers.

The semantic domain of states S is the set of all functions
from identifiers Ide to values Value.

S = Ide → Value

One particular state:

σ : S

defines the current values of the variables of one program
run. The notation means that the state is one out of the set
of states or of the data-type of states.

4.3 Semantic functions
The final element for a complete denotational semantics are
the functions, which map the syntactic domains into the se-
mantic ones. They are called semantic functions. The func-
tion V from section 4.1 was one. Usually the λ calculus is
used to express these functions. In the following the seman-
tics for a simple programming language, actually a subset
of PASCAL is given, like Allison (All89) did. As values it
only has the integers like they are specified by V.

The first thing to do is presenting the syntactic domains in
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form of abstract syntax:

Cmd :

γ ::=ξ := ε|
if ε then γ else γ|
while ε do γ|
γ; γ

skip

Exp :

ε ::=ε Ω ε| − ε|ν|ξ
Opr :

Ω ::= = | 6= | < | > | ≤ | ≥ |+ | − | × |/
Bexp :

After having done this, the constructs that semantics should
be defined for are clear.

4.3.1 Expression semantics
At first the semantics for the simple expressions are defined.
To do this it is necessary to construct the semantic domains
into which the syntactic constructs will be mapped.

Expressions and later on also commands map an expression
onto a value which can only be an integer in this simple
case. They are also dependent onto the current state of the
program as was mentioned under Section 4.2.1. This would
mean the semantic function for expressions would look like:

E : (Exp× S) 7→ Int

But because it is not the intention to get the semantics for
tupels of expressions and states a little trick is used to get
a function that only takes an expression. This function can
return another function that maps the current state onto
the value that the expression gets under this state. How this
works was already mentioned under currying (Section 3.1).

E : Exp 7→ S 7→ Int

A second semantic domain is needed for all the operations
used inside of the expressions. It maps the operations onto
the integer functions and the comparators onto the boolean
values.

Ifns = Int× Int 7→ Int

O : Opr 7→ Ifns

There are no functions for defining the boolean operations
yet. For this simple example consider 0 to be false and
all other values to be true. Now the semantic functions for
expressions are constructed:

EJξK = λσ.σJξK
EJνK = λσ.VJνK

EJε Ω ε′K = λσ.OJΩK〈EJεKσ,EJε′Kσ〉
EJ−εK = −EJεKσ
OJ+K = + : Int× Int 7→ Int

etc. for the other arithmetic operations

OJ<K =

λ〈v1, v2〉.if v1 < v2 then true else false : Int× Int 7→ Int

etc. for the other boolean operations

It should be clear what is happening. The semantics of an
identifier ξ is the value of ξ under a given state. The value of
a value was given by the function V and the state is ignored.
An Operation is a function which takes a tupel of Int-values
and produces a resulting Int-value. The pointed brackets
mark a tupel here. The tupel is evaluated by evaluating
the two expressions surrounding the operator symbol. The
value of a negative expression is the negative value of this
expression. The boolean operations use the ’if-then-else’-
combinator.

4.3.2 Command semantics
The semantics of commands is to take a statement and re-
turn a function which expresses how this statement trans-
forms one state into another.

C : Cmd 7→ S 7→ S

The semantic functions for the example language look the
following way:

CJξ := εK = λσ.σ[EJεKσ/ξ]

CJif ε then γ else γ′K =

λσ.(if EJεKσ then CJγK elseCJγ′K)σ
CJwhile ε do γK =

λσ.(if EJεKσ then CJwhile ε do γK ◦CJγK else Id)σ

CJγ; γ′K = CJγ′K ◦CJγK
CJskipK = Id

This is again readable very intuitively with some thought.
The semantics of an assignment under a given state is to
update the state by setting the identifier ξ to the value ex-
pressed by the expression ε. The ’if’-construct simply takes
on the semantics of the ’if-then-else’-combinator executing
either the command γ or the command γ′. The ’while’-
statement is a recursion, like it can be defined by the fixed-
point combinator. It executes its body if the expression ε is
true and then calls itself again or does nothing if the expres-
sion is not true. The next function simply splits command
sequences and skip does actually nothing.

Now it is time to present a simple example how a short pro-
gram can be evaluated by denotational semantics. Consider
the following little program part:

x :=1;
y :=2;
i f x<y then x:=x+y else x:=y−x

For simplification σ1 is defined to be σ[1/x, 2/y]. The eval-
uation by denotational semantics works now by applying the
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semantic functions to the program P:

CJP Kσ0

= CJy := 2;

if x < y

then x := x + y

else x := y − xK ◦CJx := 1Kσ0

= CJ
if x < y

then x := x + y

else x := y − xK ◦CJy := 2Kσ0[EJ1Kσ0/x]

= CJ
if x < y

then x := x + y

else x := y − xKσ0[VJ1Kσ0/x,EJ2Kσ0[VJ1Kσ0/x]/y]

= CJ
if x < y

then x := x + y

else x := y − xKσ0[1/x,VJ2Kσ0[1/x]/y]

= CJ
if x < y

then x := x + y

else x := y − xKσ1

= (if EJx < yKσ1 then CJx := x + yK else CJx := y − xK)σ1

= (if OJ<K〈EJxKσ1,EJyKσ1〉 then

CJx := x + yK else CJx := y − xK)σ1

= (if OJ<K〈1 , 2 〉 then CJx := x + yK else CJx := y − xK)σ1

= (if (if 1 < 2 then true else false) then

CJx := x + yK else CJx := y − xK)σ1

= (if true then CJx := x + yK else CJx := y − xK)σ1

= CJx := x + yKσ1

= σ1[EJx + yKσ1/x]

= σ1[OJ+K〈EJxKσ1,EJyKσ1〉/1]

= σ1[OJ+K〈1, 2〉/x]

= σ1[3/x]

This should show how the specifications work but also that
it is not practicable to apply this manually to big programs.

4.3.3 Program semantics
It might seem magical where the first σ in the example is
coming from. As you can see the example is no whole pro-
gram so be assured that there is some function P that pro-
duces that first σ out of the programs input. In a complete
denotational semantics there has to be such a function P for
program semantics. It usually takes an input, produces an
empty starting state where no identifiers are bound to any
values and finally projects onto the output of the program,
which is what the result of a program should be.

P : Inp 7→ Out

PJγK = λinp.(π3 CJγK〈σ0, inp, out0〉)

For completely specifying this function one needs semantics
for input and output commands and an extension of the

basic semantic functions specified earlier.

C : Cmd 7→ (S× Inp×Out) 7→ (S× Inp×Out)

Please read further literature like (All89) for the detailed
new specification of C.

5. FURTHER ISSUES
For the definition of the whole semantics of a programming
language there are much more rules, constructs and defi-
nitions some of which I want to mention shortly for your
reference.

The λ calculus also has a typed form in contrast to the
untyped which was presented here. For the specification of
the semantics in section 4.2.1 it was used implicitly. But it
would have gone to far to present this here because this also
needs some extensions for keeping the ability of recursion of
λ-terms.

As was already mentioned there are still more combinators.
With them it is possible to completely define numbers and
the operations on them. This is based on the so called
Church numerals.

There is a big mathematical apparatus behind the theory
of semantic domains which has something to do with the
fact that everything in λ-calculus is a function, even values
but that a set of values can generally not be isomorphic to
the set of total functions from the values to some other set.
Try to find informations about Scott’s theory of lattices also
called complete partial orders.

The complete specification of directly evaluable semantics
was not given here. The so called ’direct semantics’ do also
contain constructs for declarations, error-semantics, proce-
dures and functions.

Continuation semantics make it possible to specify the se-
mantics of gotos5, functions and procedures. They add a
new semantic domain of continuations which are something
like a return adress and allow to break the order of state-
ments.

As already mentioned one interesting field of application for
denotational semantics is the creation of parsers. For prac-
tical minded people I suggest to try implementing the rules
above or look in (All89). All the rules above and much more
are implemented there in Pascal and Algol-68.
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1. INTRODUCTION
Being an example to the use of denotational semantics this
text should be an overview on the paper ’A Prototype of a
Schema-Based XPath Satisfiability Tester’ by Groppe and
Groppe [3]. It will show all the basic functions needed to
compute the examples at the end of these paper.

For better understanding the reader should read before ’De-
notational semantics’ by Klemens Muthmann. Also the con-
cepts of XML [5], XML Schema [2] and XPath [1] should not
be new to the reader.

In this paper the concepts of the satisfiability tester will be
shown. Therefore we will compute some examples. For that
we need some knowledge about XML Schema, which will
be introduced in section 3. Because of the bad readability
of XML Schema for humans a XML example file has been
written. This file will be used to explain some XPath basics.
We then also need some additional functions to be able to
compute the semantic rules. After that we can analyse the
three examples. At the end there will be some points of
criticism and a conclusion.

Because it should only be an overview on the paper the loop
detection and the computation of predicate expressions will
not be described.

1.1 A satisfiability test for XPath
Examples for the use of this satisfiability tester can’t be
given (due to the fact that no implementations could be
found), but the intent of this tester is the analysis of XPath
queries.

XPath itself is a query language for XML data. So the satis-
fiability tester should help to avoid unnecessary submission
and evaluation of unsatisfiable queries. Therefore it evalu-
ates XPath queries in presence of XML Schema files. The
key benefits of testing with the presence of schemas are faster
testing (because we only need the XML Schema file and not
a XML instance), less processing time and less query costs.

Thus testing only with a schema the tester can only re-
turn unsatisfiable, if the XPath query evaluates as false, but
can not return satisfiable, if the query returns true on the
schema. On the XML instance the query can even be unsat-
isfiable. So in this fact the tester could only return maybe
satisfiable.

2. XML AND XML FEATURES
2.1 XML Schema

<schema >
<group name=’pages ’>

<sequence >
<element name=’page’ minOccurs=’0’

maxOccurs=’1’>
<complexType >

<sequence >
<element name=’title ’ minOccurs=’0’

maxOccurs=’1’ type=’string ’/>
<element name=’link’ minOccurs=’0’>
<complexType >

<group ref=’pages’ minOccurs=’0’
maxOccurs=’unbounded ’/>

</complexType >
</element >

</sequence ></complexType ></element >
</sequence >

</group >
<element name=’web’>

<complexType >
<group ref=’pages ’ minOccurs=’0’

maxOccurs=’unbounded ’ />
<attribute name=’id’ type=’integer ’ />

</complexType >
</element >
</schema >

As you can see XML Schema is a XML language which de-
scribes XML itself with specified rules.
In this schema file we have a group with name ’pages’ that
has one child. The child element ’page’ has 3 children: ’ti-
tle’, ’link’ and a reference to ’pages’. This reference is a
loop. Thus we can infinitely repeat this construct. But the
reference points only to the style definition in the schema
file and not to the specific tag in the XML instance.

The second definition is an element ’web’ which has the chil-
dren id as an attribute and the element page due to the ref-
erence on pages. So like the first example it refers not to
the element itself but its children.

So in this example we have a path to the title element with
’/web/page/title’.

2.2 XML
Because of the difficult readability of XML Schema files
this example XML file has been writen which refers to the
schema file and validates through the rules given in the
schema file.
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You should remember that the semantic rules (they will be
introduced in section 3.3) work on the XML Schema and
not on this XML instance.

<?xml version=’1.0’ encoding=’UTF -8’?>
<web id=’1’
xsi:schemaLocation=’http: //www.example.org/web.xsd’>
<page>

<title >Outer </title >
<link>

<page>
<title >Inner </title>

</page>
</link>

</page>
</web>

Here we can match the rules of the XML Schema file against
the XML tags and see clearly the reference, which is de-
scribed before.

2.3 XPath
Because we need some basic XPath queries in the examples
a quick overview of the syntax will be presented.

The ’/’ represents an absolute path beginning from the root
node. If we want to return a specific node, we can reference
to it by building a path from the root node to the node itself
by separating each node with a slash.

Because to the fact, that ’child’ is the standard axis in
XPath, we can rewrite it.

XPath: /web =̂ /child::web

<?xml version="1.0"?>
<web id=’1’>

<page>
<title >Outer </title >
<link>

<page>
<title >Inner </title>

</page>
</link>

</page>
</web>

XPath: /web/page/title

<?xml version="1.0"?>
<web id=’1’>

<page>
<title>Outer</title>
<link>

<page>
<title >Inner </title>

</page>
</link>

</page>
</web>

’//’ refers to all nodes, which accomplish the following rules.
As you can see, ’//page’ returns all nodes, that accomplish
the term ’page’. ’//’ is the short form of referencing, but
it differs between the notation. ’/page’ will not return the
same like ’//page’, only if the node ’page’ exists only one
time.

XPath: //page

<?xml version="1.0"?>
<web id=’1’>

<page>
<title >Outer </title>
<link>

<page>
<title >Inner </title >

</page>
</link>

</page>
</web>

With the ’@’ prefix we refer the attributes. In the case of
’//@attribute’ it will return all appearances of the attribute
with the name ’attribute’. Due to the rewriting rules we can
replace ’attr::’ with ’@’.

XPath: //@id =̂ //attr::id

<?xml version="1.0"?>
<web id=’1’ >

<page>
<title >Outer </title>
<link>

<page>
<title >Inner </title >

</page>
</link>

</page>
</web>

With the square brackets we can make a node test. If we
write ’//[@attribute]’, we test all nodes for the attribute
’attribute’. Only if the node contains the attribute, the node
will be returned. We can also write ’1’ in square brackets
to determine the first element of a set. The function ’last()’
will then return the last element of a set.

XPath: //[@id]

<?xml version="1.0"?>
<web id=’1’>

<page>
<title >Outer </title>
<link>

<page>
<title >Inner </title >

</page>
</link>

</page>
</web>

Out of the original paper the tester supports the following
expressions:

e ::= e | e | /e | e/e | e[q] |axis::nodetest
q ::= e | e = C | e = e | qandq | qorq | not(q) | (q) |
true() | false()
axis ::= child | attr | desc | self | following | preceding |
parent | ances | DoS | AoS | FS | PS
nodetest ::= label | ∗ | node() | text()

To solve the examples and to make it simpler for this paper
we only need a subset:

e ::= /e | e/e | axis :: nodetest
axis ::= child | attr
nodetest ::= label
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3. XPATH SATISFIABILITY TESTER
3.1 Prerequisites
We also need some additional functions.

The function NT (x, label) is a node test. It checks, if a
schema node and a given label are identical.

The function iAttr(x) returns a set of all attributes of a
given schema node.

The function iChild(x) computes all children of a given
schema node, returns a set and is defined as following:

iChild(x) = {z | y ∈ S(x) ∧ z ∈ succe(y)

∧ (isiElem(z) ∨ isiText(z))}

The auxiliary function S(x) relates the node x to the self
node and all the descendant nodes of x, which occur before
the instance child nodes of x in the document order. Now
all successors of y will be calculated and returned to z. Due
to the definition of XML z needs to be checked to be an
element or a text, because also attributes are children of a
node.

In the paper by Groppe and Groppe [3] some functions like
iAttr are only described in prose. This makes it hard to
determine the output of these functions. Thus we can only
try to interpret and hope to get the right output.
You also can come to the conclusion, that there can be some
inaccuracies. For this academically paper the authors should
have described all functions with mathematical terms.

3.2 Schema Path
A schema path ’p’ is a sequence of pointers to the schema
path records < XP ′, N, z, lp, f >

• XP’ is an XPath expression,

• N is a node in an XML Schema definition,

• z is a set of pointers to schema path records,

• lp is a set of schema paths,

• f is a schema path list or a predicate expression q’

ϑ(r, g) : The function generates a new schema path record
e =< xp′, r, g,−,− >, adds a pointer to e at the end of the
given schema path p and returns a new schema path.

For the examples we only need the first three entries of
a schema path. ’lp’ holds the information about detected
loops and f will only be computed if there is a predicate ex-
pression q’. The loop detection will not be used, so it will
also not be explained here.
Because also ϑ is only described in prose, it is really hard to
determine its output. Especially the pointer to prior entries
makes it difficult to show on paper, but a line based method
with identifiers in the front will be used to refer to these
identifiers for the results.
ϑ will always generate a new schema path record, if all pre-
requisites are fulfilled. It will generate xp’, which is the
actual part of the XPath query we process, r, which is the
actual node in the XML Schema and g, which is set of point-
ers to prior schema path records.

3.3 Denotational Semantics
The denotational semantics in the paper are not in λ -
Notation, although it is the most common method in de-
notational semantics. The functions in this paper get a syn-
tactic expression and a parameter. The syntactic expression
is in this case an XPath expression and the parameter is a
set of schema paths. They use a set of schema paths because
through the evaluation of the XPath expressions it can hap-
pen, that we get two different schema paths, which must be
evaluated separately.
We also need only a subset of the given semantic expressions
to solve the examples:

L : XPath expression× schema path → set(schema path)

L[[/e]](p) = L[[e]](p1) ∧ p1 = (< /, /,−,−,− >)

L[[e1/e2]](p) = {p2|p2 ∈ L[[e2]](p1) ∧ p1 ∈ L[[e1]](p)}
L[[child :: n]](p) = {ϑ(r, p(S))|

r ∈ iChild(p(S).N) ∧NT (r, n)}
L[[attr :: n]](p) = {ϑ(r, p(S))|

r ∈ iAttr(p(S).N) ∧NT (r, n)}

The first rule tells us, that we can compute ’e’ when we sub-
stitute ε with < /, /,−,−,− >. This schema path record is
the root schema path record, because the third parameter
’z’ points to no other schema path record.
The second rule splits the XPath expression and computes
each component of the expression beginning on the right
side, due to the fact, that we need ’p1’ to compute the left
function.
The third rule computes the standard axis of XPath. Be-
fore we can calculate ϑ we have to compute the prerequisites.
First iChild and then the node test. The auxiliary function
’p(S)’ gets the last schema path record out of the schema
path. The letter ’S’ represents the size of the schema path,
thus ’p(S)’ means the last one, ’p(S-1)’ means the pre-last
and so on.
’p(S).N’ refers to the specific entry in the schema path record
and gets us the node of the XML Schema.
The last rule is similar to the third one, only iChild is sub-
stituted by iAttr.

In the original paper [3] the authors could also in this case
try to improve these expressions. In an article [4] (cited also
by the authors) is described how XPath expressions can be
rewritten to a simpler form by eliminating some axis. This
improvement could save two third of the expressions and
would make it in some ways much easier to understand.
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4. EXAMPLES
4.1 Example 1
We will start with a simple XPath expression ’/web’:

L[[/web]](∅) = L[[web]](< /, /,−,−,− >)

= L[[child :: web]](< /, /,−,−,− >)

= {ϑ(r, < /, /,−,−,− >)|r ∈ iChild(/) ∧
NT (r, web)}

iChild(/) = {z|y ∈ S(/) ∧ z ∈ succe(y) ∧
(isiElem(z) ∨ isiText(z))}

= {web}
L[[/web]](∅) = {ϑ(r, < /, /,−,−,− >)|r ∈ {web} ∧

NT (r, web)}
= {ϑ(web, < /, /,−,−,− >)}

Result:
(R1) {( < /, /,−,−,− >,
(R2) < /web, web, {R1},−,− >)}

As you can see, we can use the first rule of our seman-
tic expressions to start the process. ’p1’ will always be
< /, /,−,−,− > for that rule. Due to the standard axis
in XPath we then can rewrite ’web’ to ’child::web’. We now
can use the third rule. ’r’ is the next part that needs to be
calculated for the use in NT and ϑ. For that we execute
the function iChild with ’/’ as parameter, because p(S).N
matches ’/’ in our last schema path entry.
In iChild we get all successors of the root node ’/’. There
we only get ’web’ as a result. This result is also an element
so we can return ’web’.
Now we can process NT(web, web) and get back ’true’. The
next step is to calculate ϑ. For ’r’ we can write ’web’ and
p(S) is our latest schema path entry.
As you can see this XPath expressions is satisfiable due to
the XML Schema.

4.2 Example 2
The next example will show an unsatisfiable XPath expres-
sion ’/page’:

L[[/page]](∅) = L[[page]](< /, /,−,−,− >)

= L[[child :: page]](< /, /,−,−,− >)

= {ϑ(r, < /, /,−,−,− >)|r ∈ iChild(/) ∧
NT (r, page)}

iChild(/) = {z|y ∈ S(/) ∧ z ∈ succe(y) ∧
(isiElem(z) ∨ isiText(z))}

= {web}
L[[/page]](∅) = {ϑ(r, < /, /,−,−,− >)|r ∈ {web} ∧

NT (r, page)}
= ∅

In this case most of the example is identically to the prior
one. Only the node test will fail. As result, we get back an
empty set.

4.3 Example 3
A little bit longer XPath expression ’/web/@id’:

L[[/web/@id]](∅) = {p2 | p2 ∈ L[[@id]](p1) ∧
p1 ∈ L[[/web]](∅)}

L[[/web]](∅) = (R1) {(< /, /,−,−,− >,

(R2) < /web, web, {R1},−,− >)}
p1 = (R1) < /, /,−,−,− >,

(R2) < /web, web, {R1},−,− >

L[[/web/@id]](∅) = {p2|p2 ∈ L[[@id]](p1)}
= {p2|p2 ∈ L[[attr :: id]](p1)}

L[[attr :: id]](p1) = {ϑ(r, p1) | r ∈ iAttr(web) ∧
NT (r, id)}

L[[attr :: id]](p1) = {ϑ(r, p1) | r ∈ {id} ∧NT (r, id)}
= {ϑ(id, p1)}
= (R1) {(< /, /,−,−,− >,

(R2) < /web, web, {R1},−,− >

(R3) < /web/@id, id, {R2},−,− >)}
L[[/web/@id]](∅) = {p2 | p2 ∈ L[[@id]](p1)}

p2 = (R1) < /, /,−,−,− >,

(R2) < /web, web, {R1},−,− >

(R3) < /web/@id, id, {R2},−,− >

L[[/web/@id]](∅) = {(p2)}

Result:
(R1) {( < /, /,−,−,− >,
(R2) < /web, web, {R1},−,− >,
(R3) < /web/@id, id, {R2},−,− >)}

As you can see we use the second semantic rule to split the
calculation. The calculation of L[[/web]](ε) is identically to
the first example. We then can match ’p1’ and our schema
path of the result of the calculation. Due to that we compute
L[[@id]](p1). We rewrite ’@id’ to ’attr::id’ and can use the
fourth expression. iAttr(web) will return all attributes of
’web’. In this case we get back ’id’. Now our node test will
succeed and we can calculate ϑ.

5. CRITICISM
In previous sections I have mentioned some points that could
have been written better.

The most annoying part is the description of functions only
in prose. Because of that for this paper I can’t give the assur-
ance that all output is correct. These functions were tried to
interpret and the right conclusions have been reached hope-
fully. And although we used only a small part, functions
like iAttr, ϑ or p(S) are some examples.

Furthermore there are sometimes functions that were double
defined, for example iAttr, isiAttr and iAttribute, isRoot
and root. Here the authors could have written some better
methods.

Another point is the definition of the semantic rules. Overall
there exists 25 rules, but due to [4] it is possible to cut
away at least two third of them. Perhaps they don’t use
that paper because they complain that they have written
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an incomplete (but fast) satisfiability test.

The semantic rules are another factor. If you don’t know the
specification of XPath and don’t know the standard axis and
the rewriting you can’t compute any XPath query. But that
fact is nowhere to read in the paper. Another problematic
fact is the enormous complexity of some rules. Sometimes
it can’t be avoided but then a good explanation would help.
This paper sometimes lacks of explanations in general.

6. CONCLUSION
In the end one can’t recommend the paper by Groppe and
Groppe. All in all also no area of application for this tester
is seen. It could perhaps be used for testing XPath queries
during the development, but in every day usage the need is
probable marginal, due to the fact the developer should use
only queries that are satisfiable.

The main fact for this little need is mainly because of the
fact, that the tester could only return the result not satisfi-
able definitely. If the tester would test also a XML instance
it possibly could be a good alternative for actual XPath
query parser.

In the paper is also mentioned a performance analysis be-
tween the prototype, Saxon Evaluator and Qizx Evaluator.
But that analysis compares only not satisfiable queries and
due to that one can assume that in every day usage such
speedup factors can’t be achieved.

Overall one have to say that they showed an interesting way
of processing XPath queries and this approach could return
a good way for processing XPath in general.
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ABSTRACT
This is an overview paper regarding the common technolo-
gies of rewriting. Rewrite systems (or term rewriting sys-
tems), rewrite rules and the structure of the terms that are
included in the system’s rewrite rules are discussed. Rewrit-
ing provides methods of replacing subterms of a formula
with other terms. It has its applications in mathematics,
computer science and logic. The important properties of
term rewriting systems, termination and confluence, are cov-
ered here.

Categories and Subject Descriptors
F.3.2 [Logics and Meanings of Programs]: Semantics
of Programming Languages; F.4.2 [Mathematical Logic
and Formal Languages]: Grammars and Other Rewrit-
ing Systems; F.4.3 [Mathematical Logic and Formal
Languages]: Formal Languages—Algebraic language the-
ory ; D.3.1 [Programming Languages]: Formal Defini-
tions and Theory—Semantics

General Terms
Algorithms, Languages, Theory

Keywords
Completion, confluence, normal form, reduction, rewriting,
rewriting rules, rewriting systems, termination, terms, well-
foundedness, word problem

1. INTRODUCTION
When we talk about rewriting, in the majority of cases term
rewriting is intentioned, although there are other “branches”
like graph rewriting1. This paper introduces some basics
around the structure of terms, term rewriting systems and
some very important properties, like confluence and termi-
nation. Furthermore, decidability is playing a big role. Some
practically relevant issues, like completing a non-confluent

1Graph rewriting is covered in an extra paper in this course.

term rewriting system, are contained here, too. Computing
a term’s normal form will provide some information about
its “meaning” encoded in the rewrite rules of the system.

We will see, how terms can be built, and analyze their be-
havior in a term rewriting system, surrounded with some
theoretical background. Then the “word problem” is ad-
dressed and, thereafter, it is shown, when we can decide,
whether a special term rewriting system has a specific prop-
erty like confluence. “Improving” a given term rewriting
system that is missing such an important property using
algorithms will play a significant role.

Main fields of application are operational semantics of ab-
stract data types, functional programming languages and
logic programming languages. Rewrite systems provide a
method of automated theorem proving. This makes the
concept of term rewriting important for theoretical com-
puter science as well as for tools for proving and complet-
ing. In logic, the procedure for determining normal forms
like the negation normal form2 of a formula can be conve-
niently written as a rewriting system:

¬¬H → H
¬(G1 ∧G2) → (¬G1 ∨ ¬G2)
¬(G1 ∨G2) → (¬G1 ∧ ¬G2)

The negation normal form is reached, if none of the tree
rules apply. In this case, each negation symbol ¬ occurs
only immediately before a variable. Your can see, that ¬
takes one argument (we call this a unary function symbol),
but the brackets are missing. Such a prefix notation is quite
common in many contexts.

2. TERMS
The expressions on both sides of the arrows in the above
example are called terms. A term can be built from vari-
ables, constant symbols and function symbols (or opera-
tions). Each function symbol has an arity. The arity is the
count of parameters, the function accepts. f1(x1, x2) would
have the arity 3 and f2(x1, x2, x3, x4) the arity 4. The sig-
nature Σ is a set of function symbols, where each f ∈ Σ has
an arity, a non-negative integer value. The arity can classify
the signature’s elements by grouping all n-ary elements of
Σ in Σ(n). Constant symbols are function symbols of arity
0 (this would be Σ(0)).

Examples: The successor-function succ(t) is a unary func-

2See [4] page 82.
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tion symbol. The binary function symbol + can be written
in infix form, e.g. x + (y + z) instead of +(x, +(y, z). With
this knowledge, we can say, that ¬ of the example in the
introduction is a unary function symbol and ∧ and ∨ are
binary ones. If the n-fold application of a unary function
symbol f to a term t should be expressed, it can be abbre-
viated by writing fn(t) instead of f(f(...f(t)...)).

Let V be a set of variables with the signature Σ disjoint
from V (Σ ∩ V = ∅). We can define the set T (Σ, V ) of all
terms over V inductively:

• V ⊆ T (Σ, V )

• ∀n ≥ 0, f ∈ Σ(n), t1, ..., tn ∈ T (Σ, V ):
f(t1, ..., tn) ∈ T (Σ, V )

This means, that every variable is a term and every ap-
plication of function symbols to terms results in terms, too.
With this inductive definition tree-illustrations can be made
with nodes representing function symbols and edges point-
ing to the argument terms of them. Leaf nodes are rep-
resented by variables and constant symbols. The example
term t = f(g(x, x), x, h(x)) is illustrated in Figure 1. Such
trees are very useful to determine a subterm of the term t
at a specific position p.

Figure 1: The term t in tree-illustration.

The variables in the introductionary example are H, G1

and G2. There are terms, that do not contain any variables.
They are called ground terms. An example for a ground
term is succ(0) for Ackermann’s function (see 3.4), contain-
ing a unary function symbol succ and a constant symbol
0.

3. TERM REWRITING SYSTEMS
The notion “term rewriting system” implies that there must
be a system containing something. In our case, it is a set
whose elements are called rewrite rules. Some literature, e.g.
[1], considers the term rewriting system itself as the set con-
taining the rewrite rules. Apart from that, it is common to

regard these rewrite rules contained in a set called reduction
system (or rule system). The term rewriting system (TRS)
is then a pair (T, R) with a set of terms T and a reduction
system R, a collection of rewrite rules over those terms in
T and a reduction relation. In this paper, the first defini-
tion, considering a term rewriting system as a simple set of
rewrite rules is used.

3.1 Identities
But before defining rewrite rules, we first have a look at
identities. Identities can be regarded as pairs of terms over
a given set of terms, more formally: (t1, t2) ∈ T (Σ, V ) ×
T (Σ, V ), where V denotes the set of variables and Σ the
signature. We are using the notation t1 ≈ t2, according to
[1]. An identity has a right-hand side (rhs) and a left-hand
side (lhs), each side containing a term t ∈ T (Σ, V ).

In the context of rewriting, the identities from a set of iden-
tities E are regarded as rewrite rules of a term rewriting
system that are applied unidirectionally. The difference is,
that identities can be used to transform the instances of
the left-hand side to instances of the right-hand side of the
identity and vice versa.

3.2 Substitutions and Instances
The notion “instance” is introduced now, because this term
will occur in this paper furthermore. Assume, you have the
following rewrite rule in a term rewriting system

f(x, y)→ x

with variables x and y, You want to use this rule to trans-
form the expression f(2, 3). In this case, you have to sub-
stitute the variables x and y through 2 and 3. This is done
by a substitution

σ = {x 7→ 2, y 7→ 3}

that is able to map any occurrence of variables to terms. If
we have two terms t1 and t2 and a substitution σ, t2 is called
an instance of t1, if σ(t1) = t2. The prefix notation σt is
also widely-used for σ(t). Two substitutions σ1 and σ2 may
be composed by writing σ1(σ2(t)) or σ1σ2(t). Unification
is the process of applying a substitution to several terms.
The substitution is then called unifier. Whole terms can be
unified as well as subterms of terms.

3.3 Rewrite rules
We want our rewrite rules to be unidirectional, i.e. when we
have a subject to rewrite with a term rewriting system, we
only want to look on the left-hand sides of the rules, whether
any rule applies to our expression. For this purpose, we need
some kind of rewrite relation to connect the left-hand side
and the right-hand side of a rewrite rule. If the left-hand
side of an identity t1 ≈ t2 is not a variable and every variable
from t2 occurs in t1 as well, then it is a rewrite rule and is
denoted t1 → t2. The instance of the left-hand side of such
a rewrite rule is called reducible expression3. → (or →R,
if the corresponding TRS R is not clear from the context)
is called rewrite relation. If the system’s rewrite relation
has a specific property like confluence or termination, we

3The short form redex for reducible expression is also quite
common.
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also assign this property to the term rewriting system itself
and then say, that the TRS is confluent or terminating. A
TRS is finite, if it contains finitely many rewrite rules. In
the following, we talk about finite term rewriting systems
without explicitly mentioning it.

3.4 Example system
Consider the following term rewriting system:

ack(0, y) → succ(y) (r1)
ack(succ(x), 0) → ack(x, succ(0)) (r2)

ack(succ(x), succ(y)) → ack(x, ack(succ(x), y)) (r3)

This term rewriting system computes Ackermann’s function
(see [1] page 110) with the constant symbol 0, the function
symbols succ (unary) and ack (binary) and the variables x
and y. Now we want to use this system to compute ack(1, 1):

ack(succ(0), succ(0))
r3−→ ack(0, ack(succ(0), 0))
r1−→ succ(ack(succ(0), 0))
r2−→ succ(ack(0, succ(0)))
r1−→ succ(succ(succ(0)))

The final value is encoded in the number of successors of 0,
e.g. succ(succ(succ(0))) would be the number tree.

4. THE WORD PROBLEM
We will now discuss the approach that is managing the word
problem in the context of rewriting. Assume you have two
terms t1 and t2, a set of identities R and ≡R denoting the
equivalence generated by R. The question of the word prob-
lem is now the following:

t1 ≡R t2?

In other words, it should be determined, whether t1 can be
transformed into t2 by using a set of equations in R.

One is now interested in making this undecidable problem
decidable for the special situation. For this purpose, the
bidirectional identities in R are transformed into rewrite
rules of a term rewriting system and sometimes must be re-
garded as unidirectional term rewrite rules from left to right
and sometimes vice versa. In this matter, it is important to
check, whether the derived rewrite rules meet their definition
from 3.3. The question of equivalence can then be reformu-
lated to the following: Is there a path from t1 to t2 using
the rewrite rules in both directions? An example situation
is illustrated in Figure 2. The path t1 → t3 ← t4 → t5 → t2
has to be traversed with and against the direction of the
arrows. Formally, we could write ≡R = (→R ∪ ←R)∗ or
say, that we create the reflexive transitive symmetric closure
of→R. In the case of convergent term rewriting systems we
just have to compute the normal forms of t1 and t2 and
compare them to decide t1 ≡R t2.

Because the word problem is, in general, undecidable, a uni-
versal algorithm cannot always terminate successfully (see
[1] page 59). A nice approach of solving the word problem
for special cases is the Knuth-Bendix algorithm. We will get
back to it later, when we talk about completion.

5. TERMINATION

Figure 2: The word problem for t1 and t2.

In computer science termination is an important property.
If we want a machine to compute something, it will be of
interest to know, whether the computation terminates or
not. But unfortunately, the property of termination for term
rewriting systems is in general undecidable, i.e. there is no
universal decision procedure, that can say whether the given
term rewriting system terminates for arbitrary term rewrit-
ing systems. The undecidability is shown e.g. in [1] (pages
94–99) by reducing a touring machine to a finite term rewrit-
ing system. They conclude the undecidability of termination
for arbitrary term rewriting systems from the undecidability
of the halting problem for the touring machine.

If we want to transform an expression using the rewrite rules
of a term rewriting system, then zero, one or more rules may
apply. If an expression is obtained to which no more rules
apply, a normal form is reached and the rewrite procedure
terminates. Is this always the case after finitely many rule
applications, the system is called terminating. More for-
mally: A term rewriting system terminates, if there is no
infinite chain of rule applications t1 → t2 → t3 → · · · . Sin-
gle rewrite rules as well as the combination of applications of
different rules may cause the system to be non-terminating.
A popular example of a non-terminating rewrite rule is that
for the commutativity of addition

a + b→ b + a

that obviously may generate an infinite chain. A system
(or one single rule), that generates cycles, i.e. by the re-
occurrence of a just transformed term later in the reduction
chain, even as a subterm, is not terminating.

An approach to make termination decidable is to take only
a subset of finite term rewriting systems instead of arbitrary
ones. These can be the finite right-ground term rewriting
systems. Right-ground means, that all right-hand sides are
ground terms (contain no variables). For this special sub-
case, a decision procedure4 for termination exists.

5.1 Reduction orders
There is still the need for deciding the termination of a given
term rewriting system, even if there is no general algorithm
available. For this purpose, the given TRS can be analyzed

4For the algorithm see [1] page 100.
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using reduction orders. To define a reduction order, we will
need the notions well-foundedness, strict order and rewrite
order.

Let us shortly mention the property of well-foundedness,
because all terminating relations are enjoying it. The prop-
erty says, that there must not be any infinitely descending
reduction chain

t1 > t2 > t3 > · · ·
The properties “well-founded” and “terminating” are often
used interchangeably in the context of orders. A rewrite
order > is a strict order5 on the set of terms T , if it has the
following two properties: It has to be

1. compatible with operations:
t1 > t2 ⇒ f(· · ·1 , t1, · · ·2) > f(· · ·1 , t2, · · ·2) and

2. closed under substitution: t1 > t2 ⇒ σ(t1) > σ(t2).

Closed under substitution signifies, that an application of a
substitution σ does not change the order, that held for two
terms before. The first property means the same, but for
application of a function f to the two terms t1 and t2 for
that e.g. t1 > t2 held. The terms occur as arguments at
the same position in f (indicated by the indexed ellipses).
A good counterexample is the order over the size of terms,
which may change by applying a substitution to the terms
and thus is not closed under substitution. A reduction order
is a well-founded6 rewrite order.

A term rewriting system is terminating, if for all of its rules
t1 → t2 the order t1 > t2 holds. That means to us: To show
termination of a given TRS, we have to find an appropriate
reduction order that applies. It is now desirable to have a
pool with as many reduction orders as possible to choose one
for the TRS in the given situation. The goal is to make the
finding of those reduction orders as automatable as possible
for a given TRS.

5.2 Examples of reduction orders
In the following, some examples of possible classes of reduc-
tion orders are shown. Simplification orders are suitable for
doing automated termination proofs. They are rewrite or-
ders > with the subterm property, that t > t|p for all terms t
and all positions p in this term except the root position, with
t|p denoting the subterm of t at the position p. Examples
are

• polynomial simplification orders,

• recursive path orders and

• Knuth-Bendix orders.

A brief description of the recursive path orders: The point
is, that they compare first the root symbols of two terms and
then look at the direct subterms. The collection of subterms
may be ordered, yielding the lexicographic path order, or
unordered multisets. This procedure goes on recursively.
5A strict order is a transitive, irreflexive and asymmetric
binary relation.
6It is also called Noetherian order.

6. CONFLUENCE
Assume, we have a term t and more than one rewrite rule of
a term rewriting system is applicable, e.g. there are the rules
t → t1 and t → t2. One is interested in the consequences
that are caused by the non-determinance of the choice of
rules to apply next. If the two terms t1 and t2 are again
joinable, i.e. if there is a term t′ such that each term can
be transformed into it using the rewrite rules, the system is
called confluent. Joinability is written like this: t1 ↓ t2. The
exact definition of the property confluence is the following:
A TRS R is confluent, iff7

∀t, t1, t2 ∈ T : t1
∗← t

∗→ t2 ⇒ t1 ↓ t2

Thus, confluence is describing that terms in a system can be
rewritten in many ways, to yield the same result (Figure 3).

Figure 3: The confluence property.

There is another property, that is called the Church-Rosser
property. A system is Church-Rosser (or has the Church-

Rosser property), iff t1
∗↔ t2 ⇒ t1 ↓ t2. The conditions

the “TRS is confluent” and the “TRS is Church-Rosser” are
equivalent8.

Figure 4: The Church-Rosser property.

Confluence is undecidable in the general case. A term t is
irreducible, if no rules apply to it. We denote it by writing
t ↓. t′ ↓ is a normal form of t, if t can be transformed into
t′ using the rewrite rules of a term rewriting system. Such
a normal form may not necessarily exist for a term t. There
can also be multiple normal forms for one term. A system
is called normalizing, if such a normal form exists in every

7The notation “iff” abbreviates “if and only if”.
8The proof can be found in most of the literature that covers
confluence of term rewriting systems, e.g. [1]
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case. One of the main goals is, to have such unique normal
forms.

What critical situations could appear, that would compro-
mise confluence? The obvious situation is that more than
one rule applies to a term t. But the critical situation only
can occur, if the affected subterms, to which the rules may
apply are not disjoint, for example, if the application of one
rule prevents the application of the other one. The rules are
then called overlapping (see Figure 5).

Figure 5: Overlapping situation for the rules t1 → t′1
and t2 → t′2.

6.1 Critical pairs
A critical pair is created by unifying the left-hand side of
one rule with a non-variable subterm of the left-hand side of
another one and reducing the gained term using both rules.
Assume, that all of those critical pairs are joinable. In this
case, a terminating TRS is confluent. Because a finite term
rewriting system can have only finitely many critical pairs,
the confluence of a finite and terminating term rewriting
system becomes decidable.

We will have a look at a one-rule term rewriting system now:

R := {f(f(x))→ g(x)}

By transforming the term f(f(f(x))) we obtain a critical
pair resulting from an overlapping of the rule with itself.
The following transformations are possible:

• f(f(f(x)))→ g(f(x)) and

• f(f(f(x)))→ f(g(x)).

Because the two resulting terms are not joinable (both are
in normal form and the one rule cannot transform them
further) R is not confluent. Critical pairs can be used for
completion (making a TRS convergent), if they are used in
one rewrite rule to join the previously not joinable terms.
By adding the rule f(g(x)) → g(f(x)), the term rewriting
system R becomes convergent (confluent and terminating):

f(f(x)) → g(x)
f(g(x)) → g(f(x))

There are also ways of determining the confluence of non-
terminating term rewriting systems. This is handled, e.g. in
section 6.3 in [1] with orthogonality.

6.2 Completing systems
Let’s have a look at term rewriting systems, where some of
the named properties are combined. If a TRS is confluent,
all normal forms of a term t are identical. This is very nice,
because one has not to be afraid of which rule to choose, if
there is more than one applicable. The result is the same,
unique normal form.

A terminating and confluent TRS is called complete (or con-
vergent, canonical). One could be now interested in having a
procedure, that makes non-confluent terminating TRS com-
plete. Convergent term rewriting systems are important for
solving the word problem, i.e. a convergent term rewriting
system can decide the word problem for the underlying set
of identities.

There are completion procedures, that take a finite set of
identities and a reduction order and can produce an equiv-
alent term rewriting system. In chapter 7 in [1] some com-
pletion procedures are introduced, e.g. Huet’s completion
procedure. The basic procedure may

• terminate successfully, if all critical pairs are joinable,

• fail in several cases or

• may run forever.

The completion described there is widely known as Knuth-
Bendix completion. It tries to orient the identities from the
input set (if t2 < t1 then t1 → t2 can become a rule). This
initial set of rewrite rules is completed with rules gained by
detected critical pairs like shown in the example in 6.1.

Applications of completion algorithms:

• operational semantics of abstract data types (see [3]
page 41)

• completion of given axiom systems (solving the word
problem)

7. EXTENSIONS AND BRANCHES
This section will name some important extended rewriting
concepts and special cases of rewrite systems.

• Rewriting modulo equational theories (dealing with
non-terminating rules like commutativity)

• Higher-order rewriting, e.g. the map function

map(f, empty) → empty
map(f, cons(x, xs)) → cons(f(x), map(f, xs))

is no legal TRS, because f appears as a variable and
as a function symbol in the second rule (see [1] page
270).

• Conditional rewriting (having conditional identities)
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• String rewriting (with strings instead of terms)

• Graph rewriting (see the corresponding paper in this
lecture)

Note
This paper was created during the course “Hauptseminar
Methoden zur Spezifikation der Semantik von Programmier-
sprachen” at the Faculty of Computer Science at Technische
Universität Dresden in winter semester 2006/2007.
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ABSTRACT
This paper will give an overview over different approaches
for graph rewriting, namely term graph rewriting, the graph
rewriting calculus and an algebraic approach presented in
[3]. Whereas term graph rewriting is little more than a
slightly improved version of term rewriting, the graph rewrit-
ing calculus is a powerful framework for manipulating graphs.

1. INTRODUCTION
Rewriting in general is widely used. Not only in computer
science but also in everydays life. Assume you want to buy
two pieces of chocolate and each piece costs 0, 70e. In order
to calculate the amount of money to pay, you write down
(or think of) 2 ∗ 0, 70e. The result of this, not really dif-
ficult, computation is 1, 40e. How this is correlated with
rewriting? Formally your computation is the application of
the following rewrite rule:

2 ∗ 0, 70 → 1, 40 (1)

As presented in [4] term rewriting is a quite powerful tool to
rewrite terms and can be widely used, for example in func-
tional languages or logical languages. So why do we need
an additonal theory for graph rewriting? The reason is,
that terms can be represented as trees and trees have some
severe limitations like the lack of sharing and cycles. Espe-
cially sharing can be useful when optimizing programming
languages. Sharing means, that a node in the graph is refer-
enced more than once. This is not possible in trees, because
in a tree every node has only one incoming edge. However in
a graph a node can have several incomming edges, allowing
to point to this node from several other nodes in the graph.
For example, when building the abstract syntax graph of a
programming language, one only needs to reference a vari-
able once, regardless of the number of occurences in the
source code.

The possiblility to use cycles allows you to define rewrite

rules like this:

x → f(x) (2)

As one can see here, the rule produces a right hand side
which regenerates the left hand side again. The application
of this rule would result in an endless cycle of function f
calling itself:

f(f(f(. . .))) (3)

Another advantage of the graph rewriting approaches is,
that they are higher order, what means that rewrite rules
can be generated with other rewrite rules. This also means
that one can match a variable to a function symbol. Imagine
the rewrite rule from above is held more general:

2 ∗ x → double(x) (4)

Lets also assume that the price of our piece of chocolate is
given without VAT (value added tax). The VAT will have
to be added by a function vat(). Due to the ability to assign
function symbols to variables, one can match the left hand
side of 4 with

2 ∗ vat(0, 59) (5)

In order to be able to buy more than one piece of chocolate
you need the higher order capabilities of term graph rewrit-
ing or the graph rewriting calculus, both presented in this
paper. A nice side effect of being able to match variables
with functions is, that you can share whole subgraphs in
graph rewriting. In addition to saving memory, you need to
evaluate the shared subgraph only once.

2. TERM GRAPH REWRITING
This section will provide an operational approach on graph
rewriting, defining a graph as set of nodes, a successor func-
tion and a labeling function.

2.1 Notation
Term graphs are graph representations of (algebraic) terms.
They can be represented as tuple G = (N, s, l) where N is a
set of nodes in the graph. s is defined as function returning
the direct successor of a given node: s : N → N∗ and l
provides a label for each node in N . There is a special
label for empty nodes: ⊥. Typically empty nodes are nodes
representing variables.

Term graphs may contain roots and garbage. If a term graph
has a root, it will be denoted as G = (r, N, s, l) where r ∈ N
is the root node of the graph. Nodes are called garbage if
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Figure 1: f(x, g(h(x), y))

there is no path between the root and these nodes. Garbage
can be removed via garbage collection.

2.2 Representation
This leads to the question, how one can represent term
graphs graphically. Lets take algebraic expressions as ex-
ample. Every part of the expression becomes a node in the
graph. Constant values or algebraic variables like x in f(x)
are seen as empty nodes and drawn as ·.

Example 1: The term f(x, g(h(x), y)) will lead to the fol-
lowing term graph: G1 = (n1, N, s, l) where:

• N = {n1, n2, n3, n4, n5}

• s : s(n1) = n2n3, s(n3) = n4n5, s(n4) = n2, s(n2) =
s(n5) = e

• l : l(n1) = f, l(n3) = g, l(n4) = h, l(n2) = l(n5) = ⊥

The rules above define a graph with 5 nodes. The nodes n2

and n5, representing the variables x and y are leafes of the
graph. The resulting graph looks like in figure 1.

2.3 Rewriting
To be able to rewrite term graphs, we need some kind of
formalism to define that two term graphs are equal. This
formalism is called graph homomorphism and means a func-
tion that maps the nodes of one graph G1 to the nodes of a
graph G2. A variable in one graph may be mapped to any
kind of subgraph of the other graph. That means that the
following homomorphism is possible:

G1 : add(x, x) → G2 : add(s(y), s(y)) (6)

Figure 2 shows which parts of G1 are matched against which
parts of G2.

The actual rewriting is defined by rewrite rules. A rewrite
rule is a triple of form (R, l, r). R is a term graph and l, r
are the roots of the left and right hand sides respectively.
Therefore gc(l, R), which means the term graph R with l as
root node after garbage collection, is the state of the term
graph to rewrite (or a subgraph of it) before the rewriting
and gc(r, R) after the rewrite step.

The rewriting itself is done as follows:

Figure 2: G1 � G2

• Find a subgraph that matches to the left hand side.

• Copy the parts of the right hand side to the graph to
rewrite when there are no occurences yet.

• Redirect all pointers to the root of the left hand side
to the root of the right hand side.

• Run garbage collection to remove parts of the left hand
side, that are not reachable anymore.

Example 2 ([2]) shows the application for rewriting a graph
defining the addition of two natural numbers. The term
to rewrite is add(s(0), s(0)) where add is the addition of two
natural numbers and s denotes the successor of a number. In
fact this term simply formalizes the addition 1+1. This term
as graph will look like the left graph in figure 3. To rewrite
this term we use the rule add(s(x), s(y)) → s(add(x, s(y))).
This rewrite rule is drawn as graph 2 in figure 3. This nota-
tion is a little bit confusing because both, the left hand side
and the right hand side are drawn into one graph. To see
the left hand side one has to set the left upper node as root
and run garbage collection, which removes all nodes that are
not reachable from this root. The same could be done for
the right hand side. Now we can match the left hand side of
the rule to the graph to rewrite. the left • will be mached
to x and the right • will be mached to s(y). Now we copy
all nodes of the right hand side of our rewrite rule to graph
1 and reset the root to the root of this right hand side. Af-
ter doing this, we remove all nodes, which are not reachable
anymore. This are the left nodes labeled add and s. As
result of this operation we get a graph looking like graph 3
in figure 3 representing the term s(add(0, s(0))). In order
to finish the addition one would define a second rewrite rule
like add(0, x) → x to declare that the addition of 0 and a
number equals to the number.

Figure 3: Example 2
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3. THE GRAPH REWRITING CALCULUS
The approach of term graph rewriting is rather simple and
understandable, but also rather weak. Weak means in this
case, that one has no control about the application of the
rewriting rules. Rules are always applied where possible.
This is because the application of rewrite rules is done at
meta level, not at object level. There exist more sophisti-
cated methods to deal with graph rewriting. One is the ex-
tension of the ρ calculus, the so called ρg calculus or Graph
Rewriting Calculus as presented in [2].

3.1 Overview
The ρg calculus is a higher order calculus, which main fea-
ture is to provide an abstraction operator, that is capable of
handling more complex terms on the left hand side, than just
simple variables. An example of an abstraction is f(x) → x.
As one can see, an abstraction is denoted by ”→”. Such an
abstraction can be seen as rewrite rule. The application of
an abstraction is written as follows:

(f(x, x) → 2x)f(a, a) (7)

This means that the abstraction inside the first paranthesis
is applied to the term f(a, a). As in ρ calculus the appli-
cation of such an abstraction is done via a constraint. The
application in (7) would result in

2x[f(x, x) � f(a, a)] (8)

Every application of a rewrite rule to another term is done
like this. First the right hand side of the rewrite rule is writ-
ten as term and than the matching of the left hand side of the
rewrite rule and the term, the rule was applied to, is writ-
ten as constraint to this right hand term. The operator [ ]
is called a constraint application. These constraint applica-
tions are useful for matching terms, that will be explained
in the subsection about reducing terms. It also allows us to
describe sharing of constants, as mentioned in the section
about graph rewriting. There is not nessessarily only one
constraint in ρg calculus but a list of constraints, which are
separated by comma. Such a constraint list can be gener-
ated when a constraint is applied to a term inside another
constraint or if a function of arity ¿ 1 is matched. In the last
case every parameter of the left hand side of the matching
is matched against the corresponding parameter of the right
hand side of the matching.

Another operator I did not consider so far is o. It is the so
called structure operator which by default has no fixed se-
mantics. This fact shows, that the graph rewriting calculus
is more framework than a ready to use tool.

3.2 Further formalisms
Before actually showing how the example above is rewriten,
I have to give some additional formalisms. One referes the
operator � . This operator is called matching operator,
which means it tries to match the left and the right hand
side. A special form of matching operator ist = , that
can be seen as association, for example x[x = a] means that
variable x is associated with value a.

Another important thing is the theory of bound and free
variables. A bound variable is a variable that occurs on a left
hand side of a matching constraint. The table below shows
how the free (FV) and bound variables (BV) are determined.

G BV(G) FV(G)

x (var) ∅ {x}
k (const) ∅ ∅
G1G2 BV(G1) ∪ BV(G2) FV(G1) ∪ FV(G2)
G1 oG2 BV(G1) ∪ BV(G2) FV(G1) ∪ FV(G2)
G1 → G2 FV(G1) ∪ BV(G1) FV(G2) \ FV(G1)

∪ BV(G2)
G0 [E] BV(G0) ∪ BV(E) (FV(G0) ∪ FV(E))

\ DV(E)

In a constraint E there is an additional type of variables,
the defined variables DV.

E BV(E) FV(E) DV(E)

ε ∅ ∅ ∅
x = G0 x ∪ BV(G0) FV(G0) {x}
G1 � G2 FV(G1) ∪ BV(G1) FV(G2) FV(G1)

∪ BV(G2)
E1, E2 BV(E1) ∪ BV(E2) FV(E1) DV(E1)

∪ FV(E2) ∪ DV(E2)

The distinction of free and bound variables is important for
the so called α-conversion. This means renaming of vari-
ables when evaluating a term. Renaming might become
nessessary when applying a rewrite rule to a term which
has equaly named variables as these rewrite rule. In order
to prevent free variables to become bound accidently they
are renamed before the actual matching. Lets assume you
have a ρg term of form G → H where G and H are ρg terms
themselfes. In case of α-conversion every free variable in G
gets another, not yet used, name in order to prevent it from
becoming bound accidently. This is similar for constrainted
terms. There the term where the constraint is applied to
will get it’s free variables renamed if there is a equaly named
variable in one of the left hand sides in the constraint list.

3.3 Graphical Representation
As long as there are no constraints in the graphical repre-
sentation of ρg -terms is just as defined in the section about
term graph rewriting above. Recursion can be represented
as (self-)loops and sharing as multiple edges. A little bit
problematic is the representation of matching constraints.
These constraints are terms which can be drawn as graphs
themselfes but they do not really belong to the main graph.
[2] suggests drawing of these matching constraints as sepa-
rate boxes. The boxes can be nested, due to the fact, that
matching constraints can be nested, too. The roots of the
boxes and sub-boxes are marked with ⇓. Figure 4 visualizes
the rewrite rule mult(2, s(x)) → add(y, y)[y = s(x)] An in-
teresting question on this example is: Why isn’t the s(x) on
the left hand side shared, too? This was not done in order to
keep the term wellformed. The condition of wellformedness
demands that there is no sharing between the left and the
right hand side of a ρg-term.

3.4 Rewriting
So how to do the rewriting in ρg calculus? To demonstrate
this lets take our example from the term graph rewriting
section. The rewrite rule we want to apply is

add(s(x), y) → s(add(x, y)) (9)
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Figure 4: mult(2, s(x)) → add(y, y)[y = s(x)]

and it is applied to the term

add(s(0), s(s(0))) (10)

which is in fact the very complicated computation 1+2. The
rewriting goes as follows. I will describe the steps after the
example.

(add(s(x), y) → s(add(x, y)))add(s(0), s(s(0)))
s(add(x, y))[add(s(x), y) � add(s(0), s(s(0))]
s(add(x, y))[s(x) � s(0), y � s(s(0))]
s(add(x, y))[x � 0, y = s(s(0))]
s(add(x, y))[x = 0, y = s(s(0))]
s(add(0, s(s(0))))

The first two lines follow the claims I made in the Overview
part of this section. It is the application of the rewrite rule
in (9) to the term in (10). In line three the function add was
matched and splits up into two constraints which are applied
as list to the term before [ ]. In the fourth step this is done
a second time with the successorfunction. The matching
operator between y and s(s(0)) is replaced by the application
operator. This can be done because y is a variable in the
term and there is no need or possiblity to further match it
in any way. The same is done in line 5 where x equals to
0. The last line is finally the result of the rewriting. Unlike
the pure ρ-calculus the ρg-calculus does not require the last
step, which may be an advantage if one wants to preserve
the sharing of equal parts.

3.5 Confluence and Termination
As presented in [4] there is no guarantee that the application
of rewriting steps in term rewritings terminates. One can
easily see that this also holds for the ρg calculus. First of all,
graphs may contain cycles. If a rewrite rule matches one of
these cycles but does not eliminate it, it will be applied over
and over again. A second example to show that a rewriting
may not terminate is the following set of rules:

f(x) → x
x → y
y → f(x)

The reduction always comes to it’s starting point and restarts

again.

In general there is also no clue that (graph-)rewriting is
confluent. However the graph rewriting calculus restricts
the left hand sides of it’s rewrite rules in order to achieve
this property. The restriction is that the left hand sides
have to appliy to linear patters. A linear pattern is formally
defined as follows:

L := X |K | (((K L0)L1) . . .)Ln | L0[X1 = L1, . . . ,Xn = Ln]
(11)

where 2 patterns Li and Lj are not allowed to share free
variables if i 6= j. Furthermore a constraint of form [L1 ≪
G1, . . . , Ln ≪ Gn], with ≪ is either � or =, is called
linear if all patterns Li are linear. The complete proof of
confluence in the linear ρg calculus can be found in [2].

4. AN ALGEBRAIC APPROACH
Another approach for rewriting of graphs was presented in
[3]. The paper describes graphs as logical structures and
their properties with help of logical languages. Graphs are
described as classes D(A), where D is the class and A is an
alphabet containing the labels for the edges of graphs in D.
Such a graph can be represented as follows:

|G|1 := 〈VG, EG, (edgaG)a∈A〉
|G|2 := 〈VG, EG, (labaG)a∈A, edgG〉

Where VG and EG are the sets of vertices and edges respec-
tively, labaG(x) means an edge x labeled with a, edgG(x, y, z)
is an edge x from vertex y to vertex z and edgaG(x, y, z) de-
scribes the combination of labaG(x) and edgG(x, y, z).

4.1 Properties of graphs
In order to match graphs for rewriting, one has to define
isomorphisms between graphs. [3] defines two graphs as iso-
morphic if there exist bijections from VG to VG′ and from
EG to EG′ . A property of a graph is a predicate over a class
of graphs. Such predicates may be expressed by logical lan-
guages like first order logic, second order logic and so on.
The more powerful a language is, the better is it’s expes-
siveness. A discussion about the expressiveness of several
logical languages can be found in [3]. The following exam-
ple expresses the property that there are no isolated vertices
in a graph, that means that every vertex is linked somehow
with the other parts of the graph.

∀x∃y∃z
h_

edga(z, x, y) ∨ edga(z, y, x)|a ∈ A ∧ ¬(x = y)
i

(12)

4.2 Graph manipulations
In this approach graphs are not manipulated directly but
overlayed with so called hypergraphs. Each hypergraph con-
sists of hyperedges which are defined through a label and
zero to many edges of the graph. There are three operations
defined over these hypergraphs. The first is the addition of
two hypergraphs denoted by ⊕. This operation merges the
edges and vertices of two hypergraphs into one. The opera-
tion θδ,n describes the merge of two vertices, i.e θ1,3 means
that vertices 1 and 3 are merged into one vertex. Finally the
operation σα,p,n describes renaming of vertices. The expres-
sion σ1,4 means that vertex 1 is renamed to 1 and vertex 4 is
renamed to 2, according to their positions in the subscript.
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Figure 5: Rewrite of a SQL execution graph

With these basic operations one can define derived opera-
tions like the series-composition of hypergraphs:

G ·G′ = σ1,4(θ2,3(G⊕G′)) (13)

First the hypergraphs G and G′ are added together. Then
the θ-operation merges the second vertex of G (2) with the
first vertex of G′ (3) and finally the first vertex and the
last vertex of the resulting hypergraph get new labels. The
vertex in the middle is not labeled at all.

5. APPLICATIONS
Now we know what possiblities we have to rewrite graphs,
but where is this useful? Graph rewriting is especially useful
for optimization purposes. Everything that can be repre-
sented as graph can be optimized with help of graph rewrit-
ing, where the optimizations are encoded as rewrite rules
(see also [1]). An example for this may be an SQL state-
ment. Each statement can be transformed into a query exe-
cution plan, which essentially is a tree or graph. There exist
several rules of thumb, like the rule, that a selection should
be executed as early as possible in order to keep the amount
of tuples as small as possible. This kind of optimization
is called static because it does not use any knowledge of
the data to transform. Lets assume we have a simple SQL
statement like

SELECT *

FROM table1 t, table2 s

WHERE t.id = s.id;

AND t.answer = 42;

A query execution plan may look like in figure 5.1. The
application of the rule in figure 5.2 would result in the graph
of figure 5.3.

Another example, similar to the one above, is the execution
graph of functional languages. One can imagine that there
are similar rules as in the SQL example. The representation
as graphs will save a severe amount of space because vari-
ables (in the second case) or whole subqueries (in the first
example) can be shared.

The third application of graph rewriting, i would like to men-
tion, is optimization and analysis of syntax graphs in lan-
guages like C] or Java. Rewriting can assist you in refactor-
ings, too. The desired refactoring can be encoded as graph
rewrite rule and will be applied to the syntax graph.

6. CONCLUSION
As we have seen, there exist several approaches for graph
rewriting. All of them have some properties, like sharing

and the possibility to handle cycles, in common, which make
them to powerful tools for changing the structure of graphs.
However, these approaches use different ways for defining
rules and graphs and therefor differ in power and flexibility.
The most intuitive way is term graph rewriting, but it’s also
a bit limited. The graph rewriting calculus is a powerful
framework, which allows to build an own calculus on top of
it. Common to all approaches is, that you can finally buy
more than one piece of chocolate.
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