Design Patterns and Frameworks Exercise Sheet No. 6

Dipl.-Inf. Steffen Zschaler Software Engineering Group
INF 2097 Institute for Software and Multimedia Technol-
http://st.inf.tu-dresden.de/teaching/dpf ogy

Department of Computer Science
Technische Universitat Dresden
01062 Dresden

Architecture Mismatch Patterns

Task 1: Medi(t)ative Air

Design an application which enables you to book the cheapest flight to a destination of your choice out of a
number of providers.

la)| Assume, every provider is known in advance, and implements an interface IF1lightProvider, which

provides operations for querying for a connection, and for booking a flight. Develop an architecture which
enables clients to interface to these providers and book the cheapest flight on offer for the destination and
date they are interested in. Flight providers should require (and receive) no knowledge on other flight
providers known to the system. Also, clients should not need to know which flight providers are registered
with the system.

Which design pattern could you use?

1b)| Many airlines offer on-line booking services as web services. How can you incorporate such an airline
as a flight provider?

Task 2: Photo-realistic Facade

Ray tracing is a rather complex technique. It consists of a number of steps from parsing a scene-graph
description (often called a ‘script’), building a scene-graph instance in memory, optimising the scene graph,
tracing rays through all pixels of the target image, possibly oversampling to provide anti-aliasing, to actually
rendering the image; that is, transforming the ray colour values into the value range of image colour values.
On the other hand, as a client all you want to do is provide a script and obtain an image.

2a)

Use the FACADE pattern to provide clients of a ray-tracing subsystem with easy access to ray-tracing func-
tionality.

Task 3: Producer-Consumer with Mediator

Assume, you are realising a UNIX shell. All programs running on the UNIX shell are provided with three
communication channels: stdin, stdout, and stderr.



W Design interfaces for stdout, stderr, and stdin. Sketch an implementation for these interfaces by
the ‘Is’ command, and how this would be used by your shell implementation.

The ‘argouml’ program is a visual editing tool for UML diagrams. Assume that the model being

edited is encapsulated completely behind an instance of ModelFacade. What design pattern could you use
to allow for ‘argouml’ to be used for manipulating UML models from the command line? It should accept
an XMI file on stdin and output a transformed XMI file on stdout.

Which design pattern is used by your shell to realise a command like

cat mymodel.xmi | argouml - > mytransformedmodel.xmi

Task 4: Pattern Relations

In this task you will explore the relations between the various patterns that we have been looking at in the
course so far.

4a)

Compare TEMPLATE METHOD and TEMPLATE CLASS. What do they have in common, what is the major
difference? How do they achieve variability? What is their relation to the TEMPLATE HOOK and the
OBJECTIFIER patterns?

4b)

Compare the extensibility patterns DECORATOR, COMPOSITE, CHAIN OF RESPONSIBILITY, and OBSERVER.
What are the mechanisms through which they achieve extensibility? Why does PROXY not provide extensi-
bility? What is the relation of these patterns to TEMPLATE CLASS and OBJECT RECURSION?

4c)

Now compare the architecture-glue patterns ADAPTER, FACADE, and MEDIATOR. How do they cope with
architectural mismatch? How do they compare to the variability and extensibility patterns?

4d)| *

Sketch a chart of the relations between the design patterns TEMPLATE METHOD, TEMPLATE CLASS, OB-
JECTIFIER, BRIDGE, STRATECY, STATE, VISITOR, PROXY, ADAPTER, FACADE, MEDIATOR, OBJECT RE-
CURSION, DECORATOR, COMPOSITE, CHAIN OF RESPONSIBILITY, and OBSERVER. Use arrows to indicate
specialisation (based on class structure, behaviour, or intent) and introduce additional helper concepts if you
need them to represent commonalities which have not yet been abstracted into an individual pattern.



