Design Patterns and Frameworks Exercise Sheet No. 9

Dipl.-Inf. Steffen Zschaler Software Engineering Group
INF 2097 Institute for Software and Multimedia Technol-
http://st.inf.tu-dresden.de/teaching/dpf ogy

Department of Computer Science
Technische Universitat Dresden
01062 Dresden

Formal Models of Design Patterns I1

Task 1: Composite in RBML

Read and understand [1]. This paper presents RBML, a UML-like notation for representing design patterns.
The formal backing of this notation (representing the design patterns’ role models as extension of the meta-
model) allows for formal treatment of design patterns in actual models.

Task:

Use RBML to represent the COMPOSITE design pattern.

Solution:

Class Role 1 | Association Class Role 1

|Client Role | Component

Operation Role

—————————— |Operation (Parameter Role |[p: |t 0..*) 0..*]
| {isAbstract} B|
Generalization Role |children
- Class Role 0 *
|{not J.sAbstract}Bl— —————————
| CompSpec
& Association
: Role
Class Role 1..*
| Leaf
Operation Role
|Operation (Parameter Role |p: |t 0..*) 0..* >
Class Role 1..*

| Composite

Operation Role
|Operation (Parameter Role |p: |t 0..*) 0..*

Interaction Role
| CompositeInteraction 1..*

Lifeline Role Lifeline Role
lcl : |Client |cmp : |Composite
|Operation

Lifeline Role
|ch : |Child

|Operation

|
|
-
|
|
|
|
|
| |
| |
-
| |
| |
| |
I 1
I

I
|
|
loop <children> ICF)
|
]
|
|
|
|
|
|
|
|
|
|
|
|
|

Go back to task sheet 3 on extensibility patterns and look at your solution for task la). Use the RBML
techniques presented in [1] to show that this is indeed a realisation of COMPOSITE.

Solution: Unfortunately, solution hint is not available.

Bibliography

1. Robert France, Dae-Kyoo Kim, Sudipto Ghosh, Eungee Song, A UML-Based Pattern Specification
Technique. IEEE Transactions on Software Engineering, Vol 30, number 3, pp 193-206, March 2004.
This paper is available online at the IEEE digital library by visiting http://iecexplore.iece.org/Xplore/DynWel.jsp and search-
ing for it by title. You should have access to the digital library from any computer in the domain of the Computer Science

Department.

Task 2: OWL Observant

Read and understand [1]. This presents an approach that uses Semantic Web technology (in particular
ontologies) to model design patterns. An ontology can be viewed (grossly simplifying) as a special kind of
class diagram modelling concepts and their relations. An ontology, thus, provides vocabulary allowing to
talk about a specific domain.

2a)] Task:

Use the technology from [1] to model the OBSERVER design pattern.

Solution: The following is a graphical representation of the resulting ontology. To simplify matters we
have left out all properties relating to concepts from ODOL (as specified in wop.rdf). Instead, we have used
ellipses to denote class templates, diamonds to denote association templates, parallelograms for method
templates and rectangles for data-type values.

ONE20ONE
card

isDirected

isDirected client

supplier

A A 4

ConcreteObserver
isSubClassOf

contains contains

client supplier

ConcreteSubject Subject Observer

isSubClassOf

contains

ONE2MANY

A A A 4

Subject.notify // — 7 Observer.update oreres CO.update

Bibliography

1. Jens Dietrich and Chris Elgar. A Formal Description of Design Patterns Using OWL. In Proc. 2005
Australian Software Engineering Conference (ASWEC’05), IEEE Press, 2005.

Task 3: p-calculus and Template Class

Read and understand [1]. This presents a formal approach to writing down design patterns, which allows
reasoning about the patterns. To understand it properly, you will also need to read, and understand the
intuition of, [2], in particular Chapter 5, and Sections 6.1, 6.2, 6.6, 7.1, 7.2, 8.1, 8.5. Don’t worry, though,
it’s fun reading!

3a)| Task:

Use the p-calculus to model the TEMPLATE HOOK meta-pattern. TEMPLATE HOOK essentially proclaims
that there is a template method which invokes (i.e., depends on) a hook method. The two methods may be
in the same class or they may not. TEMPLATE HOOK thus is essentially a role model.

Solution: We use the following very straight-forward specification:

Template <: [opT : T
Hook <: [opA : A]
t : Template
h : Hook
t.opT <. h.opA

TemplateH ook(t, h, opT, opA, Template, Hook)

Now use the p-calculus to model the TEMPLATE CLASS design pattern. In this pattern there are two distinct
classes, one for a template method and one for a hook method.

Solution:

Template <: [opT : T]

Hook <: [opA : A]
—Hook <: Template
—Template <: Hook

t : Template
h : Hook
t.opT < h.opA

TemplateClass(t, h, opT,opA)

Task:

Can you represent TEMPLATE CLASS using TEMPLATE HOOK? What does this mean?

Solution:
TemplateH ook (t, h, opT, opA, Template, Hook)
—Hook <: Template
—Template <: Hook

TemplateClass(t, h, opT,opA)

This formula means that the TEMPLATE CLASS pattern is a specialisation of the TEMPLATE HOOK pattern,
where template and hook have been allocated to distinct classes.

Bibliography

1. Jason McC. Smith, and David Stotts. Elemental Design Patterns — A Link Between Architecture and
Object Semantics. Technical Report TR02-011, March 2002, Dept. of Computer Science, Univ. of
North Carolina, Chapel Hill.

2. Martin Abadi, and Luca Cardelli. A Theory of Objects. Monographs in Computer Science, Springer,
1996. There are 3 ezemplars in the library.

Task 4: Discussion: Formal Representation of Design Patterns
From your experience with the pattern formalisations looked at so far, what are the benefits and drawbacks
of attempts at formalising design patterns?

Solution: The main points to be discussed here are: Ambiguity, Relations between Patterns, Automation
and Tool Support, Difficulty, Lack of Variation in formally specified patterns, ...

An interesting discussion occurs in http://www.eden-study.org/precise_and_formal /faq.htm .

