
Design Patterns and Frameworks

Dipl.-Inf. Florian Heidenreich
INF 2080
http://st.inf.tu-dresden.de/teaching/dpf

Exercise Sheet No. 7

Software Technology Group
Institute for Software and Multimedia Technol-
ogy
Department of Computer Science
Technische Universität Dresden
01062 Dresden

Architecture Mismatch: Support Patterns

Task 1: Memorable Graphics

Many interactive applications require an undo mechanism so that tentative commands can be reverted
and a redo mechanism so that such reversions can be undone again. This requires that some part of the
application’s state be stored and kept available for undoing modifications.

In this task we are going to design a graphical editing application. Thus, the state of the application
consists of the various graphical elements, and relevant operations include creation, moving, and scaling
of such elements. The following diagram shows an excerpt of the basic structure of the application.

CanvasCanvas

FigureCommandFigureCommand

FigureFigure

scale()

move()

NewFigureCmdNewFigureCmd ScaleCmdScaleCmd MoveCmdMoveCmd

*

1a)

Define an interface for FigureCommand that allows to enable support for undoing and redoing individual
steps in editing a graphic.

1b)

To implement undo, we need to store the state of the currently selected figure before performing a change.
Then, we can use this information to perform an undo. However, explicitly accessing a figure’s state
breaks encapsulation. What would be needed is something that allows us to hand out state information

1



without breaking the class’s state. What design pattern can we use to solve this problem and how would
we do this?

Task 2: Cellular Automaton Vision

When we designed the cellular-automaton application, we had a similar problem of encapsulation as in
the previous task: A panel displaying the current state of a cell grid, needs to access that state and needs
to be aware of the general structure of the grid (number of dimensions, etc.) Exposing this information
through the grid’s interface, however, breaks encapsulation. How can we adapt the approach from the
previous task to solve this issue?

Task 3: Notification on Time

Construct a Timer class that implements an endlessly ticking timer delivering events whenever the time
changes. The timer ticks each 10 milliseconds. Use the Event Notifier pattern [1] to allow clients of
the timer to register for notifications every 10, 100, 1,000, or 60,000 milliseconds.

3a)

What is the structure of the Event Notifier pattern?

3b)

Use the pattern to implement the Timer.

Bibliography

1. Dirk Riehle. The Event Notification Pattern – Integrating Implicit Invocation with Object-Orientation.

In: Theory and Practice of Object Systems. 2, 1 (1996).
http://www.riehle.org/computer-science/research/1996/tapos-1996-event.html

2


