
Design Patterns and Frameworks, © Prof. Uwe Aßmann 1

Design Patterns and Frameworks
1) Introduction

Prof. Dr. U. Aßmann

Chair for Software Engineering

Faculty of Informatics

Dresden University of
Technology

WS 11-0.1, 10/8/11

1) History and Introduction

2) Different classes of patterns

3) Where can patterns be used?

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

2

Literature (To Be Read)

► Start here: A. Tesanovic. What is a pattern? Paper in Design Pattern
seminar, IDA, 2001. Available at course home page.

► Alternatively: GOF: Introduction.
► Brad Appleton. Patterns and Software: Essential Concepts and

terminology. http://www.cmcrossroads.com/bradapp/docs/patterns-
intro.html Compact introduction into patterns.

► http://www.hillside.net/plop/pastconferences.html

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

3

Secondary Reading

► D. Riehle, H. Zülinghoven, Understanding and Using Patterns in
Software Development. Theory and Practice of Object Systems 2 (1),
1996. Explains different kinds of patterns.
http://citeseer.ist.pst.edu/riehle96understanding.html

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

4

History

► Beginning of the 70s: the window and desktop
metaphors (conceptual patterns)

■ Smalltalk group in Xerox Parc,
Palo Alto

► 1978/79: MVC pattern for Smalltalk GUI.
Goldberg and Reenskaug at Xerox Parc

■ During porting Smalltalk-78 for Norway in
the Eureka Software Factory project
[Reenskaug]

► 1979: Alexander's “The Timeless Way of
Building”

■ Introduces the notion of a pattern and a
pattern language

► 1987: W. Cunningham, K. Beck: OOPSLA
paper “Using Pattern Languages for Object-
Oriented Programs”

■ Discovered Alexander's work for software
engineers by applying 5 patterns in
Smalltalk

► 1991: Erich Gamma. Design Patterns. PhD
Thesis

■ Working with ET++, one of the
first window frameworks of C++

■ At the same time, Vlissides
works on InterViews (part of
Athena)

■ Pattern workshop at OOPSLA
91, organized by B. Anderson

► 1993: E. Gamma, R. Helm, R. Johnson, J.
Vlissides. Design Patterns: Abstraction and
Reuse of Object-Oriented Design. ECOOP
97 LNCS 707, Springer, 1993.

► 1994: First PLOP conference (Pattern
Languages Of Programming)

► 1995: GOF book.

► 1997: Riehle on role models and design
patterns

► 2005: Collaborations (class-role models) in
UML

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

5

Alexander’s Laws on Beauty

► Christopher Alexander. “The timeless way of building” . Oxford Press
1977.

■ Hunting for the “Quality without a name”:
■ When are things "beautiful"?
■ When do things “live”?

► Patterns grasp centers of beauty
► You have a language for beauty, consisting of patterns (a pattern

language)
■ Dependent on culture

► Beauty cannot be invented
■ but must be combined/generated by patterns from a pattern language

► The “quality without a name” can be reached by pattern composition
in pattern languages

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

6

The Most Popular Definition

► A Design Pattern is
■ A description of a standard solution for
■ A standard design problem
■ In a certain context

► Goal: Reuse of design information
■ A pattern must not be “new”!

■ A pattern writer must have a “aggressive disregard for originality”

► In this sense, patterns are well-known in every engineering
discipline

■ Mechanical engineering
■ Electrical engineering
■ Architecture

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

7

Example: Model/View/Controller
(MVC)

► MVC is a agglomeration of classes to control a user interface and a
data structure

■ Developed by Goldberg/Reenskaug 1978, for Smalltalk

► MVC is a complex design pattern and combines the simpler ones
compositum, strategy, observer.

► Ingredients:
■ Model: Data structure or object, invisible
■ View: Representation(s) on the screen
■ Controller: Encapsulates reactions on inputs of users, couples

model and views

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

8

Views as Observer

a=50%
b=30%
c=20%

Window

 a

 30

 30

 10

 20

 10

 b c

 10

 60

 50

 80

 x

 y

 z

WindowWindow

 a b c

Model

Views

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

9

Patterns

► Pattern 1: Observer. Grasps relation between model and views
■ Views may register at the model (observers).
■ They are notified if the model changes. Then, every view updates itself by accessing the

data of the model.
■ Views are independent of each other. The model does not know how views

visualize it.
■ Observer decouples strongly.

► Pattern 2: Composite: Views may be nested (represents trees)
■ For a client class, Compositum unifies the access to root, inner nodes, and leaves
■ The MVC pattern additionally requires that

. There is an abstract superclass View

. The class CompositeView is a subclass of View

. And can be used in the same way as View

► Pattern 3: Strategy: The relation between controller and view is a
Strategy.

■ There may be different control strategies, lazy or eager update of views (triggering
output), menu or keyboard input (taking input)

■ A view may select subclasses of Controller, even dynamically. Strategy allows for
this dynamic exchange (variability)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

10

What Does a Design Pattern
Contain?
► A part with a “bad smell”

■ A structure with a bad smell
■ A query that proved a bad smell
■ A graph parse that recognized a bad smell

► A part with a “good smell” (standard solution)
■ A structure with a good smell
■ A query that proves a good smell
■ A graph parse that proves a good smell

► A part with “forces”
■ The context, rationale, and pragmatics
■ The needs and constraints

“bad smell” “good smell”

forces

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

11

Structure for Design Pattern
Description (GOF Form)

► Name (incl. Synonyms) (also known as)
► Motivation (purpose)

■ also “bad smells” to be avoided

► Employment
► Solution (the “good smell”)

■ Structure (Classes, abstract classes, relations): UML class or object
diagram

■ Participants: textual details of classes
■ Interactions: interaction diagrams (MSC, statecharts, collaboration

diagrams)
■ Consequences: advantages and disadvantages (pragmatics)
■ Implementation: variants of the design pattern
■ Code examples

► Known Uses
► Related Patterns

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

12

Purpose Design Pattern

► Improve communication in teams
■ Between clients and programmers
■ Between designers, implementers and testers
■ For designers, to understand good design concepts

► Design patterns create an “ontology of software design”
■ Improvement of the state of the art of software engineering
■ Fix a glossary for software engineering
■ A “software engineer” without the knowledge of patterns is a programmer
■ Prevent re-invention of well-known solutions

► Design patterns document abstract design concepts
■ Patterns are “mini-frameworks”
■ Documentation, In particular frameworks are documented by design

patterns
■ May be used to capture information in reverse engineering
■ Improve code structure and hence, code quality

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

13

Standard Incentives For Using
Patterns
► Easy System

■ System structure
■ Easy communication
■ Easy protocols

► Easy Testability
■ Null object
■ Static preprocessing

► Easy Evolution
► Easy Documentation
► Easy Reuse!!

Design Patterns and Frameworks, © Prof. Uwe Aßmann 14

Different Kinds of Patterns

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

15

What is a Pattern?

► There is no “the pattern”
► At least, research is done in the following areas:

■ Conceptual patterns
■ Design Patterns

. Different forms

■ Antipatterns
■ Implementation patterns (programming patterns, idioms, workarounds)
■ Process patterns

. Reengineering patterns

■ Organizational patterns

► General definition:
► A pattern is the abstraction from a concrete form which keeps

recurring in specific non-arbitrary contexts [Riehle/Zülinghoven,
Understanding and Using Patterns in Software Development] P

ro
f.

U
w

e
A

ß
m

a
n

n,
 D

e
si

g
n

P
a

tte
rn

s
an

d
 F

ra
m

ew
or

k s

16

Conceptual Patterns

► A conceptual pattern is a pattern whose form is described by means
of the terms and concepts from an application domain

■ Based on metaphors in the application domain

► Example: conceptual pattern “desktop”
■ Invented in Xerox Parc from A. Kay and others

. Folders, icons, TrashCan

. Drag&Drop as move actions on the screen

■ Basic pattern for all windowing systems
■ Also for many CASE tools for visual programming
■ Question: what is here the “abstraction from the concrete form”?

► We will revisit in the Tools-And-Materials (TAM) pattern language
■ It works on conceptual patterns such as “Tool”, “Material”, “Automaton”

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

17

Design Patterns

► “A design pattern superimposes a simple structure of a relation in
the static or dynamic semantics of a system”

■ Relations, interactions, collaborations
■ Nodes: objects, classes, packages

► “A design pattern is a named nugget of insight which conveys the
essence of a proven solution to a recurring problem within a certain
context amidst competing concerns” [Appleton]

► Question: what is here the “abstraction from the concrete form”? (in
terms of Riehle/Züllighoven)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

18

Different Types of Design Patterns

► Fundamental Design Pattern (FDP)
■ A pattern that cannot be expressed as language construct

► Programming Pattern, Language Dependent Design Pattern (LDDP)
■ A pattern that exists as language construct in another programming

language, but is not available in general

► Architectural style (Architectural pattern)
■ A design pattern that describes the coarse-grain structure of a

(sub)system
■ A design pattern on a larger scale, for coarse-grain structure (macro

structure)

► Framework Instantiation Patterns
■ Some design patterns couple framework variation points and application

code (framework instantiation patterns)

► Design patterns are “mini-frameworks” themselves
■ Since they contain common structure for many applications
■ Design patterns are used in frameworks (that's how they originated)
■ Hence, this course must also say many things about frameworks

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

19

Programming Pattern (Idiom,
LDDP)
► An idiom is a pattern whose form is described by means of

programming language constructs.
► Example: The C idiom of check-and-returns for contract checking

■ The first book on idioms was Coplien's Advanced C++ Programming
Styles and Idioms (1992), Addison-Wesley

public void processIt (Document doc) {
 // check all contracts of processIt
 if (doc == null) return;
 if (doc.notReady()) return;
 if (internalDoc == doc) return;

 // now the document seems ok
 internalProcessIt(doc);
}

private void internalProcessIt (Document doc) {
 // no contract checking anymore

 // process the document immediately
 walk(doc);
 print(doc);
}

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

20

Workaround

► A workaround is an idiom that works around a language construct that
is not available in a language

► Example: Simulating polymorphism by if-cascades

public void processIt (Document doc) {
 // Analyze type of document
 if (doc->type == Text)

processText((Text)doc);
 else i f (doc->type == Figure)
 processFigure((Figure)doc);
 else
 printf(“unknown subtype of document”);
}

void processText(Text t) {..}
void process Figure(Figure f) {..}

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

21

Antipatterns (Defect Patterns)

► Software can contain bad structure
■ No modular structure, only procedure calls
■ If-cascades instead of polymorphism
■ Casts everywhere
■ Spaghetti code (no reducible control flow graphs)
■ Cohesion vs Coupling (McCabe)

► Question: what is here the “abstraction from the concrete form”?

Defect pattern
(Bad smell)

Analysis 1 Analysis 2 Analysis 3

Software with
unknown structure

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

22

Refactorings Transform Antipatterns
Into Design Patterns
► A DP can be a goal of a refactoring
► Structurally, a refactoring is an operator on the code (a

metaprogram)
■ Semi-formal: Fowler's book on refactorings uses graph rewrite rules to

indicate what the refactorings do
■ Formal: Refactorings can be realized in program transformation and

metaprogramming libraries and tools
. Recoder (recoder.sf.net) is such a tool
. Eclipse, Netbeans contain refactorings

Defect pattern
(Bad smell)

Design pattern
(good smell)

Step 1
Refactoring 1 Refactoring 2 Refactoring 3

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

23

Process Patterns

► Process patterns are solutions for the process of making something

State A State B

Step 1
Process
pattern 1

Process
pattern 2

Process
pattern 3 P

ro
f.

U
w

e
A

ß
m

a
n

n,
 D

e
si

g
n

P
a

tte
rn

s
an

d
 F

ra
m

ew
or

k s

24

Process Patterns

► When process patterns are automized, they are called workflows
► Workflow management systems enable us to capture and design

processes
■ ARIS on SAP
■ Intentia
■ FlowMark (IBM)
■ and many others

► Examples:
■ “Work-and-Let-Be-Granted”
■ “Delegate-Task-And-Resources-Together”

► Question: what is here the “abstraction from the concrete form”?

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

25

Reengineering Patterns

► Also in the software reengineering process, common (process)
patterns can be identified

► Examples
■ “Read-All-Code-In-One-Hour”
■ “Write-Tests-To-Understand”

► S. Demeyer, S. Ducasse, O. Nierstrasz. Object-oriented
Reengineering Patterns. Morgan-Kaufmann, 2003

► Question: what is here the “abstraction from the concrete form”?

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

26

Organizational Patterns

► Two well-known organizational patterns are
■ Hierarchical management

. In which all communication can be described by the organizational hierarchy

■ Matrix organization
. In which functional and organizational units talk to each other

► Question: what is here the “abstraction from the concrete form”?

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

27

In This Course

► We will mainly treat design patterns
■ Conceptual patterns
■ Architectural patterns
■ Framework instantiation patterns
■ Very few LDDP and workarounds

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

28

Pattern Languages: Patterns in
Context
► According to Alexander, patterns occur in pattern languages

■ A set of related patterns for a set of related problems in a domain
■ Similar to a natural language, the pattern language contains a vocabulary

for building artefacts

► A structured collection of patterns that build on each other to
transform forces (needs and constraints) into an architecture
[Coplien]

■ Patterns rarely stand alone. Each pattern works in a context, and
transforms the system in that context to produce a new system in a new
context.

■ New problems arise in the new system and context, and the next “layer”
of patterns can be applied.

► We will treat one larger example, the TAM pattern language

Design Patterns and Frameworks, © Prof. Uwe Aßmann 29

Where do Patterns Occur in
Software Development?

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

30

Software Construction By
Forward Engineering

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

Changed
Requirements

Changed
Design

Changed
Code

Evolution

Forward Engineering

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

31

Automated Design (CASE)

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

Requirements

Automated
Design

Automated
Code

Support by CASE tools to a limited extend possible
Tools generate structure of design patterns into the code
(e.g., Together)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

32

Program Refinement

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

Same semantics, but new
non-functional requirements

Changed
Design

Changed
Code

Needs new non-functional requirements. For instance, optimization
patterns speed applications up; adapters and bridges can be used for
checking consistency

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

33

Automated Software Evolution (XP-
like)

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

In XP, many adaptations can be automized by employing
refactoring tools

Changed
Requirements

Changed
Design

Changed
Code

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

34

Reengineering

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

Changed
Requirements

Gained
Design

Automatic and semi-automatic recognition of design patterns is a hot research topic

Changed
Code

Lost
Requirements

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

35

The End

