Chapter 3 3.1 Factory Method (Polymorphic
Variability Patterns for Object Creation 1 Constructor)

I

Prof. Dr. U. ABmann 1) FactoryMethod
Ch?zir for Software 2) AbstractFactory
ngneeting 3) Builder

Faculty of Informatics

Dresden University of
Technology

Version 11-0.3, 10/21/11

@ Design Patterns and Frameworks, © Prof. Uwe ARmann 1 @ Design Patterns and Frameworks, © Prof. Uwe ARmann 2

_ . Factory Method (Polymorphic
A Restriction of Polymorphism
- a|| Constructor)
» Abstract creator classes offer abstract constructors (polymorphic constructors)
» Often, polymorphic language do not allow for exchange of the - Concrete subclasses can specialize the constructor
constructor = Constructor implementation is changed with allocation of concrete Creator
// Abstract creator class

» Problem: constructors are concrete, cannot be varied polymorphically bublic abstract class Creator {

// factory method

/I Creator class concrete
public class CreatorB extends Creator { }

// Concrete creator class
ublic class ConcreteCreator extends Creator {

Prof. Uwe ARm:

@ Il Creator class abstract /I'Product class @ public abstract Set createSet(int n);
t public abstract class Creator { public class Set extends Collection { § } ’
g public void collect() { public Set(int initialLength) {

% Set mySet = new Set(10); . Creator cr = [.. subclass]..

2 /I which set should be allocated? } public void collect() {

g } Set mySet = Creator.createSet(10);

E, } public class ListBasedSet extends Set {

a public ListBasedSet(int initialLength) {

<

E

public void collect() { } public Set createSet(int n) {
mySet = new ListBasedSet(10); go, creator methods, which employ) return new ListBasedset(n);
} constructors, must be overridden .
@ } carefully by hand 3 @

Structure for FactoryMethod Example FactoryMethod for Buildings
' |
» FactoryMethod is a variant of TemplateMethod » Consider a framework for
» It hides the allocation of a product planning of buildings
= Class Building with template
me_th_Od (_:onstru_ct to plan a Building | H;Juse = createBuilding();
building interactively consm;ct(l) I R
createBuilding house.createWall();
£ Creator ¢ » Users can create new cresteal)
= = T createDoor h . teD ;
) FactoryMethod() Product = FactoryMethod() % subclasses of bU|Id|ngs createWindow() _.?use createDoor()
Product anOperation() O------ _ © « All abstract methods createRoom() house.createWindow();
Ei E i E D 2 createWall, createRoom, /\
3 8 createDoor, createWindow must Framework
2 E be implemented |
8 ConcreteCreatorA] » Problem: How can the Skyscraper Bungalow | Extensions
£ ConcreteProductA |<----- ConcreteCreatorB £ ’ createBuilding() createBuilding()
g FactoryMethod ()0 5 framework treat new subclasses | | createwail) createWall()
o t © ildi createDoor() createDoor()
_______________________________] FactoryMethod()(? 3 of Bu”qlngS? (unforeseen createWindow() createWindow()
ConcreteProductB : T E extenS|on) createRoom() createRoom()
return new ConcreteProductA \
return new ConcreteProductB 6

O

Solution with FactoryMethod

Flexible Construction with Reflection

Prof. Uwe ABmann, Design Patterns and Frameworks

=

» Solution: a
FactoryMethod

Subclasses can
specialize the
constructor and enrich
with more behavior,
e.g., additional

dialogues

/ abstract creator class

public abstract class Building {

public abstract
Building createBuilding();

Skyscraper() {

return new Skys

}

/ concrete creator class
public class Skyscraper extends Building {

}
public Building createBuilding(] {
... fill in more info ...

craper();

» Then clone the class object

» Find the class's name and get the class object

in Java: Class.forName (String name)

» Attention: reflection is usually slow. It has to lookup bytecode

information and must load class code on-the-fly

createProduct() {

Prof. Uwe ABmann, Design Patterns and Frameworks

/ / reflective function for class name, called in subclass
String className = getClassNameFromSomeWhere();
// get the class object and allocate from there

house = (Building) Class.ForName(className).newInstance();

&

Combination of Factory Method and Factory Methods in Parallel Class
u|/| Default Implementation wl| Hierarchies
» FactoryMethods can contain default implementations to share > One class hierarchy offers uses a factory method to create objects of a second hierarchy
behavior » On every level, the factory method is implemented in a parallel class on exactly the same
level and abstraction level
> Subclass has to call SuPer() = E.g, ReadableObject and WritableObject in ReadableFigures and FigureManipulators
)) . > Here, the parallelism constraint is that every readable object must allocate a parallel
// abstract class with default // concrete class with additional manipulator.
£ /7 L?ehaVIOP . // behawor‘ o £ This is a constraint on the polymorphic allocator of the manipulators
g public abstract class Building { public class Skyscraper extends Building { g
§ public abstract // concretization of hook g ReadableFi ManioulatorOfFi
= Building createBuildinglnner(); public Building createBuildinglnner() { = eadableFigure & manipulator anipulatorOfFigure
s public return new Skyscraper(); 0 createManipulator() draw()
g Building createBuilding() { } g drag()
< Building b = createBuildingInner(]; c
8 Door d = new Door(); 8
< b.setDoor(d); } <
g return b; g
T) % Concrete Concrete - -
5 % ReadableFigureA | | ReadableFigureB ConcreteManipulator. ConcreteManipulatorB
2 } 2 ManipulatorOfFigurel [ManipulatorOfFigurel | draw() draw()
createManipulatpr()| [createManipulatory) drag(); drag()
@ 9 éD """""""""""] 10
Creation of Product Subclasses with Analysis of FactoryMethod —
all Generics a|| Information Hiding of Abstract Classes

Prof. Uwe ABmann, Design Patterns and Frameworks

» Abstract classes know when an object should be allocated, but do not
7 Generic factory class know which of the subclasses will be filled in at runtime

template<class TheProduct> = The knowledge which subclass should be used is encapsulated
class StandardProducer<TheProduct> : public Producer { into the client subclasses

Product* StandardProducer<TheProduct>(] {
return new <TheProduct>(};

» For frameworks this means:

= The abstract classes of the framework do not know which application
class they will work on, but they know when to create an application
object
= The knowledge which application class should be used is encapsulated
into the application
» Relatives of FactoryMethod

= A FactoryMethod is a HookMethod, used by a TemplateMethod, which
returns a product, i.e., FactoryMethods are called in TemplateMethods

}

/ Application of generic factory class creates concrete

/ FactoryMethod automatically

Public abstract class Building {

StandardProducer<MyProduct> myProducer;

myProducer = new myProducer.StandardProducer<MyProduct>()

Prof. Uwe ABmann, Design Patterns and Frameworks

}

11 12

=
&

I

3.2 Factory Class (Abstract
Factory)

Forces of the Factory Class Pattern

» Given a package with a family of classes (a product family).
Examples
= Widgets in a window system

= Stones in a Tetris game

Prof. Uwe ABmann, Design Patterns and Frameworks

= Products of a company
» How can the product family be switched in one go to a variant?
= Swing widgets to Windows widgets?
= 2D-stones to 3D-stones in the Tetris game?
= Cheap variants of the products of the company to expensive variants?

Design Patterns and Frameworks, © Prof. Uwe ARmann 13 @ 14

Factory Class Pattern Structure for Factory Class
' |

» AFactory (FactoryClass) groups factory methods to a class » By creating the concrete factory, the client determines the entire

= AFactory is a class that groups a family of polymorphic family of products (here: family 1 or 2)
constructors of a family of classes (products)
Client
= The products can be classes of a layer or a package factory
= The products have a strong parallelism constraint (isomorphic AbstractFactory init() - .
¢ hierarchies) g
5 s createProductA() AbstractProductA IF(.){
g » An AbstractFactory contains the interfaces of the constructors g createProductB() [AbstractProducta | factory = new
« . . . = C teFactory1();
E » A ConcreteFactory contains the implementation of the constructors E };23? crsovl
5 = The Concrete Factories can be exchanged § | . - factory = new
s . . 5 > ProductA2| | ProductA1|‘ ! ConcreteFactory2();
s = A Concrete Factory represents one concrete family of objects < ' R
§ » Hence, an AbstractFactory offers an interface to create families of ConcreteFactory1 B ConcreteFactory2 .-
g related objects createProductA() | | createProductA(
% - That depend on each other DcreateProductB(| | createProductB(| AbstractProductB |~
® = Without naming their constructors explicitly 2 5 ; ;
I"I ProductB2| | ProductB1 I‘"‘;
15 : 16

=

Example for Factory Class

Example for Factory Class in
Compilers

&

WidgetFactory | Client ElementFactory | Client
createScrollbar() createAssign() I
createWindow() createPlus() Assign
£ £
% . XWindow H SWTWindow “': % . JavaAssign| | EiffeIAssignI‘"’,
% ConcreteFactory1-- | ConcreteFactory2 -i é g ConcreteFactory1-- | ConcreteFactory2 ‘i i
§ createScrollbar() | i | createScrollbar() E E § createAssign() i | createAssign() i i
£ createWindow() 1 | createWindow() | ‘ E £ createPlus() i | createPlus() | (E
g s 7\ 5 | | 7\ |
: s T I | | T |
2 : X: 2 E , ¥
E >/ XScrollbar | | SWTScrollbar < | 5 > JavaPlus | |EiffelPlus [« |
Employment of Factory Class Pragmatics of Factory Class
' |
» For window styles » Afactory deals with 3+x inheritance hierarchies (factory, product 1, ...,
= All widgets are used by the framework abstractly product n)
= The concrete style is determined by a concrete factory class » The n product hierarchies must be maintained in parallel, i.e., they
= Swing, AWT, ... form ParallelHierarchies
» In office systems » The factory pattern ensures that all objects are created with the
§ = For families of similar documents § parallelism constraint
£ i £
& > In business systems £
g = For families of similar products g getFactory | Client
§ » Fortools on several languages £ restoWindong
§’ » Factory Class is related to Tools-and-Materials (TAM), because §
§’ products are materials (see later) E {77 7] XWindow ' SWTWindow |=
< 3 ConcreteFactory1 -|I ConcreteFactory2 M E
R il H e [Scrtbar J«——H
£ 3 | ; AN i Same height of products
> Xerolibar | [[SWrserotiar |
T ' 20

=

&

Variant: The
|| Prototyping Factory

Structure for Prototyping Factory

» Concrete factories need not be created; one instance is enough, if

Prof. Uwe ARmann, Design Patterns and Frameworks

&

prototypes of the products exist AbstractFactory | Client
» To produce new products, the ConcreteFactory clones the set of createProductA()
available products createProductB() | AbstractProductA I(
» The variability of products is handled by the cloning of the prototypes i :
E | ProductA2| | ProductA1|
2 ConcreteFactory A ”
g / e
2 createProductA() Y -
c createProductB() y -
8 _
g Vv - | AbstractProductB I‘—
c /
£ 7
< /- '
3 :Prototype -
5 -
L copyProductA()/ = Eroiucfz’ ProductB1
copyProductB()—| — — — —
21 @ 22
Variant: Factory with Interpretive .
Structure for Interpretive Factory
a|| FactoryMethod -
» If more factory methods should be added, this becomes tedious,
since the AbstractFactory and all concrete factories must be editied AbstractFactory | Client
» Instead: one factory method with parameter string
createProduct(String what) | AbstractProductA |‘
g ¢ '
2 public class abstractFactory { g
& abstract Product createProduct(String what); & . | ProductA2| | ProductA1|
T} ConcreteFactory1 _ - EEp—
é createProduct(String whatyf == -
§ public class concreteFactory extends abstractFactory { 3 | AbstractProductB |<—
§ Product createProduct(String what) { §
g if (what.eq(“p1”)) { g :
z return new P1(); 3 ConcreteFacto
2 z ry2
& else & __ — v | ProductB2| | ProductB1
} createProduct(String what) -—"— — — =
23 24

=

&

Factory Class - Employment

3.3 Builder (Factory with Protocol,

Prof. Uwe ARmann, Design Patterns and Frameworks

&

» Make a system independent of the way how its objects are created
» Hide constructors to make the way of creation exchangable with
types
» For product families
= In which families of objects need to be created together; but the way
how is varied
» Related Patterns

= An abstract factory is a special form of hook class, to be called by
some template classes.

= Often, a factory is a Singleton (a Singleton is a class with only one
instance)

= Concrete factories can be created by parameterizing the factory with
Prototype objects

Structured Factory)

-

=

25 T Design Patterns and Frameworks, © Prof. Uwe ARmann 26
Structure for Builder Example Builder
|
» The Builder is a Factory that produces a structured product (a whole » RTF grammar defines a protocol for the sequence of text converter
with parts) functions
= e.g., a business object or product data of a PDM
TextConverter

RTFReader Oﬂ; convChar(char)
e e convCharSet(CharSet)
E i g convParagraph
g Director < builder AbstractBuilder g ParseRTF() getText() graph()
2 construct() O buildPart() g
g " getResult() g
< | /\ | |
§ E § ASClIConverter TeXConverter
= for all objects in structure <
& according to protocol { § convChar(char) convChar(char)
< builder.buildPart() - g convCharSet(CharSet) convCharSet(CharSet)
2 } ConcreteBuilder -—-——= > Product 2 convParagraph() convParagraph()
- s etText etText
; buildPart() ; 9 : 0 == 0

getResult() ! !
27 @ ---->ASClIText | =-----= > TeXText 28

Builder Protocol (E.g., Specified by
JSP)

The Builder

&

» Maintains an internal state that memorizes the point of time in

RTFDocument construction of the complex data structure
» Data structure defines a protocol for calls to the elementary functions
» Data structure must be defined by a
. Y = Grammar
g g = JSP, regular expression
§ RTFHeader RTFBody RTFFooter .‘E = Protocol machine (statechart acceptor)
g I I I g = Other mechanisms, such as Petri nets
5 « « « £ » The other way round: as soon as we have a data structure
% RTFParagraph RTFParagraph RTFParagraph %’ = Defined by a grammar, regular expressions, or JSP
2’ [[[2 = We can build a constructor with the Builder pattern
£ £
i Word * Word * Word * s
; [[[;
Char * Char * Char *
29 @ 30
Builder: Information Hiding Known Uses
' .
» The builder hides » Parsers in compilers are builders that contain the grammar of the

= The protocol (the structure of the data) concrete syntax of the programming language

= The current status » Builders for intermediate representations of all kinds of languages

= The implementation of the data structure = Programming languages
., » Similar to an lterator, the structure is hidden . = Specification languages
§ é = Graphic languages such as UML
5 g » Builders for all complex data structures
5 s = Databases with integrity constraints
< <
5 g

31 @ 32

=

The End

SyJomowel4 pue sulaped ubisaq ‘uuewsy amn Joid

33

o)

