Chapter 3
Variability Patterns for Object Creation

Prof. Dr. U. ABmann 1) FactoryMethod
Chair for Software 2) AbstractFactory
Engineering

3) Builder

Faculty of Informatics

Dresden University of
Technology

Version 11-0.3, 10/21/11

Design Patterns and Frameworks, © Prof. Uwe Allmann 1

3.1 Factory Method (Polymorphic
) Constructor)

Design Patterns and Frameworks, © Prof. Uwe Allmann 2

A Restriction of Polymorphism

» Often, polymorphic language do not allow for exchange of the

constructor

» Problem: constructors are concrete, cannot be varied polymorphically

I/l Creator class abstract
public abstract class Creator {
public void collect() {
Set mySet = new Set(10);
// which set should be allocated?

}
}

// Creator class concrete
public class CreatorB extends Creator {
public void collect() {
mySet = new ListBasedSet(10);

}

Prof. Uwe ARmann, Design Patterns and Frameworks

.

// Product class
public class Set extends Collection {
public Set(int initialLength) {

-
}

public class ListBasedSet extends Set {
public ListBasedSet(int initialLength) {

-
}

So, creator methods, which employ
constructors, must be overridden
carefully by hand 3

Factory Method (Polymorphic
m|| Constructor)

» Abstract creator classes offer abstract constructors (polymorphic constructors)

= Concrete subclasses can specialize the constructor

= Constructor implementation is changed with allocation of concrete Creator

// Abstract creator class

public abstract class Creator {

// factory method

public abstract Set createSet(int n);

orks

=
public class Client {

Creator cr = [.. subclass]..
public void collect() {

Set mySet = Creator.createSet(10);

// Concrete creator class
public class ConcreteCreator extends Creator ({
public Set createSet(int n) {

return new ListBasedSet(n);

Prof. Uwe ARmM

G

Structure for FactoryMethod

» FactoryMethod is a variant of TemplateMethod
» |t hides the allocation of a product

eworks

Product

/\

ConcreteProductA

we Allmann, Design Pjﬁ

ConcreteProductB

)

< - - -

Creator

FactoryMethod()

anOperation() O------|

N

Product = FactoryMethod()

/N

ConcreteCreatorA

FactoryMethod()©

1
___________________________ S
1

return new ConcreteProductA

1

ConcreteCreatorB

FactoryMethod()O

\

1
1
1

N

return new ConcreteProductB

Example FactoryMethod for Buildings

Prof. Uwe ARmann, Design Patterns and Frameworks

G

» Consider a framework for

planning of buildings
= Class Building with template

method construct to plan a
building interactively

» Users can create new

subclasses of buildings

= All abstract methods
createWall, createRoom,
createDoor, create\WWindow must
be implemented

» Problem: How can the

framework treat new subclasses
of Buildings? (unforeseen
extension)

Building I
house = createBuilding();
construct()~____ | ______.
createBuil(?ing() house.createWall();
createWall()
createDoor() house.createDoor();
createWindow()
createRoom() house.createWindow();
LA\

Framework
Skyscraper Bungalow Extensions
createBuilding() createBuilding()
createWall() createWall()
createDoor() createDoor()
createWindow() createWindow()
createRoom() createRoom()

6

Solution with FactoryMethod

Prof. Uwe ABmann, Design Patterns and Frameworks

G

» Solution: a
FactoryMethod

» Subclasses can
specialize the
constructor and enrich
with more behavior,
e.g., additional
dialogues

/ abstract creator class
public abstract class Building {
public abstract

Building createBuilding();

/ concrete creator class
public class Skyscraper extends Building {
Skyscraper() {

J
public Building createBuilding() {

.. fillin more info ...
return new Skyscraper();

)

Flexible Construction with Reflection

» Find the class's name and get the class object
» Then clone the class object

In Java: Class.forName (String name)

> Attention: reflection is usually slow. It has to lookup bytecode
information and must load class code on-the-fly

Prof. Uwe ARmann, Design Patterns and Frameworks

createProduct() {

/ / reflective function for class name, called in subclass
String className = getClassNameFromSome\Where();

/ / get the class object and allocate from there

house = (Building) Class.ForName(className).newlnstance();

G

Combination of Factory Method and
m|| Default Implementation

» FactoryMethods can contain default implementations to share
behavior

» Subclass has to call super()

/ / abstract class with default / / concrete class with additional
« // behavior / / behavior
g public abstract class Building { public class Skyscraper extends Building {
& public abstract / / concretization of hook
= Building createBuildinglnner(); public Building createBuildinglnner(] {
2 public return new Skyscraper();
3 Building createBuilding(] { }
% Building b = createBuildinglnner();
8 Door d = new Door(];
3 b.setDoor(d]; }
£ return b;
3
3

G

Factory Methods in Parallel Class

al| Hierarchies

» One class hierarchy offers uses a factory method to create objects of a second hierarchy
» On every level, the factory method is implemented in a parallel class on exactly the same

level and abstraction level

= E.g, ReadableObject and WritableObject in ReadableFigures and FigureManipulators
» Here, the parallelism constraint is that every readable object must allocate a parallel

manipulator.

= This is a constraint on the polymorphic allocator of the manipulators

ReadableFigure [

createManipulator()

A\

Concrete Concrete
ReadableFigureA | | ReadableFigureB

anipulatorOfFigurgd ManipulatorOfFigure

Prof. Uwe ARmann, Design Patterns and Frameworks

createManipulatpr()| [createManipulator)

G

>| ManipulatorOfFigure

draw()
/\

manipulator

drag()

ConcreteManipulatorA| | ConcreteManipulatorB

draw() draw()
drag() drag()

______________________________ 10

Creation of Product Subclasses with
al| Generics

Prof. Uwe ABmann, Design Patterns and Frameworks

G

/ Generic factory class
template<class TheProduct>
class StandardProducer<TheProduct> : public Producer {
Product* StandardProducer<TheProduct>{] {
return new <TheProduct>();
}

/ Application of generic factory class creates concrete
/ FactoryMethod automatically
Public abstract class Building {
StandardProducer<MyProduct> myProducer;
myProducer = new myProducer.StandardProducer<MyProduct>(]

)

11

Analysis of FactoryMethod —
Information Hiding of Abstract Classes

» Abstract classes know when an object should be allocated, but do not
know which of the subclasses will be filled in at runtime

= The knowledge which subclass should be used is encapsulated
into the client subclasses
» For frameworks this means:

= The abstract classes of the framework do not know which application
class they will work on, but they know when to create an application
object

= The knowledge which application class should be used is encapsulated
into the application
» Relatives of FactoryMethod

= A FactoryMethod is a HookMethod, used by a TemplateMethod, which
returns a product, i.e., FactoryMethods are called in TemplateMethods

Prof. Uwe ARmann, Design Patterns and Frameworks

12

G

3.2 Factory Class (Abstract
3 Factory)

Design Patterns and Frameworks, © Prof. Uwe Allmann

13

Forces of the Factory Class Pattern

» Given a package with a family of classes (a product family).
Examples

= Widgets in a window system
= Stones in a Tetris game
= Products of a company
» How can the product family be switched in one go to a variant?
= Swing widgets to Windows widgets?
= 2D-stones to 3D-stones in the Tetris game?
= Cheap variants of the products of the company to expensive variants?

Prof. Uwe ARmann, Design Patterns and Frameworks

14

G

Factory Class Pattern

» A Factory (FactoryClass) groups factory methods to a class

= A Factory is a class that groups a family of polymorphic
constructors of a family of classes (products)

= The products can be classes of a layer or a package

= The products have a strong parallelism constraint (isomorphic
hierarchies)

» An AbstractFactory contains the interfaces of the constructors

» A ConcreteFactory contains the implementation of the constructors
= The Concrete Factories can be exchanged
= A Concrete Factory represents one concrete family of objects

» Hence, an AbstractFactory offers an interface to create families of
related objects
= That depend on each other
= Without naming their constructors explicitly

Prof. Uwe ARmann, Design Patterns and Frameworks

15

G

Structure for Factory Class

» By creating the concrete factory, the client determines the entire

family of products (here: family 1 or 2)

factory

AbstractFactory [~
5 createProductA()
£ createProductB()
5
ConcreteFactory1|-- (ConcreteFactory2
createProductA() ! | createProductA()
createProductB() : | createProductB()
> :
: i

)

Client
init() - .
AbstractProductA [< If (..) {
factory = new
$ ConcreteFactory1();
} else {
factory = new
> ProductA2 ProductA1 <™ ConcreteFactory2();
| 1
E AbstractProductB [:
“> ProductB2 ProductB1 [<

16

Example for Factory Class

WidgetFactory

createScrollbar()
createWindow()

/N

Client

Windo%‘

XWindow SWTWindow

ConcreteFactory1

ConcreteFactoryZL-

createScrollbar()
createWindow()

createScrollbar()
createWindow()

Prof. Uwe ARmann, Design Patterns and Frameworks

G

Scrollbar [<

/\

> XScrollbar SWTScrollbar

Example for Factory Class in
| Compilers

ElementFactory |~ Client

createAssign()
createPlus()

~ JAN

Assign [©

y

RN R U U RIS Uy Ut SR S |

- - B 1 JavaAssign| | EiffelAssign

ConcreteFactory1 ConcreteFactoryZL-

createAssign()
createPlus()

createAssign()
createPlus() . Plus B

/\

Prof. Uwe ABmann, Design Patterns and Frameworks

- JavaPlus EiffelPlus =

G

Employment of Factory Class

Prof. Uwe ARmann, Design Patterns and Frameworks

G

» For window styles
= All widgets are used by the framework abstractly
= The concrete style is determined by a concrete factory class
= Swing, AWT, ...
> In office systems
= For families of similar documents
> |In business systems
= For families of similar products
» For tools on several languages

» Factory Class is related to Tools-and-Materials (TAM), because
products are materials (see later)

19

Pragmatics of Factory Class

Prof. Uwe ARmann, Design Patterns and Frameworks

G

» A factory deals with 3+x inheritance hierarchies (factory, product 1, ...,
product n)

» The n product hierarchies must be maintained in parallel, i.e., they

form ParallelHierarchies

» The factory pattern ensures that all objects are created with the
parallelism constraint

WidgetFactory

createScrollbar()
createWindow()

AN

===

ConcreteFactory1

ConcreteFactory2

CreateScrollbar()
createWindow()

CreateScrollbar()
createWindow()

Client

Window<

XWindow SWTWindow

Scrollbar ——

'->1 XScrollbar SWTScrollbar
___) 20

Same height of products

Variant: The
wl| Prototyping Factory

» Concrete factories need not be created; one instance is enough, if
prototypes of the products exist

» To produce new products, the ConcreteFactory clones the set of
available products

» The variability of products is handled by the cloning of the prototypes

Prof. Uwe ARmann, Design Patterns and Frameworks

21

G

Structure for Prototyping Factory

Prof. Uwe ARmann, Design Patterns and Frameworks

G

AbstractFactory |~

createProductA()
createProductB()

/N

ConcreteFactory
createProductA() .
createProductB() y,
/
ad
/7
:Prototype , -
s
copyProductA()/ = =
copyProductB()—| — — — —

_» | ProductB2

AbstractProductA [<

ZAN

Client

ProductA2 ProductA1
A b 4
/s
e
/s
e
- AbstractProductB [©

ZAN

—
—
— —

ProductB1

22

Variant: Factory with Interpretive
m|/| FactoryMethod

» If more factory methods should be added, this becomes tedious,
since the AbstractFactory and all concrete factories must be editied

» Instead: one factory method with parameter string

public class abstractFactory {
abstract Product createProduct(String what);

}

public class concreteFactory extends abstractFactory {
Product createProduct(String what) {
if (what.eq(“p17)) {
return new P1();
else

Prof. Uwe ARmann, Design Patterns and Frameworks

23

G

Structure for Interpretive Factory

ameworks

AbstractFactory

createProduct(String what)

VANIIVAN

G

AbstractProductA [<

ZAN

Client

ProductA2 ProductA1

— —»

—

AbstractProductB [<

ZAN

ConcreteFactory1 - —¥
createProduct(String whatyF ==

8

:

<

5_. ConcreteFactory2

£ — >

createProduct(String what)

ProductB2 ProductB1

e — — — -

24

Factory Class - Employment

Prof. Uwe ARmann, Design Patterns and Frameworks

G

» Make a system independent of the way how its objects are created
» Hide constructors to make the way of creation exchangable with

types

» For product families

= In which families of objects need to be created together; but the way
how is varied

» Related Patterns

= An abstract factory is a special form of hook class, to be called by
some template classes.

= Often, a factory is a Singleton (a Singleton is a class with only one
instance)

= Concrete factories can be created by parameterizing the factory with
Prototype objects

25

3.3 Builder (Factory with Protocaol,
) Structured Factory)

°°°°°°°°°°°°°°° Design Patterns and Frameworks, © Prof. Uwe Alkmann 26

Structure for Builder

Prof. Uwe ARmann, Design Patterns and Frameworks

G

» The Builder is a Factory that produces a structured product (a whole

with parts)

= e.g., a business object or product data of a PDM

Director <

construct() ©

for all objects in structure
according to protocol {
builder.buildPart()

}

N

builder
>

AbstractBuilder

buildPart()
getResult()

/\

ConcreteBuilder

—————— >

Product

buildPart()
getResult()

27

Example Builder

Prof. Uwe ARmann, Design Patterns and Frameworks

G

» RTF grammar defines a protocol for the sequence of text converter

functions

TextConverter

builder

RTFReader |<

ParseRTF()

getText()

convChar(char)
convCharSet(CharSet)
convParagraph()

/\

ASCIlIConverter

convChar(char)
convCharSet(CharSet)
convParagraph()
getText()

----> ASClIText

TeXConverter

convChar(char)
convCharSet(CharSet)
convParagraph()
getText()

------ > TeXText

28

Prof. Uwe ARmann, Design Patterns and Frameworks

G

Builder Protocol (E.g., Specified by

RTFDocument
RTFHeader RTFBody RTFFooter
RTFParagrapr; RTFParagrapf; RTFParagrapﬁ
Word * Word * Word *
Char * Char * Char *

29

The Builder

Prof. Uwe ARmann, Design Patterns and Frameworks

G

Maintains an internal state that memorizes the point of time in
construction of the complex data structure

Data structure defines a protocol for calls to the elementary functions
Data structure must be defined by a

= Grammar

= JSP, regular expression

= Protocol machine (statechart acceptor)

= Other mechanisms, such as Petri nets
The other way round: as soon as we have a data structure

= Defined by a grammar, regular expressions, or JSP

= \We can build a constructor with the Builder pattern

30

Builder: Information Hiding

» The builder hides
= The protocol (the structure of the data)
= The current status
= The implementation of the data structure

» Similar to an Iterator, the structure is hidden

Prof. Uwe ABmann, Design Patterns and Frameworks

G

31

Prof. Uwe ARmann, Design Patterns and Frameworks

G

Known Uses

» Parsers in compilers are builders that contain the grammar of the

concrete syntax of the programming language

» Builders for intermediate representations of all kinds of languages

= Programming languages
= Specification languages
= Graphic languages such as UML

» Builders for all complex data structures

= Databases with integrity constraints

32

The End

SyIomawel{ pue sulajed ubiseq ‘UuBwgY amn "10id

33

o)

	Coaster in Space
	Slide 2
	Slide 3
	Slide 4
	Structure for FactoryMethod
	Beispiel for FactoryMethod
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Structure for Abstract Factory
	Beispiel for Abstract Factory
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Abstract Factory
	Slide 26
	Structure for Erbauer
	Beispiel for Erbauer
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

