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3.1 Factory Method (Polymorphic
) Constructor)
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A Restriction of Polymorphism

» Often, polymorphic language do not allow for exchange of the

constructor

» Problem: constructors are concrete, cannot be varied polymorphically

I/l Creator class abstract
public abstract class Creator {
public void collect() {
Set mySet = new Set(10);
// which set should be allocated?

}
}

// Creator class concrete
public class CreatorB extends Creator {
public void collect() {
mySet = new ListBasedSet(10);

}

Prof. Uwe ARmann, Design Patterns and Frameworks

.

// Product class
public class Set extends Collection {
public Set(int initialLength) {

-
}

public class ListBasedSet extends Set {
public ListBasedSet(int initialLength) {

-
}

So, creator methods, which employ
constructors, must be overridden
carefully by hand 3



Factory Method (Polymorphic
m|| Constructor)

» Abstract creator classes offer abstract constructors (polymorphic constructors)

= Concrete subclasses can specialize the constructor

= Constructor implementation is changed with allocation of concrete Creator

// Abstract creator class

public abstract class Creator {

// factory method

public abstract Set createSet(int n);

orks

=
public class Client {

Creator cr = [.. subclass ]..
public void collect() {

Set mySet = Creator.createSet(10);

// Concrete creator class
public class ConcreteCreator extends Creator ({
public Set createSet(int n) {

return new ListBasedSet(n);
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Structure for FactoryMethod

» FactoryMethod is a variant of TemplateMethod
» |t hides the allocation of a product

eworks
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Example FactoryMethod for Buildings
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» Consider a framework for

planning of buildings
= Class Building with template

method construct to plan a
building interactively

» Users can create new

subclasses of buildings

= All abstract methods
createWall, createRoom,
createDoor, create\WWindow must
be implemented

» Problem: How can the

framework treat new subclasses
of Buildings? (unforeseen
extension)

Building I
house = createBuilding();
construct()~____ | ______.
createBuil(?ing() house.createWall();
createWall()
createDoor() house.createDoor();
createWindow()
createRoom() house.createWindow();
LA\

Framework
Skyscraper Bungalow Extensions
createBuilding() createBuilding()
createWall() createWall()
createDoor() createDoor()
createWindow() createWindow()
createRoom() createRoom()
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Solution with FactoryMethod
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» Solution: a
FactoryMethod

» Subclasses can
specialize the
constructor and enrich
with more behavior,
e.g., additional
dialogues

/ abstract creator class
public abstract class Building {
public abstract

Building createBuilding();

/ concrete creator class
public class Skyscraper extends Building {
Skyscraper() {

J
public Building createBuilding() {

.. fillin more info ...
return new Skyscraper();

)




Flexible Construction with Reflection

» Find the class's name and get the class object
» Then clone the class object

In Java: Class.forName (String name)

> Attention: reflection is usually slow. It has to lookup bytecode
information and must load class code on-the-fly

Prof. Uwe ARmann, Design Patterns and Frameworks

createProduct() {

/ / reflective function for class name, called in subclass
String className = getClassNameFromSome\Where();

/ / get the class object and allocate from there

house = (Building) Class.ForName(className).newlnstance();
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Combination of Factory Method and
m|| Default Implementation

» FactoryMethods can contain default implementations to share
behavior

» Subclass has to call super()

/ / abstract class with default / / concrete class with additional
« // behavior / / behavior
g public abstract class Building { public class Skyscraper extends Building {
&  public abstract / / concretization of hook
= Building createBuildinglnner(); public Building createBuildinglnner(] {
2  public return new Skyscraper();
3 Building createBuilding(] { }
% Building b = createBuildinglnner();
8 Door d = new Door(];
3 b.setDoor(d]; }
£ return b;
3
3
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Factory Methods in Parallel Class

al| Hierarchies

» One class hierarchy offers uses a factory method to create objects of a second hierarchy
» On every level, the factory method is implemented in a parallel class on exactly the same

level and abstraction level

= E.g, ReadableObject and WritableObject in ReadableFigures and FigureManipulators
» Here, the parallelism constraint is that every readable object must allocate a parallel

manipulator.

= This is a constraint on the polymorphic allocator of the manipulators

ReadableFigure [

createManipulator()

A\

Concrete Concrete
ReadableFigureA | | ReadableFigureB

anipulatorOfFigurgd ManipulatorOfFigure
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createManipulatpr()| [createManipulator)

G

>| ManipulatorOfFigure

draw()
/\

manipulator

drag()

ConcreteManipulatorA| | ConcreteManipulatorB

draw() draw()
drag() drag()

______________________________ 10



Creation of Product Subclasses with
al| Generics
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/ Generic factory class
template<class TheProduct>
class StandardProducer<TheProduct> : public Producer {
Product* StandardProducer<TheProduct>{ ] {
return new <TheProduct>();
}

/ Application of generic factory class creates concrete
/ FactoryMethod automatically
Public abstract class Building {
StandardProducer<MyProduct> myProducer;
myProducer = new myProducer.StandardProducer<MyProduct>(]

)
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Analysis of FactoryMethod —
Information Hiding of Abstract Classes

» Abstract classes know when an object should be allocated, but do not
know which of the subclasses will be filled in at runtime

= The knowledge which subclass should be used is encapsulated
into the client subclasses
» For frameworks this means:

= The abstract classes of the framework do not know which application
class they will work on, but they know when to create an application
object

= The knowledge which application class should be used is encapsulated
into the application
» Relatives of FactoryMethod

= A FactoryMethod is a HookMethod, used by a TemplateMethod, which
returns a product, i.e., FactoryMethods are called in TemplateMethods
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3.2 Factory Class (Abstract
3 Factory)
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Forces of the Factory Class Pattern

» Given a package with a family of classes (a product family).
Examples

= Widgets in a window system
= Stones in a Tetris game
= Products of a company
» How can the product family be switched in one go to a variant?
=  Swing widgets to Windows widgets?
= 2D-stones to 3D-stones in the Tetris game?
= Cheap variants of the products of the company to expensive variants?
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Factory Class Pattern

» A Factory (FactoryClass) groups factory methods to a class

= A Factory is a class that groups a family of polymorphic
constructors of a family of classes (products)

= The products can be classes of a layer or a package

= The products have a strong parallelism constraint (isomorphic
hierarchies)

» An AbstractFactory contains the interfaces of the constructors

» A ConcreteFactory contains the implementation of the constructors
= The Concrete Factories can be exchanged
= A Concrete Factory represents one concrete family of objects

» Hence, an AbstractFactory offers an interface to create families of
related objects
= That depend on each other
= Without naming their constructors explicitly
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Structure for Factory Class

» By creating the concrete factory, the client determines the entire

family of products (here: family 1 or 2)

factory

AbstractFactory [~
5 createProductA()
£ createProductB()
5
ConcreteFactory1|-- (ConcreteFactory2
createProductA() ! | createProductA()
createProductB() : | createProductB()
> :
: i

)

Client
init() - .
AbstractProductA [< If (..) {
factory = new
$ ConcreteFactory1();
} else {
factory = new
> ProductA2 ProductA1 <™ ConcreteFactory2();
| 1
E AbstractProductB [ :
“> ProductB2 ProductB1 [<
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Example for Factory Class

WidgetFactory

createScrollbar()
createWindow()

/N

Client

Windo%‘

XWindow SWTWindow

ConcreteFactory1

ConcreteFactoryZL-

createScrollbar()
createWindow()

createScrollbar()
createWindow()
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Scrollbar [<

/\

> XScrollbar SWTScrollbar




Example for Factory Class in
| Compilers

ElementFactory |~ Client

createAssign()
createPlus()

~ JAN

Assign [©

y

RN R U U RIS Uy Ut SR S |

- - B 1 JavaAssign| | EiffelAssign

ConcreteFactory1 ConcreteFactoryZL-

createAssign()
createPlus()

createAssign()
createPlus() . Plus B

/\
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Employment of Factory Class
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» For window styles
= All widgets are used by the framework abstractly
= The concrete style is determined by a concrete factory class
= Swing, AWT, ...
> In office systems
= For families of similar documents
> |In business systems
= For families of similar products
» For tools on several languages

» Factory Class is related to Tools-and-Materials (TAM), because
products are materials (see later)
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Pragmatics of Factory Class
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» A factory deals with 3+x inheritance hierarchies (factory, product 1, ...,
product n)

» The n product hierarchies must be maintained in parallel, i.e., they

form ParallelHierarchies

» The factory pattern ensures that all objects are created with the
parallelism constraint

WidgetFactory

createScrollbar()
createWindow()

AN

===

ConcreteFactory1

ConcreteFactory2

CreateScrollbar()
createWindow()

CreateScrollbar()
createWindow()

Client

Window<

XWindow SWTWindow

Scrollbar ——

'->1 XScrollbar SWTScrollbar
_____________________________________________ ) 20
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Variant: The
wl| Prototyping Factory

» Concrete factories need not be created; one instance is enough, if
prototypes of the products exist

» To produce new products, the ConcreteFactory clones the set of
available products

» The variability of products is handled by the cloning of the prototypes
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Structure for Prototyping Factory
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AbstractFactory |~

createProductA()
createProductB()

/N

ConcreteFactory
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createProductB() y,
/
ad
/7
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s
copyProductA()/ = =
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—
—
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Variant: Factory with Interpretive
m|/| FactoryMethod

» If more factory methods should be added, this becomes tedious,
since the AbstractFactory and all concrete factories must be editied

» Instead: one factory method with parameter string

public class abstractFactory {
abstract Product createProduct(String what);

}

public class concreteFactory extends abstractFactory {
Product createProduct(String what) {
if (what.eq(“p17)) {
return new P1();
else .....
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Structure for Interpretive Factory

ameworks

AbstractFactory

createProduct(String what)

VANIIVAN

G

AbstractProductA [<

ZAN
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ProductA2 ProductA1

— —»

—
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Factory Class - Employment
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» Make a system independent of the way how its objects are created
» Hide constructors to make the way of creation exchangable with

types

» For product families

= In which families of objects need to be created together; but the way
how is varied

» Related Patterns

= An abstract factory is a special form of hook class, to be called by
some template classes.

= Often, a factory is a Singleton (a Singleton is a class with only one
instance)

= Concrete factories can be created by parameterizing the factory with
Prototype objects
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3.3 Builder (Factory with Protocaol,
) Structured Factory)
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Structure for Builder
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» The Builder is a Factory that produces a structured product (a whole

with parts)

= e.g., a business object or product data of a PDM

Director <

construct() ©

for all objects in structure
according to protocol {
builder.buildPart()

}

N

builder
>

AbstractBuilder

buildPart()
getResult()

/\

ConcreteBuilder

—————— >

Product

buildPart()
getResult()
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Example Builder
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» RTF grammar defines a protocol for the sequence of text converter

functions

TextConverter

builder

RTFReader |<

ParseRTF()

getText()

convChar(char)
convCharSet(CharSet)
convParagraph()

/\

ASCIlIConverter

convChar(char)
convCharSet(CharSet)
convParagraph()
getText()

----> ASClIText

TeXConverter

convChar(char)
convCharSet(CharSet)
convParagraph()
getText()

------ > TeXText
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Builder Protocol (E.g., Specified by

RTFDocument
RTFHeader RTFBody RTFFooter
RTFParagrapr; RTFParagrapf; RTFParagrapﬁ
Word * Word * Word *
Char * Char * Char *
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The Builder
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Maintains an internal state that memorizes the point of time in
construction of the complex data structure

Data structure defines a protocol for calls to the elementary functions
Data structure must be defined by a

= Grammar

= JSP, regular expression

= Protocol machine (statechart acceptor)

= Other mechanisms, such as Petri nets
The other way round: as soon as we have a data structure

= Defined by a grammar, regular expressions, or JSP

= \We can build a constructor with the Builder pattern
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Builder: Information Hiding

» The builder hides
= The protocol (the structure of the data)
= The current status
= The implementation of the data structure

» Similar to an Iterator, the structure is hidden
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Known Uses

» Parsers in compilers are builders that contain the grammar of the

concrete syntax of the programming language

» Builders for intermediate representations of all kinds of languages

=  Programming languages
= Specification languages
= Graphic languages such as UML

» Builders for all complex data structures

= Databases with integrity constraints
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The End
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