I

Chapter 4
Simple Patterns for Extensibility

Prof. Dr. U. ABmann

Chair for Software
Engineering

1) Object Recursion
2) Composite
3) Decorator

Technische Universitat 5
Dresden 6

Version 11-0.1, 10/21/11

Proxy
-Bridge

7) Observer

Design Patterns and Frameworks, © Prof. Uwe ARmann 1

Goal

)
)
)
Facultat Informatik 4) Chain of Responsibility
)
)*
)

Prof. Uwe ABmann, Design Patterns and Frameworks

=

v

Understanding extensibility patterns
= ObjectRecursion vs TemplateMethod, Objectifier (and Strategy)
= Decorator vs Proxy vs Composite vs ChainOfResponsibility
» Parallel class hierarchies as implementation of facets
= Bridge
= Visitor
= Observer (EventBridge)
» Understand facets as non-partitioned subset hierarchies

» Layered frameworks as a means to structure large systems, based
on facets

Literature (To Be Read)

Prof. Uwe ABmann, Design Patterns and Frameworks

=

-

On Composite, Visitor: T. Panas. Design Patterns, A Quick
Introduction. Paper in Design Pattern seminar, IDA, 2001. See home
page of course.

Gamma: Composite, Decorator, ChainOfResponsibility, Bridge,
Visitor, Observer, Proxy

J. Smith, D. Stotts. Elemental Design Patterns. A Link Between
Architecture and Object Semantics. March 2002. TR02-011, Dpt. Of
Computer Science, Univ. of North Carolina at Chapel Hill,
www.citeseer.org

Static and Dynamic Extensibility

nnnnnnnnnnnnn

Design Patterns and Frameworks, © Prof. Uwe ARmann 4

Variability vs Extensibility

Software Cocktail Mixers

» Variability so far meant
= Static extensibility, e.g., new subclasses
= Often, dynamic exchangability (polymorphism)
= But not dynamic extensibility
» Now, we will turn to patterns that allow for dynamic extensibility

= Most of these patterns contain a 1:n-aggregation that is extended at
runtime

‘Qn Patterns and Frameworks

-

Binding a hook with

a hook value Extending a hook with
another hook value

Prof. Uwe ARma

&

3.1 Object Recursion Pattern

_

B Design Patterns and Frameworks, © Prof. Uwe ARmann 7

Prof. Uwe ABmann, Design Patterns and Frameworks

=

Object Recursion

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Similar to the TemplateMethod, Objectifier and Strategy

» But now, we allow for recursion in the dependencies between the
classes (going via inheritance and aggregation)

» The aggregation can be 1:1 or 1:n (1-Recursion, n-Recursion)

Tor+
F > Handler
childObject(s)
handleRequest()
preHandleRequest(Component)
postHandleRequest(Component)
|
Terminator Recurser D —
preHandleRequest()
handleRequest() handleRequest() 0--{----| for all g in childObject(s)
preHandleRequest(Component) g.handleRequest()
postHandleRequest(Component) postHandleRequest()

Incentive

Object Recursion — Runtime Structure

Prof. Uwe ARmann, Design Patterns and Frameworks

&

o

» ObjectRecursion is a simple (sub)pattern
in which an abstract superclass specifies common conditions for two
kinds of subclasses, the Terminator and the Recurser (a simple contract)
» Since both fulfil the common condition, they can be treated uniformly
under one interface of the abstract superclass

3.2 Composite

Design Patterns and Frameworks, © Prof. Uwe ARmann 1

Prof. Uwe ABmann, Design Patterns and Frameworks

» 1-ObjectRecursion creates lists »

:Cons

n-ObjectRecursion creates trees

and graphs
Cons
\ :Cons
:Cons
:Cons

The recursion allows for building up runtime nets

Structure Composite

10

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Composite can be seen as instance of n-ObjectRecursion

(o} ———

*

Component

commonOQOperation()
add(Component)
remove(Component)
getType(int)

T

childObjects

Leaf

Composite

} Pseudo implementations

commonQOperation()

add(Component)
remove(Compon
getType(int)

commonOperation() ©-

ent)

for all g in childObjects
g.commonOperation()

12

Piece Lists in Production Data

Purpose

Prof. Uwe ARmann, Design Patterns and Frameworks

&

labstract class CarPart {

int myCost;
abstract int calculateCost();

class ComposedCarPart extends CarPart {

int myCost = 5;

CarPart [] children; // here is the n-
recursion

int calculateCost() {
for (i = 0; i <= children.length; i++) {

curCost += childrenli].calculateCost();

}

return curCost + myCost;

}
void addPart(CarPart c) {

children[children.length] = c;

class Screw extends CarPart {
int myCost = 10;
int calculateCost() {
return myCost;
}
void addPart(CarPart c) {
/Il impossible, dont do anything

// application
int cost = carPart.calculateCost();

» The Composite is older as ObjectRecursion, from GOF
= ObjectRecursion is a little more abstract
» As in ObjectRecursion, an abstract superclass specifies a contract for
two kinds of subclasses

= Since both fulfil the common condition, they can be treated uniformly
under one interface of the abstract superclass

» Good method for building up trees and iterating over them
= The iterator need not know whether it works on a leaf or inner node. It
can treat all nodes uniformly for
Iterator algorithms (map)
Folding algorithms (folding a tree with a scalar function)
» The Composite's secret is whether a leaf or inner node is worked on

» The Composite's secret is which subclass is worked on

Prof. Uwe ABmann, Design Patterns and Frameworks

} 13 @ 14
Composite Run-Time Structure Dynamic Extensibility of Composite
' |
» Part/Whole hierarchies, e.g., nested graphic objects » Due to the n-recursion, new children can always be added into a
composite node
» Whenever you have to program an extensible part of a framework,
consider Composite
:Picture » Problems:
§ é = Pattern is hard to employ when it sits on top of a complex inheritance
g g hierarchy
2 # 2 Then, use interfaces only or mixin-based inheritance (not available in most
g :Picture :Line :Rectangle ;E: languages)
; / \\; ;
§ :Picture :Line :Rectangle §
E S
) common operations: draw(), move(), delete(), scale() :
15 16

=

&

<= intarface =

KZomposable

CompesitionE lemant

<= intarfaca =
Compeeit %x [Cora)
I \z\\ Compozar 2] NH composar
IComposition o dion (Care)
Argipart [} Agdumant
[Core)
/g‘ Value
! e (o)
<% intarface == i}“‘“\.,,_

? E\ cAfosnb nPoirnt

<< imarfaca =»
IComponant

Comp ’éo nElemant

[Lapguagafole)
<_| Composal
Languagafcle
Cofmpesition (Languo9 ’
/Ié{rgumant
nguagaAola)
g Q\-\ /alue
{LahgusgeaFola)
Camposabla
;/ v‘\ Hook
Box [LangusageHala)
(Languagafola)

_d

Hook

(Core)

CompasitionElemant
(TimaRAcle)

Relations of Composite to Other
Programming Domains

RH
<_| Composar
Compasition
Argumant
(TimaRala) K
ﬁ Valua
Composable

;/

TimaRola

3.3 Decorator as a Variant of
ObjectRecursion and Composite

Prof. Uwe ABmann, Design Patterns and Frameworks

Boxology
Box Hierarchy

o

» Composite pattern is the heart of functional programming
= Because recursion is the heart of functional programming
= |t has discovered many interesting algorithmic schemes for the
Composite:
Functional skeletons (map, fold, partition, d&c, zip...)
Barbed wire (homo- and other morphisms)
» The Composite is also the heart of attributed trees and attribute
grammars
= Ordered AG are constraint systems that generate iterators and
skeletons [CompilerConstruction]
» Adaptive Programming [Lieberherr] is a generalization of Composite
with Iterators [Component-Based Software Engineering (CBSE)]

18

Decorator Pattern

Design Patterns and Frameworks, © Prof. Uwe ARmann

19

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» A Decorator is a skin of another object
» Itis a 1-ObjectRecursion (i.e., a restricted Composite):
= Asubclass of a class that contains an object of the class as child
= However, only one composite (i.e., a delegatee)
= Combines inheritance with aggregation
» Similar to ObjectRecursion and Composite, inheritance from an
abstract Handler class
= That defines a contract for the mimiced class and the mimicing class

:Client

A:Decorator

B:Decorator

refe—

hidden . C:RealObject

hiddden o

Decorator — Structure Diagram

Decorator for Widgets

OnlyRecord

' N
— 1 - 1
MimicedClass Widget
mimiced mimiced
mimicedOperation() draw()
i I
H | E l |
g ConcreteMimicedClass Decorator < | é TextWidget WidgetDecorator < |
& &
§> mimicedOperation() mimicedOperation()- . % draw() draw()
a preAction(); a
§ mimiced.mimicedOperation(); é -
g postAction(): g mimiced.draw()
2 | : l
3 | I E I |
E ConcreteDecoratorA ConcreteDecoratorB ;é Frame Scrollbar
super.mimicedOperation(); super.draw(); . super.draw();
mimicedOperation() mimicedOperation(): additionalStuff(): drawF.rame()’: o| - draw() draw() - drawScrollbar():
O 6 :
' |
» For extensible objects (i.e., decorating objects)
Record 1 = Extension of new features at runtime
ecor
iced = Removal possible
access mimice . L . . .
0 » Instead of putting the extension into the inheritance hierarchy
Y ﬁl R = If that would become too complex
E ' ! g = If that is not possible since it is hidden in a library
% TransientRecord PersistentDecorator o | :‘é
§ access() access() . . . §
é mimiced.access() ,E
< | t Library Library
K] —
£ | | 3 New Features R
& PersistentRead PersistentRecord .
< E Decorator with
D

:if (!loaded()) load(
- super.access();

rof.

D)

——|- access()

boolean loaded()
load()

access()
boolean loaded()
boolean modified()
load()

dump()

—~.J] super.access();

if (lloaded()) load();

if (modified()) dump():

23

Prof—tJ

New Features

24

Variants of Decorators

» If only one extension is planned, the abstract superclass Decorator
can be saved; a concrete decorator is sufficient

» Decorator family: If several decorators decorate a hierarchy, they
can follow a common style and can be exchanged together

Prof. Uwe ARmann, Design Patterns and Frameworks

« ————————— New Features
% —— [New Features
New Features

———————— New Features
‘H — [New Features

_d

3.4 Chain of Responsibility

)

@ 25 Design Patterns and Frameworks, © Prof. Uwe ARmann 26
Chain of Responsibility Structure for ChainOfResponsibility
L . |
» Delegate an action to a list of delegatees » A Chain is recursing on the abstract super class, i.e.,

. That attempt to solve the problem one after the other = All classes in the inheritance tree know they hide some other class

= Or delegate further on, down the chain (unlike the ObjectRecursion)

= “daisy chain” principle
¢ £ Successor
s 2
'
L g v
% g Client Worker
g 5 Work()
& ObjectStructure: 2
8 8 |
g :Client g | |
< A:ConcreteWorker <
5 Worker . B:ConcreteWorker % ConcreteWorker1 ConcreteWorker2
® successor . & Work() Work()

successor
27 28

=

&

. . Example ChainOfResponsibility

Chains in Runtime Trees
- wl| Help System for a GUI

» Chains can also be parts of a tree

» Then, a chain is the path upward to the root of the tree Tex"worker HelpWorker

ObjectStructure:
WorkOnHelpQuery()
o 2 | :PrintButton :OKButton
§ = Text:Widget < §
§ / A \ § Application Widget nextWorker/‘ /,nextWorker
g ;E; -- [/ /
£ :Frame :Frame :Frame £ | | :PrintDialog :StoreDialog
g i Dialog Button
2 '\ = nextWorker nextWorker
§ 5 WorkOnHelpQuery() LY d
< < |+| showHelp() \ L
3 :Scrollbar :Scrollbar :Scrollbar
jg' StoreDialog || PrintDialog | :Application
[1
OKButton PrintButton nextWorker
29 30

&

'

Help System with Chain

O

ChainOfResponsibility - Applications

abstract class HelpWorker {
HelpWorker nextWorker; // here is the 1-

-

Design Patterns and Frameworks

Prof. Uwe ABmann
[e) —~

-

recursion

void workOnHelpQuery() {

if (nextWorker)

nextWorker.workOnHelpQuery();
} else {/* no help available */ }

class Widget extends HelpWorker {

/I this class can contain fixing code

lass Dialog extends Widget {
void workOnHelpQuery() {
help(); super.workOnHelpQuery();

}

gl class Application extends HelpWorker {}

B8

class Button extends Widget {
bool haveHelpQuery;
void workOnHelpQuery() {
if (haveHelpQuery) {
help();
}else {
super.workOnHelpQuery();

/I application
button.workOnHelpQuery();

/l may end in the inheritance hierarchy up in
Widget, HelpWorker

/I dynamically in application object
31

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Realizes Dynamic Call
= If the receiver of a message is not known compile-time
= Nor at allocation time (polymorphism)

= But dynamically
= Dynamic call is the key construct for service-oriented architectures (SOA)

» Dynamic extensibility: if new receivers with new behavior should be
added at runtime

= Unforeseen dynamic extensions

= However, no mimiced object as in Decorator

» Anonymous communication
= [f identity of receiver is unknown or not important

= [f several receivers should work on a message

32

Composite vs Decorator vs Chain
'
-
Decorator
-
% but also different features
2
£ N
§ Common contract 1:1 successor relation
§ ObjectRecursion runtime list
£ . J
E, 1:n successor relation
§ runtime
£ tree/
£ | Composite graph
T\ J
>
= All methods in common Chain
.

&

33

Proxy

o

3.5 Proxy

)

Design Patterns and Frameworks, © Prof. Uwe ARmann 34

Proxy

Prof. Uwe ABmann, Design Patterns and Frameworks

=

» Hide the access to a real subject by a representant

> Subject

operation()

JAN

< ISubj 5

RealSubject reaouplec Proxy
. . of ---

operation() operation() .réaISub'ect.ogeration()

Object Structure:
:Client . .
A:Proxy B:RealSubject
ref | realSubject | successor 35

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» The proxy object is a representant of an object

= The Proxy is similar to Decorator, but it is not derived from
ObjectRecursion

= It has a direct pointer to the sister class, not to the superclass

= It may collect all references to the represented object (shadows it). Then,
it is a facade object to the represented object

» Consequence: chained proxies are not possible, a proxy is one-and-
only

» Clear difference to ChainOfResponsibility
= Decorator lies between Proxy and Chain.

36

Proxy Variants Proxy — Other Implementations
' |
» Filter proxy (smart reference): executes additional actions, » Overloading of -> access operation
when the object is accessed = C++ and other languages allow for overloading access
= Protocol proxy: counts references (reference-counting garbage = Then, a proxy can invervene
collection » Built in into the language
. g:ggzloelgn)ents a synchronization protocol (e.g., reader/writer - There are languages that offer proxy objects

Prof. Uwe ARmann, Design Patterns and Frameworks

= Modula-3 offers SmartPointers

R o .
Indirection proxy (facade proxy): assembles all references to - Gilgul offers proxy objects

an object to make it replaceable
Virtual proxy: creates expensive objects on demand
Remote proxy: representant of a remote object
» Caching proxy: caches values which had been loaded from the
subject
= Remote
= Loading lazy on demand

» Protection proxy

Prof. Uwe ABmann, Design Patterns and Frameworks

= Firewall
O 7 &)
Proxy vs Decorator vs Chain
' . _
3.6 *-Bridge
() |
Decorator
(2] [\
2 r \
g N sucessors
T Shadowing possible .
g 1:1 successor relation, 11 successor relation runtime list
2 |1 successor ' Instance of ObjectRecursion
§ _ Methods in common)
2 Aggregation to
a sister class
§ Proxy
5 o J
3
E

=

Chain

\ J
39 Design Patterns and Frameworks, © Prof. Uwe ARmann

40

38

Extensibility Pattern
*DimensionalClassHierarchies (*Bridge)

» A bridge with a collection

Template

hookObject: Hook
00 ects|
TemplateClass <> d HookClass
templateMethod() *
add(hookObi) Of~.__ hookMethod()
remove(Obj) BRI
foreach h in hookObjects
h.hookMethod()
Concrete
MoreConcrete MoreConcrete Concrete HookClassB
TemplateA TemplateB HookClassA
templateMethod()? hookMethod() hookMethod()

Prof. Uwe ABmann, Design Patterns and Frameworks

/I Implementation A
foreach h in hookObject
h.hookMethod();

templateMethod(}?

1

&

/I Implementation B :

_d

3.7 Observer — (Event Bridge)

)

for:iao(;hk&i;hho%(}l)(?bjeds 41 Design Patterns and Frameworks, © Prof. Uwe ABmann 42
Observer (Publisher/Subscriber, Event
. Structure Observer
o{| Bridge) 4
» Extension of *-Bridge
Observer
Subject Observer
observers
register(Observer) update ()
% % unregister(Observer) for all b in observers {
g % notify() 01" b.update ()
g ‘g ConcreteObserver
2 I R Subject;
e 2 | ConcreteSubject _|. | ObserverState =
: : update () °© Subject.getState()
E: 2 | getState() O, ObserverState
H ™y > Notify on change 2 | setState()
& % | SubjectState Difference to Bridge: hierarchies are not

=

Subject

------ >

Queries

43

&

return SubjectState

about Subject

complete independent; Observer knows

44

Sequence Diagram Observer

Observer - Applications

» Update() does not transfer data, only an event (anonymous
communication possible)
» Observer pulls data out itself

= Due to pull of data, subject does not care nor know, which observers are
involved: subject independent of observer

% aConcreteSubject aConcreteObserver anotherConcreteObserver
£

< J_ ’ register()

E register()

2

s setState()

2 notif%%

=] L

] <

g

g update n() _

2

> A getState() _]

a update n() .

< getState()

o T 45

Prof. Uwe ABmann, Design Patterns and Frameworks

=

» Loose coupling in communication
= Observers decide what happens

» Dynamic change of communication

= Anonymous communication
= Multi-cast and broadcast communication
= Cascading communication if observers are chained (stacked)

» Communication of core and aspect

= If an abstraction has two aspects and one of them depends on the
other, the observer can implement the aspect that listens and reacts on
the core

= Observers are a simple way to implement aspect-orientation by hand

46

. Observer with ChangeManager
Observer Variants .
o a|/| (Mediator)
» Multiple subjects: » Mediator between subjects and observer:
= |f there is more than one subject, send Subject as Parameter of May filter events, stop cascaded propagations
notify(Subject s).) * *
. . . Subject ChangeManager Observer
» Push model: subject sends data in notify() Subjects Observer

The default is the pull model: observer fetches data itself
» Change manager

Prof. Uwe ABmann, Design Patterns and Frameworks

47

=

register(Observer)
unregister(Observer)
notify() e}

manager.notify()

ign Patterns and Frameworks

manager.register(this,b)

Prof. Uwe ABmann, Desi

&

manager

register(Subject,Observer)
unregister(Subject,Observer
notify()

Subject-Observer-mapping

update (Subject)

SimpleChangeManager

DAGChangeManager

register(Subject,Observer)
unregister(Subject,Observer)

notify() 0 notify()

register(Subject,Observer)
unregister(Subject,Observer,|

o

for all s in Subjects
for all b in s.Observer
b.update (s)

mark all observers to be updated
update all marked observers

ChangeManager is also Called
Eventbus

Relations Extensibility Patterns

Prof. Uwe ARmann, Design Patterns and Frameworks

» Basis of many interactive application frameworks (Xwindows, Java
AWT, Java InfoBus,)

Subject Subject Subject

b !

EventBus (Mediator)

, v !

Un

constrained Patterns

Decorator

ObjectRecursion

Prof. Uwe ABmann, Design Patterns and Frame

DI

*

i
\If XI

Proxy

Chain

.

Visitor

i

*

unconsiraining

uncongtraining
I
I
v

Dimensional
ClassHierarchies

'H"

Observer Observer Observer Recursive Framework Patterns Connection
T&H Pattern T&H Pattern
@ 49 50
Summary The End
' |
» Most often, extensibility patterns rely on ObjectRecursion
= An aggregation to the superclass
» This allows for constructing runtime nets: lists, sets, and graphs
= And hence, for dynamic extension
Y = The common superclass ensures a common contract of all objects inthe
3 runtime net H
& » Layered systems can be implemented with dimensional class 5
E hierarchies (Bridges) E
: » Layered frameworks are product families for systems with layered %
5 architectures c
g 8
< <
2 2
51 52

=

&

