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Understanding extensibility patterns
= ObjectRecursion vs TemplateMethod, Objectifier (and Strategy)
= Decorator vs Proxy vs Composite vs ChainOfResponsibility
Parallel class hierarchies as implementation of facets
= Bridge
= Visitor
= Observer (EventBridge)
Understand facets as non-partitioned subset hierarchies

Layered frameworks as a means to structure large systems, based
on facets



Static and Dynamic Extensibility

eeeeeeeeeeeeeee

Design Patterns and Frameworks, © Prof. Uwe Allmann



\Qn Patterns and Frameworks

Prof. Uwe ARma

G

Variability vs Extensibility

» Variability so far meant
= Static extensibility, e.g., new subclasses
= Often, dynamic exchangability (polymorphism)
= But not dynamic extensibility
» Now, we will turn to patterns that allow for dynamic extensibility

= Most of these patterns contain a 1:n-aggregation that is extended at
runtime

-

Binding a hook with

a hook value Extending a hook with
another hook value




Software Cocktail Mixers



3.1 Object Recursion Pattern
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Object Recursion
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Similar to the TemplateMethod, Objectifier and Strategy

But now, we allow for recursion in the dependencies between the
classes (going via inheritance and aggregation)

The aggregation can be 1:1 or 1:n (1-Recursion, n-Recursion)

Y

Client

1or+

Handler <

handleRequest()
preHandleRequest(Component)
postHandleRequest(Component)

/\

Terminator

handleRequest()

Recurser

handleRequest() O---
preHandleRequest(Component)
postHandleRequest(Component)

childObiject(s)

preHandleRequest()

for all g in childObject(s)
g.handleRequest()

postHandleRequest()




Incentive

» ObjectRecursion is a simple (sub)pattern

= in which an abstract superclass specifies common conditions for two
kinds of subclasses, the Terminator and the Recurser (a simple contract)

» Since both fulfil the common condition, they can be treated uniformly
under one interface of the abstract superclass
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Object Recursion — Runtime Structure

» 1-ObjectRecursion creates lists > n-ObjectRecursion creates trees

and graphs
:Cons :Cons
\\‘ :Cons
Y Y
:Cons :Cons

:Cons
Y Y

S
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3.2 Composite
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Structure Composite
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» Composite can be seen as instance of n-ObjectRecursion

Y

Client

Component <

*

commonQperation()
add(Component)
remove(Component)
getType(int)

7

childObjects

} Pseudo implementations

Leaf

Composite

commonOperation()

commonOperation()
add(Component)
remove(Component)
getType(int)

O_

N

for all g in childObjects
g.commonOQOperation()
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Piece Lists in Production Data
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abstract class CarPart {

int myCost;
abstract int calculateCost();

}

class ComposedCarPart extends CarPart {

int myCost = 5;
CarPart [] children; // here is the n-
recursion

int calculateCost() {
for (i = 0; i <= children.length; i++) {
curCost += children(i].calculateCost();

}

return curCost + myCost;

}
void addPart(CarPart c) {

children[children.length] = c;

class Screw extends CarPart {
int myCost = 10;
int calculateCost() {
return myCost;
}
void addPart(CarPart c) {
I/l impossible, dont do anything

/[ application
int cost = carPart.calculateCost();
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Purpose
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The Composite is older as ObjectRecursion, from GOF
= ObjectRecursion is a little more abstract

As in ObjectRecursion, an abstract superclass specifies a contract for

two kinds of subclasses

= Since both fulfil the common condition, they can be treated uniformly
under one interface of the abstract superclass

Good method for building up trees and iterating over them

= The iterator need not know whether it works on a leaf or inner node. It
can treat all nodes uniformly for

Iterator algorithms (map)
Folding algorithms (folding a tree with a scalar function)

The Composite's secret is whether a leaf or inner node is worked on
The Composite's secret is which subclass is worked on
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Composite Run-Time Structure
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» Part/Whole hierarchies, e.g., nested graphic objects

:Picture

;/ \
:Picture :Line

:Rectangle

AN

:Picture :Line :Rectangle

common operations: draw(), move(), delete(), scale()
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Dynamic Extensibility of Composite

» Due to the n-recursion, new children can always be added into a
composite node

» Whenever you have to program an extensible part of a framework,
consider Composite

» Problems:
= Pattern is hard to employ when it sits on top of a complex inheritance
hierarchy

- Then, use interfaces only or mixin-based inheritance (not available in most
languages)
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Relations of Composite to Other
ml/| Programming Domains

» Composite pattern is the heart of functional programming
= Because recursion is the heart of functional programming

= |t has discovered many interesting algorithmic schemes for the
Composite:
Functional skeletons (map, fold, partition, d&c, zip...)
. Barbed wire (homo- and other morphisms)

» The Composite is also the heart of attributed trees and attribute
grammars

= Ordered AG are constraint systems that generate iterators and
skeletons [CompilerConstruction]

» Adaptive Programming [Lieberherr] is a generalization of Composite
with Iterators [Component-Based Software Engineering (CBSE)]
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3.3 Decorator as a Variant of
3 ObjectRecursion and Composite
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Decorator Pattern
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» A Decorator is a skin of another object
» Itis a 1-ObjectRecursion (i.e., a restricted Composite):

A subclass of a class that contains an object of the class as child
However, only one composite (i.e., a delegatee)

Combines inheritance with aggregation

» Similar to ObjectRecursion and Composite, inheritance from an
abstract Handler class

That defines a contract for the mimiced class and the mimicing class

:Client

A:Decorator

refe-

B:Decorator

hidden °

C:RealObject

hiddden °




Decorator — Structure Diagram
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1
MimicedClass <
mimiced
mimicedOperation()
ConcreteMimicedClass Decorator e _
mimicedOperation() mimicedOperation()- .
o preAction();
Ll " | mimiced.mimicedOperation();
postAction();
ConcreteDecoratorA ConcreteDecoratorB

mimicedOperation()

mimicedOperation()-

. super.mimicedOperation();\

additionalStuff():
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Decorator for Widgets

mimiced.draw()

super.draw();
drawScrollbar():

1
Widget <
mimiced
draw()
/\
-
% TextWidget WidgetDecorator | ~ |
o
5 draw() draw()
8
/N
<
2
>
;é Frame Scrollbar
super.draw(); | - draw() draw(} - -
§I,\drawFrame().

LY,
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Decorator for Persistent Objects

Record <
access() mimiced
/\

§ I I

:‘% TransientRecord PersistentDecorator S |

5 access() access(). . . \
15 ~ | mimiced.access()

/\

g PersistentRead PersistentRecord

2 OnlyRecord " if (lloaded()) Ioad();\
P, ——|. access() TTrm——l . super.access();

i (loaded() load(yy == - 30605 boolean loaded() f (modified() dump():
- super.access(); boolean loaded() boolean modified() :

load()
load()

@ dump() 23




Purpose Decorator

» For extensible objects (i.e., decorating objects)
= Extension of new features at runtime
= Removal possible
» Instead of putting the extension into the inheritance hierarchy
= |f that would become too complex
= |f that is not possible since it is hidden in a library

rns and Frameworks

Library Library P
JAN —al}- New Features AN
Decorator with
New Features
% AN
24




Variants of Decorators

> If only one extension is planned, the abstract superclass Decorator
can be saved; a concrete decorator is sufficient

» Decorator family: If several decorators decorate a hierarchy, they
can follow a common style and can be exchanged together

————————— New Features

/VVQ‘\ — —— |New Features
. 4_\_ ——————— New Features

ﬁ %( New Features
——————— New Features

New Features
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3.4 Chain of Responsibility
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Chain of Responsibility

» Delegate an action to a list of delegatees
= That attempt to solve the problem one after the other
= Or delegate further on, down the chain
“daisy chain” principle

Prof. Uwe ARmann, Design Patterns and Frameworks

ObjectStructure:
:Client
A:ConcreteWorker
aWorker . B:ConcreteWorker
successor o
successor
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Structure for ChainOfResponsibility

» A Chain is recursing on the abstract super class, i.e.,

= All classes in the inheritance tree know they hide some other class
(unlike the ObjectRecursion)

Successor
1]
Y
Worker

Y

Client

Work()

/N

ConcreteWorker1 ConcreteWorker2
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Work() Work()

28

G



Prof. Uwe ARmann, Design Patterns and Frameworks

G

Chains in Runtime Trees

» Chains can also be parts of a tree
» Then, a chain is the path upward to the root of the tree

‘Frame

Text: Wldqet
:Frame :Frame
:Scrollbar :Scrollbar :Scrollbar
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Example ChainOfResponsibility

extWorker

ObjectStructure:
:PrintButton :OKButton
nextWorker }' /,n extWorker

:PrintDialog

nextWorker

HelpWorker

> WorkOnHelpQuery()
P I
:
§ Application Widget
. A| _____
;;',’ Dialog Button
(@]
: /' \ WorkOnHelpQuery()
2 | showHelp()
2
StoreDialog || PrintDialog $

OKButton PrintButton

)

L/

:StoreDialog

nextWorker

'\\* ;//‘

:Application

nextWorker
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Help System with Chain

abstract class HelpWorker { class Button extends Widget {
HelpWorker nextWorker; // here is the 1- bool haveHelpQuery;
recursion void workOnHelpQuery() {
void workOnHelpQuery() { if (haveHelpQuery) {
if (nextWorker) help();

nextWorker.workOnHelpQuery(); } else {

} else {/* no help available */ } super.workOnHelpQuery();

g
-
1 }
%class Widget extends HelpWorker { }
£ // this class can contain fixing code }
%)
éclass llzlalogkeé(te:dls (\£V|dget { /1 application
2;, melel \(A;?;u er?/:rk(l;irlylc(e)l {Que 0 button.workOnHelpQuery();
i; PY), SUPET. P MY // may end in the inheritance hierarchy up in
&} Widget, HelpWorker

} /I dynamically in application object

} 31

{class Application extends HelpWorker { ....



ChainOfResponsibility - Applications

» Realizes Dynamic Call.

= If the receiver of a message is not known compile-time

= Nor at allocation time (polymorphism)

= But dynamically

= Dynamic call is the key construct for service-oriented architectures (SOA)
» Dynamic extensibility: if new receivers with new behavior should be

added at runtime

= Unforeseen dynamic extensions

= However, no mimiced object as in Decorator
» Anonymous communication

= If identity of receiver is unknown or not important
= |f several receivers should work on a message

Prof. Uwe ARmann, Design Patterns and Frameworks
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Composite vs Decorator vs Chain

4 )
Decorator
4 , )
but also different features
Common contract 1:1 successor relation
L ObjectRecursion runtime list
1:n successor relation
runtime
. tree/
Composite graph
\__ J
All methods in common Chain

.
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3.5 Proxy
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Client > Subject
operation()

AN

: -
E ISubj

2 ReaISubject< realSubject Proxy

é operation() operation()
g

2 Object Structure:

)

£ :Client A:Proxy

— /

@ ref o] realSubjectt |

» Hide the access to a real subject by a representant

o} --- <

realSubject.operation()

B:RealSubject

Successor
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» The proxy object is a representant of an object

= The Proxy is similar to Decorator, but it is not derived from
ObjectRecursion

= |t has a direct pointer to the sister class, not to the superclass

= |t may collect all references to the represented object (shadows it). Then,
it is a facade object to the represented object

» Consequence: chained proxies are not possible, a proxy is one-and-
only

» Clear difference to ChainOfResponsibility
= Decorator lies between Proxy and Chain.

Prof. Uwe ARmann, Design Patterns and Frameworks

36

G



Proxy Variants
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Filter proxy (smart reference): executes additional actions,
when the object is accessed
= Protocol proxy: counts references (reference-counting garbage
collection
= or implements a synchronization protocol (e.g., reader/writer
protocols)
Indirection proxy (facade proxy): assembles all references to
an object to make it replaceable
Virtual proxy: creates expensive objects on demand
Remote proxy: representant of a remote object
Caching proxy: caches values which had been loaded from the
subject
= Remote
= Loading lazy on demand
Protection proxy

= Firewall
37



Proxy — Other Implementations

Prof. Uwe ARmann, Design Patterns and Frameworks

G

» Overloading of -> access operation
= (C++ and other languages allow for overloading access
= Then, a proxy can invervene
> Built in into the language
= There are languages that offer proxy objects
= Modula-3 offers SmartPointers
= Gilgul offers proxy objects

38



Proxy vs Decorator vs Chain

Decorator

1:1 successor relation,
1 successor

Shadowing

1:1 successor relation

Methods in common

N SUCESSOrs

possible _
runtime list

Instance of ObjectRecursion

J

Aggregation to
sister class

Proxy

.
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Chain
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3.6 *-Bridge
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Extensibility Pattern
*DimensionalClassHierarchies (*Bridge)

» A bridge with a collection

( Template )

( Hook )

hookObjects
TemplateClass < 1ers HookClass
templateMethod() *
add(hookObj) Or-i__ ) hookMethod()

remove(Obj) bl
N foreach h in hookObjectst /\

h.hookMethod()

Concrete
MoreConcrete MoreConcrete Concrete HookClassB

TemplateA TemplateB HookClassA
templateMethod()? templateMethod(P hookMethod() hookMethod()

/l Implementation A '
foreach h in hookObjects

h.hookMethod();
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I/l Implementation B :
foreach h in hookObjects
h.hookMethod();
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3.7 Observer — (Event Bridge)
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Observer (Publisher/Subscriber, Event

> Notify on change

------ > Queries

Subject 43



Structure Observer

» Extension of *-Bridge

>| Observer

Subject

Prof. Uwe ARmann, Design Patterns and Frameworks

observers
register(Observer) update ()
unregister(Observer) _ N
. for all b in observers {
notify() O~ b.update ()
N
ConcreteObserver
Subject
ConcreteSubject |_ O--| ObserverState =
update () Subject.getState()
getState() O, ObserverState
setState()
SubjectState N [Difference to Bridge: hierarchies are not

G

return SubjectState

omplete independent; Observer knows
bout Subject 44




Sequence Diagram Observer

» Update() does not transfer data, only an event (anonymous
communication possible)
» Observer pulls data out itself

= Due to pull of data, subject does not care nor know, which observers are
involved: subject independent of observer

% aConcreteSubject aConcreteObserver  anotherConcreteObserver
5 | |

E - register()

g - register()

£ |

S < setState()

% notify()

-

g <

£

2 update n() >

E

2 P getState()

a update n() >

< getState()

& | 45




Observer - Applications

» Loose coupling in communication
= Observers decide what happens

» Dynamic change of communication
= Anonymous communication
= Multi-cast and broadcast communication
= Cascading communication if observers are chained (stacked)

» Communication of core and aspect

= |f an abstraction has two aspects and one of them depends on the
other, the observer can implement the aspect that listens and reacts on
the core

= Observers are a simple way to implement aspect-orientation by hand

Prof. Uwe ARmann, Design Patterns and Frameworks
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Observer Variants

» Multiple subjects:

= |If there is more than one subject, send Subject as Parameter of
notify(Subject s).

» Push model: subject sends data in notify()
. The default is the pull model: observer fetches data itself

» Change manager

47



Observer with ChangeManager

(Mediator)

» Mediator between subjects and observer:
May filter events, stop cascaded propagations

Subject

*

register(Observer)
unregister(Observer)
notify()

< ChangeManager

*
> Observer

Observer

Subject

-

A------+-0

manager.notify()

manager.register(this,b)

Prof. Uwe ARmann, Design Patterns and Frameworks
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register(Subject,Observer)
unregister(Subject,Observer)

update (Subject)

manager | Notify()

Subject-Observer-mapping

/ N\

SimpleChangeManager

DAGChangeManager

register(Subject,Observer)
unregister(Subject,Observer)
notify() )

register(Subject,Observer)
unregister(Subject,Observer
notify() )

N

for all s in Subjects
for all b in s.Observer
b.update (s)

mark all observers to be updated
update all marked observers

N




ChangeManager is also Called
ul| Eventbus

» Basis of many interactive application frameworks (Xwindows, Java
AWT, Java InfoBus, ....)

Subject Subject Subject

l v :

EventBus (Mediator)

: vy l

Observer Observer Observer
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Relations Extensibility Patterns

Unconstrained Patterns ( Proxy ) ( Visitor )

/( Decorator )(: ( Bridge‘/)'H( *-Bridge )
ObjectRecurs_oa Chain ) * T

* / unconstraining ( Observer )
Composﬂe |

Y

uncon*tralnlng [Dimensional j
S

| ClassHierarchie

I I

\
Recursive Framework Patterns Connection
T&H Pattern T&H Pattern
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Summary

» Most often, extensibility patterns rely on ObjectRecursion
= An aggregation to the superclass
» This allows for constructing runtime nets: lists, sets, and graphs
= And hence, for dynamic extension
= The common superclass ensures a common contract of all objects in the
runtime net
» Layered systems can be implemented with dimensional class
hierarchies (Bridges)

» Layered frameworks are product families for systems with layered
architectures
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The End
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