Chapter 4

Simple Patterns for Extensibility

Prof. Dr. U. ABmann
Chair for Software
Engineering
Facultat Informatik

Technische Universitat
Dresden

Version 11-0.1, 10/21/11

Design Patterns and Frameworks, © Prof. Uwe Allmann

1) Object Recursion

2) Composite

3) Decorator

4) Chain of Responsibility
5)

6) -

7)0

Literature (To Be Read)

» On Composite, Visitor: T. Panas. Design Patterns, A Quick
Introduction. Paper in Design Pattern seminar, IDA, 2001. See home
page of course.

» Gamma: Composite, Decorator, ChainOfResponsibility, Bridge,
Visitor, Observer, Proxy

» J. Smith, D. Stotts. Elemental Design Patterns. A Link Between
Architecture and Object Semantics. March 2002. TR02-011, Dpt. Of
Computer Science, Univ. of North Carolina at Chapel Hill,
www.citeseer.org

Prof. Uwe ARmann, Design Patterns and Frameworks

G

Prof. Uwe ARmann, Design Patterns and Frameworks

G

>

Understanding extensibility patterns
= ObjectRecursion vs TemplateMethod, Objectifier (and Strategy)
= Decorator vs Proxy vs Composite vs ChainOfResponsibility
Parallel class hierarchies as implementation of facets
= Bridge
= Visitor
= Observer (EventBridge)
Understand facets as non-partitioned subset hierarchies

Layered frameworks as a means to structure large systems, based
on facets

Static and Dynamic Extensibility

eeeeeeeeeeeeeee

Design Patterns and Frameworks, © Prof. Uwe Allmann

\Qn Patterns and Frameworks

Prof. Uwe ARma

G

Variability vs Extensibility

» Variability so far meant
= Static extensibility, e.g., new subclasses
= Often, dynamic exchangability (polymorphism)
= But not dynamic extensibility
» Now, we will turn to patterns that allow for dynamic extensibility

= Most of these patterns contain a 1:n-aggregation that is extended at
runtime

-

Binding a hook with

a hook value Extending a hook with
another hook value

Software Cocktail Mixers

3.1 Object Recursion Pattern

eeeeeeeeeeeeeee

Design Patterns and Frameworks, © Prof. Uwe Allmann

Object Recursion

Prof. Uwe ARmann, Design Patterns and Frameworks

G

Similar to the TemplateMethod, Objectifier and Strategy

But now, we allow for recursion in the dependencies between the
classes (going via inheritance and aggregation)

The aggregation can be 1:1 or 1:n (1-Recursion, n-Recursion)

Y

Client

1or+

Handler <

handleRequest()
preHandleRequest(Component)
postHandleRequest(Component)

/\

Terminator

handleRequest()

Recurser

handleRequest() O---
preHandleRequest(Component)
postHandleRequest(Component)

childObiject(s)

preHandleRequest()

for all g in childObject(s)
g.handleRequest()

postHandleRequest()

Incentive

» ObjectRecursion is a simple (sub)pattern

= in which an abstract superclass specifies common conditions for two
kinds of subclasses, the Terminator and the Recurser (a simple contract)

» Since both fulfil the common condition, they can be treated uniformly
under one interface of the abstract superclass

Prof. Uwe ARmann, Design Patterns and Frameworks

G

Object Recursion — Runtime Structure

» 1-ObjectRecursion creates lists > n-ObjectRecursion creates trees

and graphs
:Cons :Cons
\\‘ :Cons
Y Y
:Cons :Cons

:Cons
Y Y

S

Prof. Uwe ARmann, Design Patterns and Frameworks

The recursion allows for building up runtime nets
10

eeeeeeeeeeeeeee

3.2 Composite

Design Patterns and Frameworks, © Prof. Uwe Allmann

11

Structure Composite

Prof. Uwe ARmann, Design Patterns and Frameworks

G

» Composite can be seen as instance of n-ObjectRecursion

Y

Client

Component <

*

commonQperation()
add(Component)
remove(Component)
getType(int)

7

childObjects

} Pseudo implementations

Leaf

Composite

commonOperation()

commonOperation()
add(Component)
remove(Component)
getType(int)

O_

N

for all g in childObjects
g.commonOQOperation()

12

Piece Lists in Production Data

Prof. Uwe ARmann, Design Patterns and Frameworks

G

abstract class CarPart {

int myCost;
abstract int calculateCost();

}

class ComposedCarPart extends CarPart {

int myCost = 5;
CarPart [] children; // here is the n-
recursion

int calculateCost() {
for (i = 0; i <= children.length; i++) {
curCost += children(i].calculateCost();

}

return curCost + myCost;

}
void addPart(CarPart c) {

children[children.length] = c;

class Screw extends CarPart {
int myCost = 10;
int calculateCost() {
return myCost;
}
void addPart(CarPart c) {
I/l impossible, dont do anything

/[application
int cost = carPart.calculateCost();

13

Purpose

Prof. Uwe ARmann, Design Patterns and Frameworks

G

The Composite is older as ObjectRecursion, from GOF
= ObjectRecursion is a little more abstract

As in ObjectRecursion, an abstract superclass specifies a contract for

two kinds of subclasses

= Since both fulfil the common condition, they can be treated uniformly
under one interface of the abstract superclass

Good method for building up trees and iterating over them

= The iterator need not know whether it works on a leaf or inner node. It
can treat all nodes uniformly for

Iterator algorithms (map)
Folding algorithms (folding a tree with a scalar function)

The Composite's secret is whether a leaf or inner node is worked on
The Composite's secret is which subclass is worked on

14

Composite Run-Time Structure

Prof. Uwe ARmann, Design Patterns and Frameworks

G

» Part/Whole hierarchies, e.g., nested graphic objects

:Picture

;/ \
:Picture :Line

:Rectangle

AN

:Picture :Line :Rectangle

common operations: draw(), move(), delete(), scale()

15

Dynamic Extensibility of Composite

» Due to the n-recursion, new children can always be added into a
composite node

» Whenever you have to program an extensible part of a framework,
consider Composite

» Problems:
= Pattern is hard to employ when it sits on top of a complex inheritance
hierarchy

- Then, use interfaces only or mixin-based inheritance (not available in most
languages)

Prof. Uwe ARmann, Design Patterns and Frameworks

16

G

=< inbarfaca =
IZompasitionElamant

=< imarface sa

Komposable

T Y

<]
%‘; <]

Arg ntq-:li

Composar

<< imarface sa

<% inbarfaca =a
IConmpositionPoint qﬂ

CompesitionE lemant
[Sone)
,-‘:,J R Composar
o ition L
A e ume it
(Carea)
/g\j" Yalua
== =
] Hock
(Cona]
CompasitionElemant
[TimaAcla)
*:’.:J Campazar
Compasition
Argumant
[TimaHcla) ﬂ\
ﬂ Walua
Composable

IZomponant = ! B
(S
CompasitionE lamant
[LapguagaHcla)
72 N Gorposs
[LanguagaAcla’
oEition
rgume it
nguaga Acla) q__\‘-‘_‘
)/ ﬂ alua
[L#nguage Aola)
mposala /
/ﬁf I\:}L\H_ Haook
Box [LanguagaHala)
[LanguageHola)

jﬂ

Time Aok

Hongls,

Boxology
Box Hiararchy

Relations of Composite to Other
ml/| Programming Domains

» Composite pattern is the heart of functional programming
= Because recursion is the heart of functional programming

= |t has discovered many interesting algorithmic schemes for the
Composite:
Functional skeletons (map, fold, partition, d&c, zip...)
. Barbed wire (homo- and other morphisms)

» The Composite is also the heart of attributed trees and attribute
grammars

= Ordered AG are constraint systems that generate iterators and
skeletons [CompilerConstruction]

» Adaptive Programming [Lieberherr] is a generalization of Composite
with Iterators [Component-Based Software Engineering (CBSE)]

Prof. Uwe ARmann, Design Patterns and Frameworks

18

G

3.3 Decorator as a Variant of
3 ObjectRecursion and Composite

Design Patterns and Frameworks, © Prof. Uwe Allmann

19

Decorator Pattern

Prof. Uwe ARmann, Design Patterns and Frameworks

G

» A Decorator is a skin of another object
» Itis a 1-ObjectRecursion (i.e., a restricted Composite):

A subclass of a class that contains an object of the class as child
However, only one composite (i.e., a delegatee)

Combines inheritance with aggregation

» Similar to ObjectRecursion and Composite, inheritance from an
abstract Handler class

That defines a contract for the mimiced class and the mimicing class

:Client

A:Decorator

refe-

B:Decorator

hidden °

C:RealObject

hiddden °

Decorator — Structure Diagram

Prof. Uwe ARmann, Design Patterns and Frameworks

G

1
MimicedClass <
mimiced
mimicedOperation()
ConcreteMimicedClass Decorator e _
mimicedOperation() mimicedOperation()- .
o preAction();
Ll " | mimiced.mimicedOperation();
postAction();
ConcreteDecoratorA ConcreteDecoratorB

mimicedOperation()

mimicedOperation()-

. super.mimicedOperation();\

additionalStuff():

21

Decorator for Widgets

mimiced.draw()

super.draw();
drawScrollbar():

1
Widget <
mimiced
draw()
/\
-
% TextWidget WidgetDecorator | ~ |
o
5 draw() draw()
8
/N
<
2
>
;é Frame Scrollbar
super.draw(); | - draw() draw(} - -
§I,\drawFrame().

LY,

22

Decorator for Persistent Objects

Record <
access() mimiced
/\

§ I I

:‘% TransientRecord PersistentDecorator S |

5 access() access(). . . \
15 ~ | mimiced.access()

/\

g PersistentRead PersistentRecord

2 OnlyRecord " if (lloaded()) Ioad();\
P, ——|. access() TTrm——l . super.access();

i (loaded() load(yy == - 30605 boolean loaded() f (modified() dump():
- super.access(); boolean loaded() boolean modified() :

load()
load()

@ dump() 23

Purpose Decorator

» For extensible objects (i.e., decorating objects)
= Extension of new features at runtime
= Removal possible
» Instead of putting the extension into the inheritance hierarchy
= |f that would become too complex
= |f that is not possible since it is hidden in a library

rns and Frameworks

Library Library P
JAN —al}- New Features AN
Decorator with
New Features
% AN
24

Variants of Decorators

> If only one extension is planned, the abstract superclass Decorator
can be saved; a concrete decorator is sufficient

» Decorator family: If several decorators decorate a hierarchy, they
can follow a common style and can be exchanged together

————————— New Features

/VVQ‘\ — —— |New Features
. 4__ ——————— New Features

ﬁ %(New Features
——————— New Features

New Features

Prof. Uwe ARmann, Design Patterns and Frameworks

25

G

3.4 Chain of Responsibility

Design Patterns and Frameworks, © Prof. Uwe Allmann

26

Chain of Responsibility

» Delegate an action to a list of delegatees
= That attempt to solve the problem one after the other
= Or delegate further on, down the chain
“daisy chain” principle

Prof. Uwe ARmann, Design Patterns and Frameworks

ObjectStructure:
:Client
A:ConcreteWorker
aWorker . B:ConcreteWorker
successor o
successor

27

G

Structure for ChainOfResponsibility

» A Chain is recursing on the abstract super class, i.e.,

= All classes in the inheritance tree know they hide some other class
(unlike the ObjectRecursion)

Successor
1]
Y
Worker

Y

Client

Work()

/N

ConcreteWorker1 ConcreteWorker2

Prof. Uwe ABmann, Design Patterns and Frameworks

Work() Work()

28

G

Prof. Uwe ARmann, Design Patterns and Frameworks

G

Chains in Runtime Trees

» Chains can also be parts of a tree
» Then, a chain is the path upward to the root of the tree

‘Frame

Text: Wldqet
:Frame :Frame
:Scrollbar :Scrollbar :Scrollbar

29

Example ChainOfResponsibility

extWorker

ObjectStructure:
:PrintButton :OKButton
nextWorker }' /,n extWorker

:PrintDialog

nextWorker

HelpWorker

> WorkOnHelpQuery()
P I
:
§ Application Widget
. A| _____
;;',’ Dialog Button
(@]
: /' \ WorkOnHelpQuery()
2 | showHelp()
2
StoreDialog || PrintDialog $

OKButton PrintButton

)

L/

:StoreDialog

nextWorker

'* ;//‘

:Application

nextWorker

30

Help System with Chain

abstract class HelpWorker { class Button extends Widget {
HelpWorker nextWorker; // here is the 1- bool haveHelpQuery;
recursion void workOnHelpQuery() {
void workOnHelpQuery() { if (haveHelpQuery) {
if (nextWorker) help();

nextWorker.workOnHelpQuery(); } else {

} else {/* no help available */ } super.workOnHelpQuery();

g
-
1 }
%class Widget extends HelpWorker { }
£ // this class can contain fixing code }
%)
éclass llzlalogkeé(te:dls (\£V|dget { /1 application
2;, melel \(A;?;u er?/:rk(l;irlylc(e)l {Que 0 button.workOnHelpQuery();
i; PY), SUPET. P MY // may end in the inheritance hierarchy up in
&} Widget, HelpWorker

} /I dynamically in application object

} 31

{class Application extends HelpWorker {

ChainOfResponsibility - Applications

» Realizes Dynamic Call.

= If the receiver of a message is not known compile-time

= Nor at allocation time (polymorphism)

= But dynamically

= Dynamic call is the key construct for service-oriented architectures (SOA)
» Dynamic extensibility: if new receivers with new behavior should be

added at runtime

= Unforeseen dynamic extensions

= However, no mimiced object as in Decorator
» Anonymous communication

= If identity of receiver is unknown or not important
= |f several receivers should work on a message

Prof. Uwe ARmann, Design Patterns and Frameworks

32

G

Prof. Uwe ARmann, Design Patterns and Frameworks

G

Composite vs Decorator vs Chain

4)
Decorator
4 ,)
but also different features
Common contract 1:1 successor relation
L ObjectRecursion runtime list
1:n successor relation
runtime
. tree/
Composite graph
__ J
All methods in common Chain

.

33

3.5 Proxy

Design Patterns and Frameworks, © Prof. Uwe Allmann

34

Client > Subject
operation()

AN

: -
E ISubj

2 ReaISubject< realSubject Proxy

é operation() operation()
g

2 Object Structure:

)

£ :Client A:Proxy

— /

@ ref o] realSubjectt |

» Hide the access to a real subject by a representant

o} --- <

realSubject.operation()

B:RealSubject

Successor

35

» The proxy object is a representant of an object

= The Proxy is similar to Decorator, but it is not derived from
ObjectRecursion

= |t has a direct pointer to the sister class, not to the superclass

= |t may collect all references to the represented object (shadows it). Then,
it is a facade object to the represented object

» Consequence: chained proxies are not possible, a proxy is one-and-
only

» Clear difference to ChainOfResponsibility
= Decorator lies between Proxy and Chain.

Prof. Uwe ARmann, Design Patterns and Frameworks

36

G

Proxy Variants

Prof. Uwe ARmann, Design Patterns and Frameworks

G

Filter proxy (smart reference): executes additional actions,
when the object is accessed
= Protocol proxy: counts references (reference-counting garbage
collection
= or implements a synchronization protocol (e.g., reader/writer
protocols)
Indirection proxy (facade proxy): assembles all references to
an object to make it replaceable
Virtual proxy: creates expensive objects on demand
Remote proxy: representant of a remote object
Caching proxy: caches values which had been loaded from the
subject
= Remote
= Loading lazy on demand
Protection proxy

= Firewall
37

Proxy — Other Implementations

Prof. Uwe ARmann, Design Patterns and Frameworks

G

» Overloading of -> access operation
= (C++ and other languages allow for overloading access
= Then, a proxy can invervene
> Built in into the language
= There are languages that offer proxy objects
= Modula-3 offers SmartPointers
= Gilgul offers proxy objects

38

Proxy vs Decorator vs Chain

Decorator

1:1 successor relation,
1 successor

Shadowing

1:1 successor relation

Methods in common

N SUCESSOrs

possible _
runtime list

Instance of ObjectRecursion

J

Aggregation to
sister class

Proxy

.

Prof. Uwe ARmann, Design Patterns and Frameworks

G

Chain

39

3.6 *-Bridge

Design Patterns and Frameworks, © Prof. Uwe Allmann

40

Extensibility Pattern
*DimensionalClassHierarchies (*Bridge)

» A bridge with a collection

(Template)

(Hook)

hookObjects
TemplateClass < 1ers HookClass
templateMethod() *
add(hookObj) Or-i__) hookMethod()

remove(Obj) bl
N foreach h in hookObjectst /\

h.hookMethod()

Concrete
MoreConcrete MoreConcrete Concrete HookClassB

TemplateA TemplateB HookClassA
templateMethod()? templateMethod(P hookMethod() hookMethod()

/l Implementation A '
foreach h in hookObjects

h.hookMethod();

Prof. Uwe ARmann, Design Patterns and Frameworks

I/l Implementation B :
foreach h in hookObjects
h.hookMethod();

41

G

3.7 Observer — (Event Bridge)

Design Patterns and Frameworks, © Prof. Uwe Allmann

42

Prof. Uwe ABmann, Design Patterns and Frameworks

G

Observer (Publisher/Subscriber, Event

> Notify on change

------ > Queries

Subject 43

Structure Observer

» Extension of *-Bridge

>| Observer

Subject

Prof. Uwe ARmann, Design Patterns and Frameworks

observers
register(Observer) update ()
unregister(Observer) _ N
. for all b in observers {
notify() O~ b.update ()
N
ConcreteObserver
Subject
ConcreteSubject |_ O--| ObserverState =
update () Subject.getState()
getState() O, ObserverState
setState()
SubjectState N [Difference to Bridge: hierarchies are not

G

return SubjectState

omplete independent; Observer knows
bout Subject 44

Sequence Diagram Observer

» Update() does not transfer data, only an event (anonymous
communication possible)
» Observer pulls data out itself

= Due to pull of data, subject does not care nor know, which observers are
involved: subject independent of observer

% aConcreteSubject aConcreteObserver anotherConcreteObserver
5 | |

E - register()

g - register()

£ |

S < setState()

% notify()

-

g <

£

2 update n() >

E

2 P getState()

a update n() >

< getState()

& | 45

Observer - Applications

» Loose coupling in communication
= Observers decide what happens

» Dynamic change of communication
= Anonymous communication
= Multi-cast and broadcast communication
= Cascading communication if observers are chained (stacked)

» Communication of core and aspect

= |f an abstraction has two aspects and one of them depends on the
other, the observer can implement the aspect that listens and reacts on
the core

= Observers are a simple way to implement aspect-orientation by hand

Prof. Uwe ARmann, Design Patterns and Frameworks

46

G

Prof. Uwe ARmann, Design Patterns and Frameworks

G

Observer Variants

» Multiple subjects:

= |If there is more than one subject, send Subject as Parameter of
notify(Subject s).

» Push model: subject sends data in notify()
. The default is the pull model: observer fetches data itself

» Change manager

47

Observer with ChangeManager

(Mediator)

» Mediator between subjects and observer:
May filter events, stop cascaded propagations

Subject

*

register(Observer)
unregister(Observer)
notify()

< ChangeManager

*
> Observer

Observer

Subject

-

A------+-0

manager.notify()

manager.register(this,b)

Prof. Uwe ARmann, Design Patterns and Frameworks

G

register(Subject,Observer)
unregister(Subject,Observer)

update (Subject)

manager | Notify()

Subject-Observer-mapping

/ N\

SimpleChangeManager

DAGChangeManager

register(Subject,Observer)
unregister(Subject,Observer)
notify())

register(Subject,Observer)
unregister(Subject,Observer
notify())

N

for all s in Subjects
for all b in s.Observer
b.update (s)

mark all observers to be updated
update all marked observers

N

ChangeManager is also Called
ul| Eventbus

» Basis of many interactive application frameworks (Xwindows, Java
AWT, Java InfoBus,)

Subject Subject Subject

l v :

EventBus (Mediator)

: vy l

Observer Observer Observer

Prof. Uwe ARmann, Design Patterns and Frameworks

49

G

Relations Extensibility Patterns

Unconstrained Patterns (Proxy) (Visitor)

/(Decorator)(: (Bridge‘/)'H(*-Bridge)
ObjectRecurs_oa Chain) * T

* / unconstraining (Observer)
Composﬂe |

Y

uncon*tralnlng [Dimensional j
S

| ClassHierarchie

I I

\
Recursive Framework Patterns Connection
T&H Pattern T&H Pattern

Prof. Uwe ABmann, Design Patterns and Framewq” \

50

Summary

» Most often, extensibility patterns rely on ObjectRecursion
= An aggregation to the superclass
» This allows for constructing runtime nets: lists, sets, and graphs
= And hence, for dynamic extension
= The common superclass ensures a common contract of all objects in the
runtime net
» Layered systems can be implemented with dimensional class
hierarchies (Bridges)

» Layered frameworks are product families for systems with layered
architectures

Prof. Uwe ARmann, Design Patterns and Frameworks

51

G

The End

SyIomawel{ pue sulajed ubiseq ‘UuBwgY amn "10id

52

o)

	Coaster in Space
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Structure Compositum
	Slide 13
	Slide 14
	Compositum
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Chain of Responsibility
	Structure for ChainOfResponsibility
	Slide 29
	Beispiel ChainOfResponsibility
	Slide 31
	ChainOfResponsibility
	Slide 33
	Slide 34
	Proxy
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Observer (Publisher/Subscriber)
	Structure Observer
	Sequence Diagram Observer
	Observer
	Observer Implementation
	Observer with ChangeManager
	Slide 49
	Slide 50
	Slide 51
	Slide 52

