I

5. Architectural Glue Patterns

O

1)Mismatch Problems
2)Adapter Pattern

3)Facade

4)Some variants of Adapter
5)Adapter Layers

Prof. Dr. U. ABmann
Chair for Software Engineering
Faculty of Computer Science

Dresden University of
Technology

11-1.0, 11/8/11 6)Mediator
7)Repository Connector

Literature (To Be Read)

Prof. Uwe ABmann, Design Patterns and Frameworks

» D. Garlan, R. Allen, J. Ockerbloom. Architectural mismatch — or why it
is so hard to build systems out of existing parts. Int. Conf. On
Software Engineering (ICSE 95)
http://citeseer.nj.nec.com/garland95architectural.html

» GOF — Adapter, Mediator

» Non-mandatory:

= Mirko Stolzel. Entwurf und Implementierung der Integration des Dresden
OCL Toolkit in Fujaba. GroRRer Beleg. 2005. Technische Universitat
Dresden, Fakultat Informatik, Lehrstuhl fir Softwaretechnologie

Design Patterns and Frameworks, © Prof. Uwe ARmann 1 @ 2
'l ol
» Understand architectural mismatch c wdv of Garlan. Al Ockerbl 1995
. . . . » Case study of Garlan, Allen, Ockerbloom
» Understand design patterns that bridge architectural mismatch o y i
» Building the architectural system Aesop
Tl Ele Edii Wiew lnsel Tipes Tods Widow Help _ =18
D|s(@| s[w=] 2] &l Llol@l] x| [
% f‘é GiobalTypes PP |
E ‘.'E & BinanyFilte | Fipe
s g - 56 | | Filer
& g
§> % Look:ir: I Sysh > 4 I_'J
a a Capial - -
el | O
£ £ oy stdout
Z 3 (=) Hepresent;;J
g 2 == Aagre
3 ?_ B o Lowe
E QE_ E! & Meic
E ® Spit -
¢ "_Z1'3T A Show st et - s Aagegate ep: FE
3 @ Ready. [Editithg'&kem'Ag'g{eggré-rep'iﬂD‘esigl_l_l_ 7 4

=

Architectural Mismatch

Classification of
Different Assumptions of the COTS

Prof. Uwe ARmann, Design Patterns and Frameworks

&

» Aesop was built out of 4 off-the-shelf components
= OBST: an object-oriented C++ database
= Interviews and Uniframe, a windowing toolkit
= Softbench, an event bus (event-based mediator)
= RPC interface generator of Mach (MIG)
» All subsystems written in C++ or C
» First Aesop version took 5 person years, and was still sluggish, very
large
» Problems can be characterized in terms of components and

connections N

[Interviews/Uniframe
J
<

[MIG] [Softbench
J
N\

[OBST
J 5

Different Assumptions about the
Component Model

Prof. Uwe ABmann, Design Patterns and Frameworks

=

» Different Assumptions about the component model
= Infrastructure
= Control model
= Data model
» Different assumptions about the connectors
= Protocols
= Data models
» Different assumptions about the global architectural structure
» Different assumptions about the construction process

[component model }

global
architecture

[connectors J 6

Assumptions on Control Model

[construction process 1

Prof. Uwe ABmann, Design Patterns and Frameworks

=

» A component model assembles information and constraints about the
nature of components
= Nature of interfaces
= Substitutability of components
» Here: Infrastructure, Control model, Data model
» Different Assumptions about the Component Infrastructure:
= Components assume that they should provide a certain
infrastructure, which the application does not need
= OBST provides many library functions for application classes; Aesop
needed only a fraction of those
» Components assume they have a certain infrastructure, but it is not
available
= Softbench assumed that all other components have access to an X
window server (for communication)
» More in “Component-Based Software Engineering”, summer
semester

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» COTS think differently in which components have the main control
= Softbench, Interviews, and MIG have an ever-running event loop inside
= They call applications with callbacks (observer pattern)
» However, they use different event loops:
= Softbench uses X window event loop
= MIG and Interviews have their own ones
= The event loops had to be reengineered, to fit to each other

Assumptions on Data Model

» Different assumptions about the data
= Uniframe: hierarchical data model
= Manipulations only on a parent, never on a child
= However, the application needed that

= Decision: rebuild the data model from scratch, is cheaper than
modification

Prof. Uwe ARmann, Design Patterns and Frameworks

o

Assumptions about the
Connectors

)

@ 9 Design Patterns and Frameworks, © Prof. Uwe ARmann 10

Protocol Mismatch Protocol Mismatch

o |
) _ » Softbench works asynchronously; which superimposes concurrency
» Softbench works asynchronously; which superimposes concurrency to tools, when messages of different tools are crossing
to tools
= Softbench is a mediator between tools

» 2 kinds of interaction protocols
¢ = Request/Reply (callback, observer): tool requests a service, registers a ¢ Tool 1 Tool 2 Softbench Tool 3
5 callback routine, is called back by Softbench 5
: = Notify via Softbench = Request A .
£ £ > | Notify B
£ j | < NotifyB
< <
F E Concurrency
2 2 \ <«ReplyA

\j \j Y

11

=

&

Data Format Mismatch

Assumptions about the Global
Architecture

Prof. Uwe ARmann, Design Patterns and Frameworks

&

» Components also have different assumptions what comes over a
channel (a connection).

= Softbench: Strings
= MIG: C data
= OBST: C++ data
» Requires translation components
= When accessing OBST, data must be translated all the time
= This became a performance bottleneck

13

Assumptions about the Building
Process

Prof. Uwe ABmann, Design Patterns and Frameworks

=

» OBST
= Assumes a database-centered architecture
= Assumes independence of client tools

= And provides a transaction protocol per single tool, not per combination
of tools

= Doesn't help when tools have interactions

14

Proposed Solutions of [Garlan]

Prof. Uwe ABmann, Design Patterns and Frameworks

=

» Assumptions about the library infrastructure

» Assumptions about a generic language (C++)
» Assumptions about a tool specific language

» Combination is fatal:

= Some component A may have other expectations on the generated code
of another component B as B itself

= Then, the developer has to patch the generated code of A with patch
scripts (another translation component)

15

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Make all architectural assumptions explicit
= Problem: how to document or specify them?
= Many of the aforementioned problems are not formalized

= Implicit assumptions are a violation of the information hiding principle,
and hamper variability

» Make components more independent of each other

» Provide bridging technology

= For building language translation components (compiler construction,
compiler generators, XML technology)

» Distinguish architectural styles (architectural patterns) explicitly
= Distinguish connectors explicitly
» Solution: design patterns serve all of these purposes

16

Usability of Extensibility Patterns

» All extensibility patterns can be used to treat architectural mismatch

» Behavior adaptation
= ChainOfResponsibility as filter for objects, to adapt behavior
= Proxy for translation between data formats

= Observer for additional behavior extension, listening to the events of the
subject

= Visitor for extension of a data structure hierarchy with new algorithms
» Bridging data mismatch

= Decorator for wrapping, to adapt behavior, and to bridge data mismatch,
not for protocol mismatch

= Bridge for factoring designs on different platforms (making abstraction
and implementation components independent)

Prof. Uwe ARmann, Design Patterns and Frameworks

_d

5.2 Adapter

)

@ 17 Design Patterns and Frameworks, © Prof. Uwe ABmann 18
Object Adapter Object Adapter
o |
» An object adapter is a proxy that maps one interface to another » Object adapters use delegation
= Or a protocol
= Or a data format Adaptod dass dogs|
. ; > apted class does
» An adapter cannot easily map control flow to each other - Goal hot iLr)1h erit from goal,
) = Since it is passed once when entering the adapted class . operation() T
A /
£ £
b b /
-7 /
£ c ~
s g - —
£ € IDecorator-like adapted y
g § inheritance _l Adapter ﬂuect—» AdaptedClass
g E operation() O}, specificOperation()
< < S
E £
adaptedObject.specificOperation()
19 20

=

&

Example: Use of an External Class Adapters for COTS
ol Library For Texts 4
External Library » Adapters are often used to adapt components-off-the-shelf (COTS) to
TN applications
* e N . .
DrawingEdito ~| GraficObject / \\ » For |n§tance, an EJ.B-adapter allows for reuse of an Enterprise Java
/ \ Bean in an application
frame() / TextDispla
” createManipulator() / play ”
g A // largeness() \\ g —
£ I/ \ g Client interface
Lé | I ‘| Lé EJBHome EJBObject Metadata Handle Container-
s ,' | © A A A A component-
£ i | 5 | | | | interface
£ | I8 Serialization €—— gﬁfist;cg\;enan
5 | 5
2 Linie Text | = ,' 2 . MessageBean
o \ =} Packaging —— :
N ! -
§ frame() frame() Ol --- | return text.largeness() // § “- SessionContext
% createManipulator() createManipulator() ©[x2 < HTML-Doku €—— NamingContext
2 _| return new TextManipulator/’ 2 ‘ Transaction
& AN & Context
/
N e
S~e 7 21 EJB-references 2

&

EJB Adapter

Client interface

EJBHome EJBObject Metadata Handle

| BillingApplicatior—|

Prof. Uwe ABmann, Design Patterns and Frameworks

=

addltem(ltem)
calculateSum()

/\

EJBHome

getBean()

EJBObject

EJBMetaData

EJBHandle

OtherBill EJBBIll

addltem(ltem) fetchBean() O

calculateSum() addltem(ltem) €
calculateSum()

.. contact EJBHome for EJB...
.. if not there, create EJBODbject

.. EJBObject = fetchBean();
.. addItem(EJBObject, Item)

.. EJBObject = fetchBean();
.. sum up (EJBObject) 23

A Remark to Adapters in Component
Systems

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Component models define standard, unspecific interfaces
= E.g., EJBHome / EJBObject

» Classes usually define application-specific interfaces

» To increase reuse of classes, the Adapter pattern(s) can be used to
map the application-specific class interfaces to the unspecific
component interfaces

» Example:

= In the UNIX shell, all components obey to the pipe-filter interfaces stdin,
stdout, stderr (untyped channels or streams of bytes)

= The functional parts of the components have to be mapped by some
adapter to the unspecific component interfaces.

24

Adapters and Decorators

» Similar to a decorator, an adapter inherits its interface from the goal

class

= but adapts the interface
» Hence, adapters can be inserted into inheritance hierarchies later on

teyns and Frameworks

n,

: Library I;I

Library I;l
\

_d

5.3 Facade

= Afacade is an object adapter that hides a

complete set of objects (subsystem)

of the hidden objects

* Or: a proxy that hides a subsystem
* The facade has to map its own interface to the interfaces

1 New
Extensions
E Adapter with \
3 New Features
n I_—LI I_—LI Adapted @
@ Class Design Patterns and Frameworks, © Prof. Uwe ARmann 26
Facade Hides a Subsystem 5.4 Class Adapter (Integrated Adapter)
' .

Prof. Uwe ABmann, Design Patterns and Frameworks

=

(ot}

Abstract
Facade

operation()

/\

HiddenSubsystem

adapted
Object1

HiddenClass1

specificOperation()

adapted
Concrete Object2 .
Facade > HiddenClass2
operation() Q\ specificOperation()

adaptedObject.specificOperation()
adaptedObject2.specificOperation()

apted
Objec

HiddenClass3

specificOperation()

27

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Instead of delegation, class adapters use multiple inheritance

(oot} ———

Can also be

interface

GoalClass

operation()

T

AdaptedClass

specificOperation()

(Implementation)

Adapter

operation() O

specificOperation()

28

2-Way Class Adapter
(Role Mediator)

2-Way Adapter for Coupling of Class
wl| Hierarchies

Prof. Uwe ARmann, Design Patterns and Frameworks

Y

GoalClass GoalClass?2 AdaptedClass
. . specificOperation1()
operation() operation2(, specificOperation2()
(Implementation)
Adapter

operation() OF------
operation2(}{ .

specificOperation1()
specificOperation2()

specificOperation2()
specificOperation1()

SuperClass A

L

and Frameworks

SuperClass B

L

SubClassA

GoalClass A

GoalClassB

SubClass B

operation()

operation2()

Prof. Uwe ABmann, Dd

More than one goal class may exist. Adapt_er
Every goal class plays a role of the concrete object (see later). Operatfon()
@ 2 @ operation2() 30
2-Way Decorator and Adapter for Ex.: 2-Way Decorator and Adapter for
m|| Coupling of Class Hierarchies a|| Coupling of Class Hierarchies
SuperClass A - »| SuperClass B DataGenerator »| GenerationStrategy
5 5
SubClassA GoalClass A GoalClassB SubClass B TestDataGenerator | | GeneratorAdapter StrategyAdapter Exhaustive
operation() operation2() operation() operation2()
A| $
< <
2 | 2 | GeneratorStrategy can be
E" 2WayAdapterDecorator E GeneratorStrategy used to_ haye several
" . strategies in a chain
operation() operation() of decorators
operation2() 31 operation2() 3

=

&

5.5 Adapter Layers

O

Design Patterns and Frameworks, © Prof. Uwe ARmann 33

Object Skin Layers

Prof. Uwe ABmann, Design Patterns and Frameworks

=

» An Object Skin Layer is a stack of adapter layers in which the
adapters vertically form a subject (complex object)

= Every layer has different interfaces (services) that are mapped,
but within the object

AL2

AL1

Repositq;y I

35

Adapter Layer

Prof. Uwe ABmann, Design Patterns and Frameworks

=

o

» An Adapter Layer is a set of adapters hiding a sublayer
= Every layer has different interfaces (services) that are mapped

AL2

AL1

Repositq;y v

34

5.6 Mediator (Broker)

36

Design Patterns and Frameworks, © Prof. Uwe ARmann

Mediator (Broker)

Mediator

Prof. Uwe ARmann, Design Patterns and Frameworks

&

» A mediator is an n-way proxy for communication
= Combined with a Bridge

» A mediator serves for
= Anonymous communication

= Dynamic communication nets

37

Mediator As n-Proxy and Bridge

mediator

Mediator

/\

Colleague

/\

ConcreteMediator

ConcreteColleague1

ConcreteColleague?2

Prof. Uwe ABmann, Design Patterns and Frameworks

=

o

Typical Object Structure:

AColleague

P
AConcreteMediator

AColleague

Mediator o

Mediator

? .

i

il

AColleague

AColleague

Mediator ¢

Intent of Mediator

° .
Mediator 38

Prof. Uwe ABmann, Design Patterns and Frameworks

=

| Abstraction L —»

Mediator

| Realization of '

LService

- —
V-

Mediator

Colleague

| of Service |

/\

|

/N

ConcreteColleague1

ConcreteColleague2

ConcreteMediator

A | [}
| o
- = = — | Proxy Class |
| Proxy Object | ==
4 A A
AColleague AConcreteMediator AColleague
Mediator e . ® o Mediator
AColleague J AColleague
Mediator e hd Mediator 39

Prof. Uwe ABmann, Design Patterns and Frameworks

» Proxy object hides all communication partners
= Every partner uses the mediator object as proxy
= Clear: real partner is hidden

» Bridge links both communication partners
= Both mediator and partner hierarchies can be varied

» ObserverWithChangeManager combines Observer with Mediator

40

Web Service Brokers

» Communication between Web services can be mediated via a broker
object (aka object request broker, ORB)

&

WebServiceMediator (med|L<> WebService

§ buy() . query() o+ mediator.query(this)
2 query(WebService) /\
g
| |
§ Google | HotelBooking
% . . google search()
§ ConcreteServiceMediato search() reserve()
£ buy() hotel buy()

query(Widget)

Coupling of Tools via Repositories

41

_d

5.7 Coupling Tools with
the Repository Connector Pattern

)

A recent answer...

Design Patterns and Frameworks, © Prof. Uwe ARmann

Coupling of Repositories with
“RepositoryConnector”

42

= Choose a master repository

Prof. Uwe ABmann, Design Patterns and Frameworks

=

» Answer: by coupling their repositories
= Choose a master and a slave tool

» How can two tools collaborate that did not know of each other?

= Shadow the master repository in the slave repository

» Consequence: all data lies in slave repository, and can be worked on
by slave and master

43

Prof. Uwe ABmann, Design Patterns and Frameworks

&

MasterRepository

» [Stdlzel 2005] connects two repositories of tools with lazy indirection

ShadowClass

getRefdObj()
|

|

|

if (refdObj == null) {
allocate refdObj in
slave repository;

}
return refdObyj;

SlaveRepository
RealClass
refdObj
0.1

Coupling of Repositories with
“RepositoryConnector”

Summary

Prof. Uwe ARmann, Design Patterns and Frameworks

&

» On demand, objects of real classes in the master repository are
created in the slave repository

» Service demands on the master repository are always delegated to
the slave repository

MasterRepository SlaveRepository
a:ShadowA a":RealA
refdObj
getRefdObj() >
b:ShadowB | pReaB
oL —
getRefdObj() I |
L— — = - 45

The End

Prof. Uwe ABmann, Design Patterns and Frameworks

=

47

» Architectural mismatch between components and tools consists of
different assumptions about components, connections, architecture,
and building procedure

» Design patterns, such as extensibility patterns or communication
patterns, can bridge architectural mismatches

= Data mismatch
= Interface mismatch
= Protocol mismatch

» Coupling two tools that had not been foreseen for each other is
possible with lazy indirection proxies (RepositoryConnector)

» With Glue Patterns, reuse of COTS becomes much better

Prof. Uwe ABmann, Design Patterns and Frameworks

46

=

