
Design Patterns and Frameworks, © Prof. Uwe Aßmann 1

5. Architectural Glue Patterns

Prof. Dr. U. Aßmann

Chair for Software Engineering

Faculty of Computer Science

Dresden University of
Technology

11-1.0, 11/8/11

1)Mismatch Problems

2)Adapter Pattern

3)Facade

4)Some variants of Adapter

5)Adapter Layers

6)Mediator

7)Repository Connector

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

2

Literature (To Be Read)

► D. Garlan, R. Allen, J. Ockerbloom. Architectural mismatch – or why it
is so hard to build systems out of existing parts. Int. Conf. On
Software Engineering (ICSE 95)
http://citeseer.nj.nec.com/garland95architectural.html

► GOF – Adapter, Mediator
► Non-mandatory:

■ Mirko Stölzel. Entwurf und Implementierung der Integration des Dresden
OCL Toolkit in Fujaba. Großer Beleg. 2005. Technische Universität
Dresden, Fakultät Informatik, Lehrstuhl für Softwaretechnologie

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

3

Goal

► Understand architectural mismatch
► Understand design patterns that bridge architectural mismatch

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

4

Architectural Mismatch

► Case study of Garlan, Allen, Ockerbloom 1995
► Building the architectural system Aesop

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

5

Architectural Mismatch

► Aesop was built out of 4 off-the-shelf components
■ OBST: an object-oriented C++ database
■ Interviews and Uniframe, a windowing toolkit
■ Softbench, an event bus (event-based mediator)
■ RPC interface generator of Mach (MIG)

► All subsystems written in C++ or C
► First Aesop version took 5 person years, and was still sluggish, very

large
► Problems can be characterized in terms of components and

connections

OBST

MIG Softbench

Interviews/Uniframe

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

6

Classification of
Different Assumptions of the COTS
► Different Assumptions about the component model

■ Infrastructure
■ Control model
■ Data model

► Different assumptions about the connectors
■ Protocols
■ Data models

► Different assumptions about the global architectural structure
► Different assumptions about the construction process

connectors

global
architecture

construction process

component model

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

7

Different Assumptions about the
Component Model
► A component model assembles information and constraints about the

nature of components
■ Nature of interfaces
■ Substitutability of components

► Here: Infrastructure, Control model, Data model
► Different Assumptions about the Component Infrastructure:

■ Components assume that they should provide a certain
infrastructure, which the application does not need

■ OBST provides many library functions for application classes; Aesop
needed only a fraction of those

► Components assume they have a certain infrastructure, but it is not
available

■ Softbench assumed that all other components have access to an X
window server (for communication)

► More in “Component-Based Software Engineering”, summer
semester

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

8

Assumptions on Control Model

► COTS think differently in which components have the main control
■ Softbench, Interviews, and MIG have an ever-running event loop inside
■ They call applications with callbacks (observer pattern)

► However, they use different event loops:
■ Softbench uses X window event loop
■ MIG and Interviews have their own ones
■ The event loops had to be reengineered, to fit to each other

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

9

Assumptions on Data Model

► Different assumptions about the data
■ Uniframe: hierarchical data model
■ Manipulations only on a parent, never on a child
■ However, the application needed that
■ Decision: rebuild the data model from scratch, is cheaper than

modification

Design Patterns and Frameworks, © Prof. Uwe Aßmann 10

Assumptions about the
Connectors

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

11

Protocol Mismatch

► Softbench works asynchronously; which superimposes concurrency
to tools

■ Softbench is a mediator between tools

► 2 kinds of interaction protocols
■ Request/Reply (callback, observer): tool requests a service, registers a

callback routine, is called back by Softbench
■ Notify via Softbench

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

12

Protocol Mismatch

► Softbench works asynchronously; which superimposes concurrency
to tools, when messages of different tools are crossing

SoftbenchTool 1 Tool 2 Tool 3

Request A

Reply A

Notify B

Notify B

Concurrency

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

13

Data Format Mismatch

► Components also have different assumptions what comes over a
channel (a connection).

■ Softbench: Strings
■ MIG: C data
■ OBST: C++ data

► Requires translation components
■ When accessing OBST, data must be translated all the time
■ This became a performance bottleneck

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

14

Assumptions about the Global
Architecture
► OBST

■ Assumes a database-centered architecture
■ Assumes independence of client tools
■ And provides a transaction protocol per single tool, not per combination

of tools
■ Doesn't help when tools have interactions

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

15

Assumptions about the Building
Process
► Assumptions about the library infrastructure
► Assumptions about a generic language (C++)
► Assumptions about a tool specific language
► Combination is fatal:

■ Some component A may have other expectations on the generated code
of another component B as B itself

■ Then, the developer has to patch the generated code of A with patch
scripts (another translation component)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

16

Proposed Solutions of [Garlan]

► Make all architectural assumptions explicit
■ Problem: how to document or specify them?
■ Many of the aforementioned problems are not formalized
■ Implicit assumptions are a violation of the information hiding principle,

and hamper variability

► Make components more independent of each other
► Provide bridging technology

■ For building language translation components (compiler construction,
compiler generators, XML technology)

► Distinguish architectural styles (architectural patterns) explicitly
■ Distinguish connectors explicitly

► Solution: design patterns serve all of these purposes

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

17

Usability of Extensibility Patterns

► All extensibility patterns can be used to treat architectural mismatch
► Behavior adaptation

■ ChainOfResponsibility as filter for objects, to adapt behavior
■ Proxy for translation between data formats
■ Observer for additional behavior extension, listening to the events of the

subject
■ Visitor for extension of a data structure hierarchy with new algorithms

► Bridging data mismatch
■ Decorator for wrapping, to adapt behavior, and to bridge data mismatch,

not for protocol mismatch
■ Bridge for factoring designs on different platforms (making abstraction

and implementation components independent)

Design Patterns and Frameworks, © Prof. Uwe Aßmann 18

5.2 Adapter

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

19

Object Adapter

► An object adapter is a proxy that maps one interface to another
■ Or a protocol
■ Or a data format

► An adapter cannot easily map control flow to each other
■ Since it is passed once when entering the adapted class

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

20

Object Adapter

Goal

operation()

Client

AdaptedClass

specificOperation()

Adapter

operation()

adaptedObject.specificOperation()

adapted
Object

Decorator-like
inheritance

Adapted class does
not inherit from goal

► Object adapters use delegation

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

21

Example: Use of an External Class
Library For Texts

GraficObject

frame()
createManipulator()

DrawingEditor

TextDisplay

largeness()

return text.largeness()

Linie

frame()
createManipulator()

Text

frame()
createManipulator()

return new TextManipulator

External Library

*

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

22

Adapters for COTS

► Adapters are often used to adapt components-off-the-shelf (COTS) to
applications

► For instance, an EJB-adapter allows for reuse of an Enterprise Java
Bean in an application

Serialization

EJBHome

Packaging

Metadata

HTML-Doku

EJBObject Handle

EJB-references

SessionBean

SessionContext

EntityBean
MessageBean

NamingContext

Transaction
Context

Client interface

Container-
component-
interface

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

23

.. contact EJBHome for EJB...

.. if not there, create EJBObject

EJB Adapter

EJBHome MetadataEJBObject Handle

Client interface

Bill

addItem(Item)
calculateSum()

BillingApplication
EJBHome

getBean()

OtherBill

addItem(Item)
calculateSum()

EJBBill

fetchBean()
addItem(Item)
calculateSum()

*

.. EJBObject = fetchBean();

.. addItem(EJBObject, Item)

.. EJBObject = fetchBean();

.. sum up (EJBObject)

EJBObject

EJBMetaData

EJBHandle

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

24

A Remark to Adapters in Component
Systems
► Component models define standard, unspecific interfaces

■ E.g., EJBHome / EJBObject

► Classes usually define application-specific interfaces
► To increase reuse of classes, the Adapter pattern(s) can be used to

map the application-specific class interfaces to the unspecific
component interfaces

► Example:
■ In the UNIX shell, all components obey to the pipe-filter interfaces stdin,

stdout, stderr (untyped channels or streams of bytes)
■ The functional parts of the components have to be mapped by some

adapter to the unspecific component interfaces.

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

25

Adapters and Decorators

► Similar to a decorator, an adapter inherits its interface from the goal
class

■ but adapts the interface

► Hence, adapters can be inserted into inheritance hierarchies later on

Library

New
Extensions

Library

Adapter with
New Features

Adapted
Class Design Patterns and Frameworks, © Prof. Uwe Aßmann 26

5.3 Facade

 A facade is an object adapter that hides a
complete set of objects (subsystem)

● Or: a proxy that hides a subsystem
● The facade has to map its own interface to the interfaces

of the hidden objects

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

27

Facade Hides a Subsystem

Abstract
Facade

operation()

Client

HiddenClass2

specificOperation()

Concrete
Facade

operation()

....
adaptedObject.specificOperation()
adaptedObject2.specificOperation()
....

adapted
Object2

HiddenClass1

specificOperation()

adapted
Object1

HiddenClass3

specificOperation()

adapted
Object3

....
adaptedObject.specificOperation()
adaptedObject2.specificOperation()
....

HiddenSubsystem

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

28

5.4 Class Adapter (Integrated Adapter)

GoalClass

operation()

Client AdaptedClass

specificOperation()

Adapter

operation()

(Implementation)

specificOperation()

Can also be
interface

► Instead of delegation, class adapters use multiple inheritance

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

29

2-Way Class Adapter
(Role Mediator)

GoalClass

operation()

Client AdaptedClass

specificOperation1()
specificOperation2()

Adapter

operation()
operation2()

(Implementation)

specificOperation1()
specificOperation2()

More than one goal class may exist.
Every goal class plays a role of the concrete object (see later).

GoalClass2

operation2()

specificOperation2()
specificOperation1()

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

30

2-Way Adapter for Coupling of Class
Hierarchies

SuperClass B

GoalClassB

operation2()

SubClass B

SuperClass A

SubClassA GoalClass A

operation()

Adapter

operation()
operation2()

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

31

2-Way Decorator and Adapter for
Coupling of Class Hierarchies

SuperClass B

GoalClassB

operation2()

SubClass B

SuperClass A

SubClassA GoalClass A

operation()

2WayAdapterDecorator

operation()
operation2()

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

32

Ex.: 2-Way Decorator and Adapter for
Coupling of Class Hierarchies

GenerationStrategy

StrategyAdapter

operation2()

Exhaustive

DataGenerator

TestDataGenerator GeneratorAdapter

operation()

GeneratorStrategy

operation()
operation2()

GeneratorStrategy can be
used to have several
strategies in a chain
of decorators

Design Patterns and Frameworks, © Prof. Uwe Aßmann 33

5.5 Adapter Layers

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

34

Adapter Layer

► An Adapter Layer is a set of adapters hiding a sublayer
■ Every layer has different interfaces (services) that are mapped

Repository

AL2

AL1

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

35

Object Skin Layers

► An Object Skin Layer is a stack of adapter layers in which the
adapters vertically form a subject (complex object)

■ Every layer has different interfaces (services) that are mapped,
but within the object

Repository

AL2

AL1

Design Patterns and Frameworks, © Prof. Uwe Aßmann 36

5.6 Mediator (Broker)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

37

Mediator (Broker)

► A mediator is an n-way proxy for communication
■ Combined with a Bridge

► A mediator serves for
■ Anonymous communication
■ Dynamic communication nets

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

38

Mediator

ColleagueMediator
mediator

ConcreteMediator ConcreteColleague1 ConcreteColleague2

AColleague

Mediator

AConcreteMediator AColleague

 Mediator

Typical Object Structure:

AColleague

 Mediator

AColleague

Mediator

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

39

Mediator As n-Proxy and Bridge

Colleague MediatorMediator

ConcreteMediatorConcreteColleague1 ConcreteColleague2

AColleague

Mediator

AConcreteMediator AColleague

 Mediator

Proxy Object

AColleague

 Mediator

AColleague

Mediator

Proxy Class

Abstraction
of Service

Realization of
Service

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

40

Intent of Mediator

► Proxy object hides all communication partners
■ Every partner uses the mediator object as proxy
■ Clear: real partner is hidden

► Bridge links both communication partners
■ Both mediator and partner hierarchies can be varied

► ObserverWithChangeManager combines Observer with Mediator

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

41

Web Service Brokers

WebServiceWebServiceMediator
mediator

Google HotelBooking

buy()
query(WebService)

ConcreteServiceMediator

buy()
query(Widget)

search()

query() mediator.query(this)

google

hotel

search()
reserve()
buy()

► Communication between Web services can be mediated via a broker
object (aka object request broker, ORB)

Design Patterns and Frameworks, © Prof. Uwe Aßmann 42

5.7 Coupling Tools with
the Repository Connector Pattern

A recent answer...

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

43

Coupling of Tools via Repositories

► How can two tools collaborate that did not know of each other?

► Answer: by coupling their repositories
■ Choose a master and a slave tool
■ Choose a master repository
■ Shadow the master repository in the slave repository

► Consequence: all data lies in slave repository, and can be worked on
by slave and master

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

44

MasterRepository

Coupling of Repositories with
“RepositoryConnector”
► [Stölzel 2005] connects two repositories of tools with lazy indirection

proxies

RealClass

getRefdObj()

ShadowClass

refdObj

if (refdObj == null) {
 allocate refdObj in
 slave repository;
}
return refdObj;

SlaveRepository

0..1

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

45

MasterRepository

Coupling of Repositories with
“RepositoryConnector”
► On demand, objects of real classes in the master repository are

created in the slave repository
► Service demands on the master repository are always delegated to

the slave repository

a':RealA

getRefdObj()

a:ShadowA
refdObj

SlaveRepository

getRefdObj()

b:ShadowB b'RealB

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

46

Summary

► Architectural mismatch between components and tools consists of
different assumptions about components, connections, architecture,
and building procedure

► Design patterns, such as extensibility patterns or communication
patterns, can bridge architectural mismatches

■ Data mismatch
■ Interface mismatch
■ Protocol mismatch

► Coupling two tools that had not been foreseen for each other is
possible with lazy indirection proxies (RepositoryConnector)

► With Glue Patterns, reuse of COTS becomes much better

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

47

The End

