
Design Patterns and Frameworks, © Prof. Uwe Aßmann 1

Part II
Design Patterns and Frameworks

Prof. Dr. U. Aßmann

Chair for Software
Engineering

Faculty of Informatics

Dresden University of
Technology

11-0.1, 11/12/11

10) Role-based Design

11) Framework Variability

12) Framework Extensibility

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

2

Overview of the Course

Intro

Variability Patterns Extensibility Patterns Connection Patterns

Metapatterns
and Framework patterns

Role Models

Composite Patterns

Layered Frameworks

Tools & Materials

Employment and Usage

Patterns and Frameworks

Basic Patterns

Pattern Languages

Eclipse Concrete FrameworksSAPSan Francisco

Refactoring Refactoring
Variability-Based

Design
Framework

Backward Compatibility

Design Patterns and Frameworks, © Prof. Uwe Aßmann 3

10. Role-Based Design –
A Concept for Understanding
Design Patterns and Frameworks

Prof. Dr. U. Aßmann

Chair for Software
Engineering

Faculty of Informatics

Dresden University of
Technology

1) Role-based Design

2) Role-Model Composition

3) Role Mapping in the MDA

4) Implementing Abilities

5) Design Patterns as Role
Models

6) Composition of Design
Patterns with Role Models

7) More on Roles

8) Effects of Role Modeling in
Frameworks

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

4

Literature (To Be Read)

► D. Riehle, T. Gross. Role Model Based Framework Design and
Integration. Proc. 1998 Conf. On Object-oriented Programing
Systems, Languages, and Applications (OOPSLA 98) ACM Press,
1998. http://citeseer.ist.psu.edu/riehle98role.html

► Liping Zhao. Designing Application Domain Models with Roles. In:
Uwe Aßmann, Mehmet Aksit and Arend Rensink. Model Driven
Architecture European MDA Workshops: Foundations and
Applications, MDAFA 2003 and MDAFA 2004, Lecture Notes in
Computer Science, Volume 3599, 2005, DOI: 10.1007/11538097

■ http://www.springerlink.com/content/f8u0vmbbt2mf/#section=5908
61

http://citeseer.ist.psu.edu/riehle98role.html

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

5

Other Literature

► T. Reenskaug, P. Wold, O. A. Lehne. Working with objects. Manning
publishers.

■ The OOram Method, introducing role-based design, role models
and many other things. A wisdom book for design. Out of print.
Preversion available on the internet at
http://heim.ifi.uio.no/~trygver/documents/book11d.pdf

■ Same age as Gamma, but much farer..

► H. Allert, P. Dolog, W. Nejdl, W. Siberski, F. Steimann. Role-Oriented
Models for Hypermedia Construction – Conceptual Modelling for the
Semantic Web. citeseer.org.

http://heim.ifi.uio.no/~trygver/documents/book11d.pdf

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

6

Other Literature

► B. Woolf. The Object Recursion Pattern. In N. Harrison, B. Foote, H.
Rohnert (ed.), Pattern Languages of Program Design 4 (PLOP),
Addison-Wesley 1998.

► Walter Zimmer. Relationships Between Design Patterns. Pattern
Languages of Program Design 1 (PLOP), Addison-Wesley 1994

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

7

Goal

► Understand the difference between roles and objects, role types and
classes

► Understand role mapping to classes
■ How roles can be implemented

► Understand role model composition
► Understand design patterns as role models, merged into class

models
► Understand composite design patterns

■ Understand how to mine composite design patterns

► Understand role types as semantically non-rigid founded types
► Understand layered frameworks as role models
► Understand how to optimize layered frameworks and design patterns

Design Patterns and Frameworks, © Prof. Uwe Aßmann 8

10.1 Role-based Design With
Role Models

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

9

Purpose of Teaching
Role-based Design

► Design patterns rely on the concept of roles
■ although not described as such in [Gamma]

► A design pattern must be matched in (mapped to) an application,
■ i.e., there must be some classes in the application that play the

roles of the classes in the design pattern.
■ Every class in the design pattern is a role type
■ The matched class of the application plays the role of the class in

the design pattern

ObserverSubject

AnimationEngineSortingAlgorithm

Role mapping Application

Design Pattern

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

10

What are Roles?

► A role is a dynamic view onto an
object

■ The view can change
dynamically

■ A role of an object belongs to a
area of concern

► Roles are played by the objects
(the object is the player of the
role)

■ Playing a role means entering a
state

■ Active roles correspond to
states of an object

Employee

Father

Cyclist

Professor

Conservative

Swede

:Person

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

11

What are Roles?

► Roles are services of an object in a context
■ Roles can be connected to each other, just as services are connected to

client requests

► Roles are founded, i.e., tied to collaborations and form role models
► A role model captures an area of concern (Reenskaug)

Employee

Father

Cyclist

Professor

Pop fan

Soccer player

:Person

Employer

Child

CarDriver

:Person

Diabetics

??

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

12

What are Role Types?

► A role type (ability) is a service type of an object
■ Role types are dynamic view types onto an object

■ The role type can change dynamically (dynamic type)
■ An object plays a role of a role type for some time
■ A role type is a part of a protocol of an class

. A role is often implemented by interfaces

► A role type is founded (relative to collaboration partner)
► A role model is a set of object collaborations described by a set of

role types
■ A constraint specification for classes and object collaborations

► Problem: often, we apply the word “role” also on the class level, i.e.,
for a “role type”

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

13

A Class-Role-Type Diagram
(Class-Ability Diagram)
► Also called a class-role model
► Abilities (oval boxes) are put on top of classes (rectangles)
► The set of role types of a class is called its repertoire (role type set)

■ Any number of roles can be active at a time

Employee

Father

Cyclist

Professor

Pop Fan

Soccer Player

Person

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

14

A Class-Ability Model For Figures in a
Figure Editor
► A figure can play many roles in

different role models
► Roles may be qualified by a role

model identifier in brackets
► This class-role model is composed

out of several simpler role models

Figure
(FigureHierarchy)

Subject
(FigureObserver)

Predecessor
(FigureChain)

Client
(Graphics)

Child
(FigureHierarchy)

Subject
(Int.Fig.Observer)

Server
(Graphics)

Parent
(FigureHierarchy)

Observer
(Int.Fig.Observer)

1..
*

0..*

Client
(FigureHierarchy)

Observer
(FigureObserver)

Successor
(FigureChain)

Figure

Explanation of some role types:

► FigureHierarchy.Figure: regular drawing functions

► FigureHierarchy.Child: child in a figure hierarchy

► FigureObserver.Subject: subject of a Observer
pattern, for communication among figures

► FigureHierarchy.Parent: parent in a figure hierarchy

► IntFigObserver.Subject: subject of a Observer
pattern, for communication among figures

► FigureChain.Sucessor: sucessor in a threaded list
(chain) of figures

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

15

Role Constraints in Role Models

► Arrows denote constraints between roles (role constraints)

Figure
(Figure Hierarchy)

Root
(FigureHierarchy)

Child
(Figure Hierarchy)

Parent
(Figure Hierarchy)

1..
*

0..*

FigureClient
(Figure Hierarchy)

RootClient
(FigureHierarchy)

Role inheritance means
“role-implication: a<b
means the object that
plays role a must also
play role b

Exclusion constraint means
“role-prohibition: a-b
means the object that
plays a must not play b
and vice versa

role-use: a required role uses a
provided role

role-association: a-b means
the object that plays a knows
an object playing b and vice

versa

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

16

More Constraints

Bidirectional Inheritance means
“role-equivalence: a<>b
means the object that plays
a must also play b and vice
versa

Role-implication inheritance constraint: a role-
implication constraint, stressing that the
source can be mapped to a subclass of the
target

BusinessPartner
Indirect

BusinessPartner

Retailer
(Retail)

Customer
(Retail)

Figure
(FigureHierarchy)

Subject
(FigureObserver)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

17

How To Develop Role Models

► Ask the central question:
■ Which role does my object play in this context?
■ Which responsibility does my object have in this context?
■ Which state is my object in in this context?

► If you develop with CRC cards, the questions lead to a grouping of
the responsibilities (i.e., roles) on the CRC card

■ Remember: a role model specifies roles of objects in context, i.e., in a
specific scenario

■ Keep the role model slim, and start another one for a new scenario

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

18

Role-Based Design with Role Models

► Emphasizes collaboration-based design
■ Starts with an analysis of the collaborations (e.g., with CRC cards)
■ Every partner of a collaboration is a role of an object
■ The role characterizes the protocol (interaction) of the object in a

collaboration

► Benefit of Role-based Design
■ Roles split a class into smaller pieces
■ Roles emphasize collaborations in design, i.e., emphasize the context-

dependent parts of classes
■ Roles separate concerns (every role type is a concern)
■ Role models can be reused independently of classes

► Idea: why not develop with role models?

Design Patterns and Frameworks, © Prof. Uwe Aßmann 19

10.2 Composition of Role Models

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

20

Role Models of Persons in Business
Applications

Person
(Person)

Customer
(Customer)

ApplicationClient
(Person)

ApplicationClient
(Customer)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

21

Role Models of Persons in Business
Applications

Person
(Person)

Retailer
(Retail)

Customer
(Customer)

AppClient
(Person)

Debitor
(Debitor)

Investor
(Investor)

AppClient
(Retail)

AppClient
(Debitor)

AppClient
(Investor)

AppClient
(Customer)

Customer
(Retail)

Customer
(Debitor)

Customer
(Investor)

Client of Customer role model
uses customer role of
Customer role model

A Retailer must also
play the role of a customer
(retailers are customers
of banks)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

22

Merging Role Models of Persons in
Business Applications

Person
(Person)

Retailer
(Retail)

Guarantor
(Guarantor)

Customer
(Customer)

AppClient
(Person)

Employee
(Employee)

Debitor
(Debitor)

Investor
(Investor)

AppClient
(Retail)

AppClient
(Debitor)

AppClient
(Investor)

AppClient
(Customer)

AppClient
(Guarantor)

AppClient
(Employee)

Guarantor never plays the role of a customer

► Merging role Customer from role models (Customer, Retail, Debitor,
Investor)

Design Patterns and Frameworks, © Prof. Uwe Aßmann 23

Merging Role Models into Class
Diagrams

How role models are merged to class models

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

24

Composing Role Models To Partial
Class Diagrams
► Classes combine roles

■ Classes are composed of role types
■ Roles are dynamic items; classes are static items
■ So, classes group roles to form objects

► Class models combine role models
■ Class models are composed of role models
■ One role model expresses a certain aspect of the class model

► Partial class models:
■ Role types in a role model can be left dangling (open) for further

composition
■ The sub-role-models of a composed role model are called its dimensions
■ A partial class model results
■ Then not all roles are associated to classes

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

25

Partial class model for figure
editor, with some open
client roles

Figure
(Figure Hierarchy)

Subject
(Figure Observer)

Predecessor
(Figure Chain)

Client
(Graphics)

Child
(Figure Hierarchy)

Subject
(Int. Fig. Observer)

Graphics
(Graphics)

Parent
(Figure Hierarchy)

Observer
(Int. Fig. Observer)

1..
0..

FigClient
(Figure Hierarchy)

Observer
(Figure Observer)

Successor
(Figure Chain)

Figure

CompositeFigure

Figure
(RectangleFigure)

RectangleFigure

Graphics

FigClient
(RectangleFigure)

Root
(FigureHierarchy)

RootFigure

Figure
(ClassFigure)

ClassFigure

FigClient
(ClassFigure)

Client
(RectangleFigure)

RootClient
(FigureHierarchy)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

26

Role Models in the Example

► FigureHierarchy: composite figures (with root figure and other types,
such as rectangluar or class)

► FigureChain: How objects forward client requests up the hierarchy,
until it can be handled

► FigureObserver: Observer pattern, for callback communication
among clients and figures

► IntFigObserver: Observer pattern, for communication among figures

Design Patterns and Frameworks, © Prof. Uwe Aßmann 27

10.3 Role Mapping in the MDA

Merging role models to class models can be
seen as a step of MDA

[Zhao]

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

28

Steps In Role-Based Design

► First, do role models
■ Roles are all kept distinct
■ Find out about role constraints that

constraint which objects execute
which roles

► Secondly, compose (merge) them
■ And set up new constraints between

roles of different models

► Thirdly, map role models to class
diagram

■ By merging the roles to classes
■ Respecting the constraints
■ Role models must be “woven” into

class models (role mapping)

► Benefit: many different class models
from one set of role models! (Gross
variability)

Merged
Role Models

Class Model

Role Model mapping

Class Model

Class Model

Role Models

Role Model merging

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

29

The Role Mapping Process and Model-
Driven Architecture

► The information which roles belong to which class can be regarded
as a platform information

► A role model is more platform independent than a class model
■ The decision which roles are merged into which classes has not

been taken and can be reversed
■ We say: roles are logical, classes are physical

► In MDA, role models are found on a more platform independent level
than class models

■ First design a set of role models
■ Then find a class model by mapping roles into classes
■ Respect role constraints
■ Usually, several class models are legal

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

30

Role Model Mapping is a Task in MDA

Business model

Role Models

Class Model

Code

Role Model mapping

Merged Role Models

Role Model merging
Not in
standard
MDA

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

31

The Influence of the Role Constraints
on Role Model Mapping
► Role-equivalent constraint: strong constraint: same implementation

class
► Role-implication constraint: weaker, leaves freedom, which physical

class implements the roles
■ Map to same classes or subclasses
■ If implemented by the same class, the class model is stricter than the role

model
■ Embedding roles in a class reduces the number of runtime objects, hence

more efficient, less object schizophrenia
■ Split classes allow for better exchange of a role at runtime, since only the

runtime object needs to be exchanged

► Role-implication inheritance constraint: a role-implication constraint,
stressing that the source must be mapped to a subclass of the target

► Role-use constraint: translation to delegation possible (different
classes)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

32

Computing Physical Objects

► The role mapping process determines, which physical object inherits
from which role-interface

► The role mapping computes the physical objects from maximal splits
of the logical objects

Role Model (maximally splitted responsibilities
of the logical objects)

Class Model
(partially overlayed responsibilities,

physical objects)

Code

Role model mapping

Design Patterns and Frameworks, © Prof. Uwe Aßmann 33

10.4 Implementing Abilites By
Hand

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

34

Implementation of Abilities

Abilities can be merged into classes in several ways:
► With interfaces

■ Then, code for the interfaces must be written by hand

► With multiple inheritance
■ Then, there are two layers of classes: role classes and standard classes

► With mixin classes
■ Some language allow for composing “mixin” classes into classes

. CLOS, Scala

. “include inheritance” (Eiffel, Sather)

■ A role is like a mixin class
■ No code has to be written by hand

► With multi-Bridges

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

35

With Interfaces

► Then, code for the interfaces must be written by hand

Figure
(Figure Hierarchy)

Subject
(Figure Observer)

Predecessor
(Figure Chain)

Client
(Graphics)

Child
(Figure Hierarchy)

Subject
(Int. Fig. Observer)

Figure

<<implementation class>>
Figure

<<interface>>
FigureHierarchy.Figure

<<interface>>
Graphics.Client

<<interface>>
FigureObserver.Subject

<<interface>>
FigureHierarchy.Child

<<interface>>
FigureChain.Predecessor

<<interface>>
IntFigObserver.Subject

public class Figure implements
FigureHierarchy.Figure,
FigureHiearchy.Child,
Graphics.Client,
IntFigObserver.Subject,
FigureObserver.Subject,
FigureChain.Predecessor

{ ... implementations of
role-interfaces ...

}

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

36

Embedding With Multiple Inheritance

► Then, there are two
layers of classes: role
classes and standard
classes

► A standard class must
inherit from several
role classes

► Disadvantage: a
standard class can
inherit from a role
class only once

Figure

<<role class>>
FigureHierarchy.Figure

<<role class>>
Graphics.Client

<<role class>>
FigureObserver.Subject

<<role class>>
FigureHierarchy.Child

<<role class>>
FigureChain.Predecessor

<<role class>>
IntFigObserver.Subject

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

37

Embedding With Mixin Classes

► Some language allow for
composing “mixin” classes into
classes

■ CLOS, Scala
■ “include inheritance” (Eiffel,

Sather)

► A role is like a mixin class
► No code has to be written by

hand
Figure

<<mixin class>>
FigureHierarchy.Figure

<<mixin class>>
Graphics.Client

<<mixin class>>
FigureObserver.Subject

<<mixin class>>
FigureHierarchy.Child

<<mixin class>>
FigureChain.Predecessor

<<mixin class>>
IntFigObserver.Subject

<<mixin>> <<mixin>> <<mixin>>

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

38

Implementation With Multi-Bridges and
Role Objects

► A role object represents only
one role

► A role class only one role type
► There is a core object that

aggregates all role objects
► Also with “Role Object” pattern

(later)

Figure

FigureHierarchy.Figure Graphics.Client FigureObserver.Subject

FigureHierarchy.Child FigureChain.Predecessor IntFigObserver.Subject

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

39

The Difference of Roles and Facets

► A faceted class is a class with n dimensions
► If the facet has a collaboration partner, it turns out to be a role

■ Each facet is a role type
■ Role types are independent of each other
■ However, the role type is static, not dynamic: facets are lasting

Design Patterns and Frameworks, © Prof. Uwe Aßmann 40

Example of Persons in Business
Applications

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

41

Role Models of Persons

Person
(Person)

Retailer
(Retail)

Guarantor
(Guarantor)

Customer
(Customer)

Client
(Person)

Employee
(Employee)

Debitor
(Debitor)

Investor
(Investor)

Client
(Retail)

Client
(Debitor)

Client
(Investor)

Client
(Customer)

Client
(Guarantor)

Client
(Employee)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

42

<<implementation class>>
Employee View

Implementation With Interfaces
(or Mixins)

Client
(Guarantor)

Client
(Employee)

<<implementation class>>
Person

<<implementation class>>
CustomerView

Client
(Person)

<<implementation class>>
GuarantorView

Client
(Person)

Person
(Person)

Guarantor
(Guarantor)

Customer
(Customer)

Employee
(Employee)

Client
(Person)

Client
(Customer)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

43

<<implementation class>>
Employee View

Implementation of Person With
Multi-Bridge (Role Objects)

Client
(Person)

Client
(Customer)

Client
(Employee)

<<implementation class>>
Person

<<implementation class>>
CustomerView

Client
(Person)

<<implementation class>>
Guarantor View

Client
(Person)

<<implementation class>>
Customer

<<implementation class>>
Guarantor

<<implementation class>>
Employee

Employee
(Employee)

Guarantor
(Guarantor)

Client
(Guarantor)

Person
(Person)

Customer
(Customer)

Design Patterns and Frameworks, © Prof. Uwe Aßmann 44

Example:
Actors, Films, and Directors

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

45

Actors, Films, and Directors

► We model actors, directors, producers, and their films
► Actors have a genre (lover, serious, comedian) and play on a certain

media (TV, cinema, Shakespeare)
► Directors and producers have similar attributes
► Films also
► Actors have an age (young, medium, old)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

46

Example Role Model for Actors

Actor
(Profession)

Director
(Profession)

Producer
(Profession)

OldAge
(Person)

MiddleAge
(Person)

YoungAge
(Person)

Person
(Person)

Lover
(Genre)

Comedian
(Genre)

Serious
(Genre)

MediaOfDirector
(Media)

MediaOfProducer
(Media)

MediaOfActor
(Media)

SkakespeareFilm
(Media)

CinemaFilm
(Media)

TVFilm
(Media)

LatinLover
(Genre)

NordicLover
(Genre)

Vamp
(Genre)

ShakespeareActor
(Media)

CinemaActor
(Media)

TVActor
(Media)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

47

There are Many Ways to Implement
This Role Model
► With a facet based model, modelling some role models as class

hierachies of a Dimensional Hierarchies model

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

48

Shakespeare
Film

Cinema
Film

Very Simple Class Model for
Actors and Films

Person

DirectorActor
Age

Producer

employs *

hasATVFilm

Middle OldYoung

► 4-dimensional model (facets)

FilmPerson

Media

Genre

hasA

Serious ComedianLover

Cinema
Actor

Shakes
peare
Actor

TV
Actor

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

49

Some roles implemented
by overlaying, inheritance,
delegation, and role
objects

Person

DirectorActor

Age

Producer

Film playsIn
directs

produces

Actor
(Profession)

Director
(Profession)

Producer
(Profession)

Person
(Person)

ShakespeareProducer
(Media)

CinemaProducer
(Media)

TVProducer
(Media)SkakespearTheatre

(Media)

CinemaFilm
(Media)

TVFilm
(Media)

MiddleOldAge Young

ShakespeareDirector
(Media)

CinemaDirector
(Media)

TVDirector
(Media)

ShakespeareActor
(Media)

CinemaActor
(Media)

TVActor
(Media)

Genre

SeriousLover Comedian

NordicLatin Vamp

Design Patterns and Frameworks, © Prof. Uwe Aßmann 50

10.5 Design Patterns as Role
Diagrams

... more info...

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

51

Design Patterns have Role Models

► Observer role model

Subject
(FigureObserver)

0..*Observer
(FigureObserver) 0..*

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

52

Structure Diagrams of DP are Role
Diagrams
► The “participant” section of a GOF pattern is a role model
► Roles of Chain of Responsibility:

■ Chain: (successor, predecessor)
■ ChainUse: (Handler, HandlerClient, Tail, TailClient)

Handler
(ChainUse)

Tail
(ChainUse)

Predecessor
(Chain)

Successor
(Chain)

HandlerClient
(ChainUse)

TailClient
(ChainUse)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

53

Role Diagram of Composite

► Root role is not in the standard pattern description
► Attention: role models are not standardized – it depends on the

designer what she wants to model! (many variants of a role model for
a design pattern may exist). Here: Root, Terminator, clients optional

Node

Root

ChildParent

NodeClient

RootClient

 *
children

parent

Terminator

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

54

Composing (Overlaying) Role Models

► Overlaying the FigureHierarchy with the FigureObserver role model

Figure
(FigureHierarchy)

Root
(FigureHierarchy)

Child
(Figure Hierarchy)

Parent
(Figure Hierarchy)

0..*

FigureClient
(FigureHierarchy)

RootClient
(FigureHierarchy)

Subject
(FigureObserver)

0..*Observer
(FigureObserver) 0..*

 *
children

parent

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

55

Core Role Diagrams of Several
Patterns
► Many of them are quite similar

Colleague

ObserverSubject

Mediator

observers

mediator

colleague

subject

ProxyRealSubject
realSubject

DecoratorDecorated
decorated

*

*

AdapterAdapted

Design Patterns and Frameworks, © Prof. Uwe Aßmann 56

10.6 Composite Design Patterns
with Role Model Composition

.. how to create bigger design patterns as composed role
models..

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

57

Example: Bureaucracy

► A pattern to model organizations that have a tree-like structure (as
opposed to matrix organizations)

► Is composed of the role models of Composite, Mediator, Chain,
Observer

Clerk

Director

SubordinateManager

ClerkClient

DirectorClient

 *
subordinate

manager

Composite

Mediator

Chain

Observer

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

58

Example: Bureaucracy

► The Composite defines the organizational hierarchy of managers
► The Mediator is used to let talk children talk to their siblings

(colleague roles) via a parent (mediator role)
► The Chain handles requests of clients

■ Every node may handle requests
■ If a node cannot handle a request, it is passed up in the hierarchy (on the

path to the root)

► The Observer is used to listen to actions of a parent node
■ If a parent node (subject) changes something, its child (observer) listens

and distributes the information accordingly

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

59

Class-Ability Model of Bureaucracy

Clerk
(Composite)

Director
(Composite)

Subordinate
(Composite)

Manager
(Composite)

ClerkClient
(Composite)

DirectorClient
(Composite)

subordinate

manager

Colleague
(Mediator)

Observer
(Observer)

Subject
(Observer)

Mediator
(Mediator)

observers

mediator

colleague

subject

Handler
(Chain)

Tail
(Chain)

Predecessor
(Chain)

Sucessor
(Chain)

HandlerClient
(Chain)

TailClient
(Chain)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

60

Bureaucracy
Class-Ability Model of Figures

Clerk
(Composite)

Director
(Composite)

Subordinate
(Composite)

Manager
(Composite)

ClerkClient
(Composite)

DirectorClient
(Composite)

subordinate

Colleague
(Mediator)

Observer
(Observer)

Subject
(Observer)

Mediator
(Mediator)

observers

mediator

colleague

subject

Handler
(Chain)

Tail
(Chain)

Predecessor
(Chain)

Sucessor
(Chain)

HandlerClient
(Chain)

TailClient
(Chain)

DrawingEditor FigureItem

Group Circle

FigureWindow

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

61

Application of Bureaucracy

► For all hierarchies
■ Figures in graphic and interactive applications
■ Widgets in GUIs
■ Documents in office systems
■ Piece lists in production management and CAD systems
■ Hierarchical tools in TAM (see later)
■ Modelling organizations in domain models: companies, governments,

clubs

Design Patterns and Frameworks, © Prof. Uwe Aßmann 62

Model-View-Controller (MVC)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

63

Class-Ability Model of MVC

Component
(Composite)

Root
(Composite)

Leaf
(Composite)

Composed
(Composite)

ClerkClient
(Composite)

DirectorClient
(Composite)

Strategy
(Strategy)

Observer
(Observer)

subject

Controller ViewModel

observers

LeafViewComposed
View

Root
View

Subject
(Observer)

StategyClient
(Strategy)

► From Tyngre Reenskaug and Adele Goldberg
► MVC role model can be composed from the role models of Observer,

Strategy, Composite

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

64

This Closes a Big Loop

► Remember, Reenskaug developed MVC 1978 with Goldberg, while
working on Smalltalk-78 port for Norway

► Starting from his MVC pattern, Reenskaug has invented role-based
design

► 1998, Riehle/Gross transferred role-based models to design patterns
► Today, MVC can be explained as composed role models of other

design patterns

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

65

Riehle-Gross Law On Composite
Design Patterns

► Concequences
■ Complex patterns can be easily split into simpler ones (decomposition)
■ Variants of patterns can more easily be related to each other (variability

of patterns)
. e.g., ClassAdapter and ObjectAdapter

■ Template&Hook conceptual pattern can be explained as role model (see
next chapter)

The role model of a composite design patterns is composed of the
role models of their component design patterns

The role model of a composite design patterns is composed of the
role models of their component design patterns

Design Patterns and Frameworks, © Prof. Uwe Aßmann 66

10.6.2 Composition of Simple
Variability Patterns

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

67

Warning

► The following is an attempt to build up the basic GOF patterns from
simple role models

■ It is probably not stable

► It explains why Strategy is different from Bridge and TemplateClass,
etc.

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

68

Derived Method

► In a class,
■ A kernel method implements

the feature directly on the
attributes of the class, calling no
other method

■ A derived method is
implemented by calling only
kernel methods

CalleeCaller
callee

DerivedMethod

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

69

Derived Method and TemplateMethod

► TemplateMethod is a
DerivedMethod that has

■ an additional
TemplateMethod/HookMethod
role model

■ Inheritance hierarchy on right
side (implied by role-class
inheritance constraint)

■ The template role implies no
hierarchy on left side

CalleeCaller
callee

DerivedMethod

CalleeCaller
hookObject

HookMTemplateM

TemplateMethod

CalleeDescendant

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

70

Objectifier and Strategy

► Objectifier has
■ An additional exclusion

constraint on Caller and Callee
■ An aggregation
■ An algorithm role
■ A subclassing constraint (right

hierarchy)
■ No template role

► Strategy is an Objectifier with
■ Client role
■ Algorithm role
■ Hierarchy on right side
■ No template role

Descendant

CalleeCaller
algo

Objectifier

Descendant

CalleeCaller
algo

AlgorithmClient

Algorithm

Strategy

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

71

TemplateClass

► TemplateClass is an Objectifier
with

■ An additional TemplateMethod/
HookMethod role model

■ TemplateMethod role implies no
hierarchy on left side

■ HookMethod role implies
inheritance hierarchy on right
side

■ No client or algorithm role,
otherwise like Strategy

CalledCaller
hookObject

CalleeDescendant

HookMTemplateM

TemplateClass

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

72

DimensionalClassHierarchies

► DimensionalClassHierarchies is
a TemplateClass

■ Without template-hook
constraint, but still
TemplateMethod/TemplateHook
constraint

■ With left hierarchy constraint

DimensionalHierarchies

CalledCaller
hookObject

CalleeDescendantCallerDescendant

HookMTemplateM

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

73

Bridge

► Bridge is a
DimensionalHierarchies with

■ An additional
abstraction/implementation role
model

■ No template/hook role CalledCaller
imp

CalleeDescendant

ImplementationAbstraction

Bridge

CallerDescendant

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

74

Creational Patterns

► Add more roles with semantics
about creation

► E.g., FactoryMethod is a
TemplateMethod with a
creational role model

CalleeCaller
hookObject

HookMTemplateM

FactoryMethod

CalleeDescendant

Constructor

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

75

Remember: Relation TemplateMethod,
TemplateClass, Strategy, Observer

TemplateMethod TemplateClass

Strategy

Dimensional
ClassHierarchies

Bridge

T&H Metapatterns

Objectifier

concretizing

Different
forces

concretizingabstracting

More specific patterns (with more intent, more pragmatics, specific role denotations)

Framework Patterns (with TemplateM/HookM role model)

Design Patterns and Frameworks, © Prof. Uwe Aßmann 76

10.6.3 Composition of Simple
Extensibility Patterns

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

77

Object Recursion

► The aggregation can be 1:1 or 1:n (1-Recursion, n-Recursion)

Handler

handleRequest()
preHandleRequest(Component)
postHandleRequest(Component)

Recurser

handleRequest()
preHandleRequest(Component)
postHandleRequest(Component)

Terminator

handleRequest()

Client
childObject(s)

preHandleRequest()
for all g in childObject(s)
 g.handleRequest()
postHandleRequest()

1 or +

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

78

ObjectRecursion

► Essential roles are Handler, Recurser, Child
► Root, Terminator can, but need not be modeled
► Clients are optional, parent is optional

Handler

Root

ChildRecurser

NodeClient

RootClient
children

{ 1 or * }

Terminator

parent

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

79

Composite

► n-ObjectRecursion
► Other role pragmatics, similar pattern
► Perhaps with additional parent relation

Node

Root

ChildParent

NodeClient

RootClient

*

parent

children

Terminator

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

80

Decorator

► 1-ObjectRecursion
► other role pragmatics, similar pattern

Node

RootOfList

DecoratedDecorator

NodeClient

RootClient

1
hidden

Mimiced

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

81

Chain of Responsibility

► No real ObjectRecursion

Handler
(ChainUse)

Tail
(ChainUse)

Predecessor
(Chain)

Sucessor
(Chain)

HandlerClient
(ChainUse)

TailClient
(ChainUse)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

82

Remember:
Relations Extensibility Patterns

ObjectRecursion

Composite

Dimensional
ClassHierarchies

Bridge
Decorator

abstracting

Specific Patterns

Framework Patterns

Chain

Proxy

Recursive
T&H Pattern

Connection
T&H Pattern

abstracting

Visitor

Observer

n-Brigde

Still something to discover...

Design Patterns and Frameworks, © Prof. Uwe Aßmann 83

10.6.4 Consequences of the
Riehle/Gross Law

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

84

Zimmer's Classification and the Riehle-
Gross Law
► Zimmer's hierarchy notes use relationships between design patterns

■ But actually, he means composition of role models of design patterns
■ but Zimmer could not express it conceptually

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

85

Relations between Patterns [Zimmer,
PLOP 1]

Prototype

Observer
Abstract Factory

Builder Strategy Layers

ChainOf
Responsibility

Visitor

Iterator

Command

Bridge

SingletonTemplate
Method

Objectifier

AdapterMediator Decorator

Compositum

Memento

Proxy

Flyweight

Data patternsBasic patterns

Facade

Creation patterns Coupling patterns Control flow patterns
Interpreter

FactoryMethod

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

86

Consequence for Pattern-Based
Design
► With different role models, the fine semantic differences between

several patterns can be expressed syntactically
■ A role model can capture intent (pragmatics) of a pattern
■ While patterns can have the same structure, the intent may be different
■ It is possible to distinguish a Strategy, TemplateClass, a Bridge or

DimensionalClassHierarchy

► This makes designs more explicit, precise, and formal

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

87

Consequence for Pattern Mining

► When you identify a pattern in the product of your company,
■ Try to define a role model
■ Split the role model into those that you know already
■ I.e., decompose the complex pattern in well-known ones

► Advantage:
■ You know how to implement the well-known patterns
■ You can check whether an implementation of the composite, new pattern

is correct
■ If all component patterns are implemented correctly, i.e., conform to their

role models.

► Be Aware: These Role Models Are Not Stable
■ Role models provide freedom; so there may be several ones for

one pattern

Design Patterns and Frameworks, © Prof. Uwe Aßmann 88

10.7 More on Roles

10.7.1 Relation of Role Modelling to Other
Software Engineering Technologies

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

89

Hyperslices are Named Slices Through
the Concern Matrix

Lifecycle

Application
concepts

Application
concerns

Requirements
Design

Implementation
.....

Printing
Querying

Account

Loan

Transfer

Booking
...

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

90

Hyperslice Composition and Role
Mapping
► Hyperslices (views) are essentially the same concept as role models

■ But work also on other abstractions than classes and feature sets
■ Hyperslices can be defined on statements and statement blocks

■ Role models are more unstructured since they do not prerequisite
slices, dimensions, or layers

► Hyperslice composition is similar to role mapping
■ Is guided by a composition that merges views (roles)
■ Hyperslices are independent (no constraints between hyperslices)

► Role models implement aspects
■ Because the roles are related by role constraints

► More in “Component-based Software Engineering”

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

91

Roles vs Facets

► A facet is concerned always with one logical object
■ A facet classification is a product lattice

► Role models may crosscut many objects
■ They are concerned with collaboration of at least 2 objects
■ Hence, a facet is like a role of one object, but from n facet dimensions.
■ A class can have arbitrarily many roles, but only n facets

► Roles may be played for some time; facets last over the entire lifetime
of the object

Design Patterns and Frameworks, © Prof. Uwe Aßmann 92

10.7.2 Role Types Formally

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

93

Rigid Types

► Example:
■ A Book is a rigid type.
■ A Reader is a non-rigid type
■ A Reader can stop reading, but a Book stays a Book

► Semantically rigid types are tied to the identity of objects
► A semantically rigid type is tied to a class invariant (holds for all

objects at all times)

► A semantically non-rigid type is a dynamic type that is indicating a
state of the object

If an object that has a (semantically) rigid type, it cannot stop being of
the type without loosing its identity

If an object that has a (semantically) rigid type, it cannot stop being of
the type without loosing its identity

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

94

Founded Types

► A founded type is a type if an object of the type is always in
collaboration (association) with another object.

■ Example: Reader is a founded type because for being a reader, one has
to have a book.

A role type (ability) is a founded and non-rigid type
Role types (abilities) are in collaboration and if the object does no

longer play the role type, it does not give up identity

Natural types are non-founded and semantically rigid.
Book is a natural type.
A natural type is independent of a relationship
The objects cannot leave it

Design Patterns and Frameworks, © Prof. Uwe Aßmann 95

10.8 Effects of Role-Based Design
Patterns on Frameworks and
Applications

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

96

Effect of Role Models

► Role modelling allows for scaling of delegation
■ By default, all roles are overlaid by their class
■ But some can stay separate
■ Layered frameworks split all roles off to role objects

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

97

Role Models and Facet/Layered
Frameworks
► An n-Bridge framework maintains roles (role models) in every facet

(because a facet model is based on a class-role model)
► Similar for chain-Bridges and layered frameworks

First layer

Second layer

Third layer

Core Layer: Abstraction Framework
Reuse

0

Reuse
0&1

Reuse
0-2

Reuse
0-3

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

98

Reuse
0

Reuse
0&1

Reuse
0-3

Merging Layers of Facet/Layered
Frameworks
► If the layers are seen as role models, it can be chosen to merge the

layers, i.e., the role models
► Here: merge second and third layer into one physical implementation

layer
► No reuse for layer 2 possible

First layer

Second layer

Third layer

Core Layer: Abstraction Framework

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

99

Merging Layers of Layered
Frameworks
► When two layers are merged, the variability of a framework sinks
► But its applications are more efficient:

■ Less delegations (less bridges)
■ Less allocations (less physical objects)
■ Less runtime flexibility (less dynamic variation)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

100

MVC as Multi-Bridge Framework

► The roles of MVC can be ordered in a n-Bridge framework

First layer: Views

Second layer: Controller

Third layer: Model

Core Layer: Application
Reuse

0

Reuse
0&1

Reuse
0-2

Reuse
0-3

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

101

Reuse
0

Reuse
0&1

Reuse
0-3

MVC as Optimized Multi-Bridge
Framework
► Model and Controller layer can be merged
► Less variability, but also less runtime objects

View

Controller

Model

Core Layer: Application

Design Patterns and Frameworks, © Prof. Uwe Aßmann 102

10.8.2 Optimization of Design
Patterns with Role Models

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

103

Law of Optimization for Design
Patterns

► Effect:
■ Less variability
■ Less runtime objects
■ Less delegations

Whenever you need a variant of a design pattern that is more efficient,
investigate its role model and try to merge the classes of the roles

Whenever you need a variant of a design pattern that is more efficient,
investigate its role model and try to merge the classes of the roles

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

104

Original Role-Class Model of MVC

Component
(Composite)

Root
(Composite)

Leaf
(Composite)

Composed
(Composite)

ClerkClient
(Composite)

DirectorClient
(Composite)

Strategy
(Strategy)

Observer
(Observer)

subject

Controller ViewModel

observers

LeafViewComposed
View

Root
View

Subject
(Observer)

StategyClient
(Strategy)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

105

Optimized Role-Class Model of MVC

Component
(Composite)

Root
(Composite)

Leaf
(Composite)

Composed
(Composite)

ClerkClient
(Composite)

DirectorClient
(Composite)

Strategy
(Strategy)

Observer
(Observer)

subject

Controller ViewModel

observers

LeafViewComposed
View

Root View

Model'New View'New

Subject
(Observer)

StategyClient
(Strategy)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

106

Optimized Role-Class Model of MVC

► The optimized model merges all roles into two classes
■ No strategy variation
■ No composite views

► Only 2 instead of 3+n objects at runtime
■ Faster construction
■ Essence of the pattern, the Observer, is still maintained

► However, restricted variability

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

107

Super-Optimized Role-Class Model of
MVC

Component
(Composite)

Root
(Composite)

Leaf
(Composite)

Composed
(Composite)

ClerkClient
(Composite)

DirectorClient
(Composite)

Strategy
(Strategy)

Callee
(Call)

Controller ViewModel

callees

LeafViewComposed
View

Root View

ClassBeingNoLongerAnMVC

Caller
(Call)

StategyClient
(Strategy)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

108

► In this design, the ClassBeingNoLongerAnMVC merges all roles
■ It should be a superclass of all contained classes

► The Observer pattern is exchanged to a standard call
► No variability anymore
► But only one runtime object!

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

109

The End: Summary

► Roles are important for design patterns
■ If a design pattern occurs in an application, some class of the application

plays the role of a class in the pattern
■ Roles are dynamic classes: they change over time

► Role-based modelling is more general and finer-grained than class-
based modelling

► Role mapping is the process of allocating roles to concrete
implementation classes

► Hence, role mapping decides how the classes of the design pattern
are allocated to implementation classes (and this can be quite
different)

► Composite design patterns are based on role model composition
► Layered frameworks and design patterns can be optimized by role

merging

	Coaster in Space
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109

