11. Frameworks and Patterns -

Framework Variation Patterns

O

—

. Open Role Framework Hooks
Framework Hook Patterns

Faculty of Informatics Delegation-Based Framework Hook

Dresden University of Patterns
Technology

Version 11-0.2, 11/28/11

Prof. Dr. U. ABmann
Software Engineering

Rl

4. Recursion-Based Framework Hook
Patterns

5. Unification-Based
6. Inheritance-Based
7. T&H in Frameworks

Design Patterns and Frameworks, © Prof. Uwe ARmann 1

Secondary Literature

Literature (To Be Read)

Prof. Uwe ABmann, Design Patterns and Frameworks

=

» W. Pree. Framework Development and Reuse Support. In Visual
Object-Oriented Programming, Manning Publishing Co., editors M. M.
Burnett and A. Goldberg and T. G. Lewis, Pp, 253-268, 1995.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.4711

» D. Baumer, G. Gryczan, C. Lilienthal, D. Riehle, H. Zillighoven.
Framework Development for Large Systems. Communications of the
ACM 40(10), Oct. 1997.
http://dirkriehle.com/computer-science/research/1997/cacm-1997-frame

Goal

Prof. Uwe ABmann, Design Patterns and Frameworks

=

» W. Pree. Design Patterns for Object-oriented Software Development.
Addison-Wesley 1995. Unfortunately out of print.

» M. Fontoura, W. Pree, B. Rumpe. The UML Profile for Framework
Architectures. Addison-Wesley, Object Technology Series. 2002.

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Studying variabilities of frameworks with the T&H concept

» Introducing different types of hooks for frameworks and components
(TH patterns)

» Understand framework hook patterns
= The box-like notation for frameworks and framework hooks patterns
» More types of dimensional frameworks

Patterns and Frameworks

Prof. Uwe ARmann, Design Patterns and Frameworks

&

» Historically, design patterns were discovered during framework
development
= Smalltalk MVC [Goldberg, Reenskaug]
= ET++ [Gamma]
= Interviews [Vlissides]
» Design patterns are building blocks of frameworks
= Framework developers vary and extend classes of the framework
» Design patterns are for the making of the products of a product line
architecture
= Application developers vary and extend classes of the framework

= Variability design patterns can be used as framework variation
points (framework variation hooks)

= Extensibility design patterns can be used as framework extension
points (framework extension hooks)

Framework Instantiation with Open
Roles (Role Hot Spots)

11.1 Framework Instantiation and
Merging With Open Roles

)

Design Patterns and Frameworks, © Prof. Uwe ARmann 6

Remember: The Partial Figure Model,
a Standard Class-Ability Model

Prof. Uwe ABmann, Design Patterns and Frameworks

=

» The most simple form of framework instantiation is Riehle/Gross'
open role instantiation
= Here, frameworks are class models with “open” role hot spots
= Open role hooks (free, unbound abilities) are role types that have not yet
been assigned to classes
» The hot spots form an integration repertoire (integration role type
set)

= the set of role types, by which the framework can be integrated
into an application

= Aka framework hooks, framework variation points
» Aframework is instantiated by binding its integration repertoire to
classes
= The abilities are bound, role constraints have to be respected

» Hence, role models play the bridge between a framework and its
clients

Prof. Uwe ABmann, Design Patterns and Frameworks

&

__Figure Graphics
Figure Client Graphics
(Figure Hierarchy (Graphics) (Graphics)
T T .
Subject Chil I)
(Figure Observer), (Figure Hierarchy),
Predecessor ubject
(Figure Chain) Int. Fig. Observer;
]
|RectangIeFigure | CompositeFigure |
L . 1
Client Figure Successor Parent N
(RectangleFigure), (RectangleFigure), (Figure Chain) (Figure Hierarchy),
A
Observer
Int. Fig. Observer,

Client)
(Figure HierarchQ

Observer o

(Figure Observer),

Partial class model for figure editor

=
a

59)

| ClassFigure RootFigure |
Client Root RootClient
(RectangleFigure) (FigureHierarchy) (FigureHierarchy)
Client Figure
(ClassFigure) (ClassFigure)

The Figure Framework, Partially

ml| Instantiated

—

The Figure Framework, Fully
Instantiated to an Editor

' _Framework | _

Edit T -
o | |
(Figure Client
\lgure Hierarchy), Graphlcs) I
C

Subject hild
(Figure Observ r), (Figure Hlerarc y), I \
Predecessor ubject |
(Figure Chain) Int. Fig. Observer \
'T' | IFrozen spots,
| (bound role
bypes) |
|) —
Successor Parent
C(Figure Chain)) @igure HierarchQ_ I

I RectangleFigure

\ Client Figure
(RectangleFigure) (RectangleFigure),

| | A

RootFigure

ClassFigure

Root
(FigureHierarchy

—
Prof. Uwe ABmann, Design Patterns and Frameworks

5|
(%]
£
2
E
c
k=
7
&
£ | |
©
£
2
<
o
3
o
5
o

T

Editor

lient
Figure Hierarchy’

Client bserver
(CIassFlgure) Figure Observer

Framework

L1

lient
RectangleFig

srer) G2

ootClient
igureHierarchy

0.*

rfzw

(Graphlcs)

Client
igure Hlerarchy

ubject hild

Figure Observer] Figure Hlerarchy |
Predecessor ubject |
(Figure Chain) Int. Fig. Observer)

=

RectangleFigure

CompositeFigure

Successor
(Fi

ClassFigure

lient
RectangleFigure

Figure

Client Figure I
@ (ClassFigure) (ClassFigure) I 9
| E—

| -

&

The Figuremeewomlgst_anlm;edtoanUML Editor

Framework I

(ClassFigure)

RootFigure

oot
FigureHierarchy’

Merging of Frameworks

arent |
(Figure Chain) Figure Hierarchy |
Pbserver
Int. Fig. Observerj |

Graphics

Graphics
(Graphics)

10

al s ‘ R
Figure Client o
(Figure Hlerarchy) (Graphics)
Subject Child
| (Figure Observ er), (Figure Hlerarchy) |
ﬁ:lient RootClient Predecessor ubject I
UCIassDiagram) (FigureHierarchy) (Figure Chain) Int. Fig. Observer

| 5 I
| |
I Successor Parent I
| (Figure Chain) (Figure Hierarchy), |

RectangleFigure|

Figure
(RectangleFigure),

(Tool)
Client
(Figure Hierarchy

RectangleTool

Client
(RectangleFigure),

ClassFigure

Figure
(ClassFigure)

CIasleagram

L ——————(Client
(ClassFigure)

ClassDiagram
(ClassDiagram)

Prof. Uwe Almann, Design Patterns and Frameworks
Prof. Uwe ABmann, Design Patterns and Frameworks

\J

11

3
&

Two frameworks are merged by binding the integration abilities of A to
classes of B

= Role constraints have to be respected
Hence, role models play the bridge between different frameworks
= Or layers of frameworks

12

_ The Figure and Graphics Frameworks
A Graphics Framework al| Merged

(Imaging)
_ (Clipping) ~ } 1

Prof. Uwe ARmann, Design Patterns and Frameworks

&

' Graphics ' Figure |
r | Editor [: |
|
Client I > Client Figure Client
(Graphics) I (Figure Hierarchy), » (Figure Hierarchy), (Graphics)
Client Subject Child .
(Clipping) I) 0.* (Figure Observer), (Figure Hierarchy), |

]
| Graphics] |

Graphics
(Graphics)

Graphics

Graphics
(Graphics)

Graphics

(Clipping)

Graphics
(Clipping)

Observer
(Figure Observer)

Client | » Polyliner @ Predecessor ubject Polyliner
(Polylining) (Polylining) I ‘g (Figure Chain) Int. Fig. Observer; | (Polylining) |
o
e) | o |
i extin: 1 Textini
(Texting) I 9 I (RectangleFigure), I / | (el
Client Imager RectangleFigure CompositeFigur | Imager |
Imagin |) (Imaging) £ Imagin
:(g:g) | % Figure CSuccessor (arent {TETE) |
Image o RectangleFigure Figure Chain Figure Hierarch 1
I g | : gleFigure), | (Figi) (Figui . i y), | mage |
L Image 2 A Client bserver Image , |
I (Imaging) I o (Polylining) Int. Fig. Observer; | | (Imaging)
c
c
5 I
| Font I | | Font
Client | |
| Font < (ClassFigure) - Font
| (Texting) ’ L I - ClassFigure RootFigure (Texting) -— |
I & Client Client |
| Polygon I (RectangleFigure) A\ (Texting) | Polygon |
I Polygon - I Figure - N Polygon
> ini !‘ ClassFi RootClient = |
Polylinin (ClassFigure) ootClien
I {Palylining) 1 13 @ (FigureHierarchy) | RCining)

Limitations of Open Role Instantiation

Prof. Uwe ABmann, Design Patterns and Frameworks

=

11.2 Framework Hook Patterns

» [Riehle/Gross] role-based framework instantiation relies on simple
role binding, with role constraints

» Role binding for framework instantiation and merging can be even
more elaborated

15 @ Design Patterns and Frameworks, © Prof. Uwe ARmann 16

Pree's Framework Hook Patterns
(Template&Hook Role Models)

T&H Patterns and Standard Patterns

Prof. Uwe ARmann, Design Patterns and Frameworks

O

» In Pree's work, framework hooks are characterized by design
patterns (framework hook patterns)
= They describe the roles of classes on the border of the framework
= The framework hook pattern determines the way how the classes interact
with each other at the border of the framework
» A framework variation point is characterized with a Template&Hook
conceptual pattern
= Pree called this a T&H metapattern, we call this a T&H role model

» AT&H role model has 2 parts:
= Atemplate class (or template role type), which gives the skeleton
algorithm of the framework: Fix, grasps commonalities
= A hook class, which can be exchanged (or: a hook role type which can be
bound to a client class): Variable, even extensible, grasps variability and
extension

Fixed Part | Template Flexible Part, Variation Point

17

T&H in Standard Design Patterns

» A TH-role model overlays another pattern (hence Pree called it a
metapattern)
= The template part fixes parts of the pattern
= The hook part keeps parts of the pattern variable, i.e., open for binding.

| Fixed Part, Framework |

Template

| Flexible Part, Variation Point |

Prof. Uwe ABmann, Design Patterns and Frameworks

O

[

|

|

I 7 |
| . |
|

|

\

Observer

Subject i

I
[
I Role\mapping |
f |
| |

18

T&H in Framework Hook Patterns

Prof. Uwe ABmann, Design Patterns and Frameworks

=

» Subject and Observer can vary; nothing is fixed
= SortingAlgorithm and AnimationEngine can be exchanged

Subject Pattern role model

/ \' Role mapping
\

/

SortingAlgorithm » AnimationEngine | Class model

19

Prof. Uwe ABmann, Design Patterns and Frameworks

» Subject can no longer vary; it is fixed

= SortingAlgorithm cannot be exchanged (exeption:
DimensionalClassHierarchies)

| Fixed Part | Plexible Part, Variation Point

| * Framework hook role
Template | Hook
I | |

model (T&H role
model) |

[|
/ | \ |

I

/ | | \ |
1
|

|
I
| Subject | > Pattern roje model
I
I
I
I

SortingAlgorithm r—| AnimationEngine

Cla§s model

Metapatterns are Special Role Models

Why T&H Patterns Add More to
Standard Patterns

Prof. Uwe ARmann, Design Patterns and Frameworks

&

» Due to the Riehle-Gross Law, we know that metapatterns are role

models that overlay the role models of design patterns

= Metapatterns are very general role models that can be mixed into every
design pattern

= As design patterns describe application models, metapatterns describe
design patterns

» In [Pree], roles are not considered. Pree has only hook classes and

hook methods

» Here, we combine [Pree] and [Riehle/Gross]

21

Framework Hook Patterns

Prof. Uwe ABmann, Design Patterns and Frameworks

» |If a metapattern is overlayed to a role model of a design pattern, it
adds commonality/variability knowledge
= |t describes a framework variation point
= The template part characterizes the framework's fixed parts
= The hook part characterizes the framework's variation point
» Hence we call a design pattern with metapattern information
framework hook pattern

I~
]/G)

T&H Pattern
(Metapattern)

Framework
Hook Pattern

Standard
Design Pattern

22

Remark

Prof. Uwe ABmann, Design Patterns and Frameworks

=

» The template-hook role model

= adds more pragmatics to a standard design pattern, information about
commonality and variability. Hence, framework variation points are
described

= The template-hook role model adds more constraints to a standard
design pattern. Some things can no longer be exchanged
» Pree discovered 7 framework hook patterns, i.e., 7 template-hook
role models for framework hooks

= The template-hook role models describe the parameterization of the
framework by open role hooks

= They include Riehle's open role hooks, but add more variants
= There are even other ones (see next chapter)

23

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Note: we mean in the following:

= with the role Template, that the class of the role type belongs to the
framework

= with the role Hook, that the class of the role type belongs to the
application
= with the role TemplateM(ethod) that the role defines a template method,
calling a hook method HookM(ethod)
» Problem: Pree uses TemplateM/HookM, but calls them
Template/Hook

= and varies HookM classes, which is misleading because the variation is
actually in the framework and the fixed part in the application

24

Differences between Standard Patterns A Simple Notation for Framework Hook
ml| and Framework Hook Patterns ml| Patterns

» Standard design pattern » Framework hook pattern » Insight: A framework hook pattern does something like this

= Often, no template parts; = Fixed and variable part = It provides a design pattern at the border of a framework
everything flows (exception: = Elementary pattern and role = It combines a T&H role model with standard role models
TemplateClass and -Method) model
= Rich pattern and role model = Applicable only at the border of
£ = Applicable everywhere in the the framework, £
g framework = Oor at the border of a % F|Xed Part
s = No T&H metapattern overlayed component, i.e., in an = (framework)
2 “interface” 2 H
£ = One T&H metapattern £ o
5 overlayed & ~
8 8 ~
£ < Flexible Part, Variation Point
£ £ s
< < Fixed Part -
3 3 (framework) Phd
) i T|H|”
25 @ 26
T—H Connection Pattern
__ || 11.3 Delegation-Based -
=) Fram ework HOOk Patte rns » T&H connection pattern (T--H framework hook)

Design Patterns and Frameworks, © Prof. Uwe ARmann 27

Prof. Uwe ABmann, Design Patterns and Frameworks

&

= T and H classes are coupled by a template-hook role model, the hook is
a delegatee (the relation is called a mini-connector)

= Similar to Riehle/Gross open role type, but with aggregation instead of
association

n-T—H (flat extension)
T has n H parts, n is dynamic

1-T—H (open role hook)
Hpartof T
Mini-connector!

- /
— A Y

T<>—\/H / T

/
~ /
Tompiefo—o{ e) emmalo—{ o)

O—| H

TemplateClass with 1-T--H TemplateClass Runtime Scenario
[(]
» Attention: in this case, the Template role also carries the TemplateM
role (framework has template method, application has hook method)
F=— — — — 1 |Wni-EonFect_on Template object Hook object
_ Framework ~_ _ _ _ _ T T 7 7
. | e T , _Framework | _ _,° _ _ y
3 DataGenerato im CD Generatorimpl 5
% I Data data; e JHook g | / | '/
s | generate() . 2 generateData(Data s :TestDataGenerator | imp | :ExhaustiveGenerator
E E | Data data;
§ : imp.generateData(cljata) ZF § | generate() | generateData(Data)
: | d | |
| f - - = = = —.—— = = = = .
é | TestDataGenerator | ExhaustiveGeneratpl RandomGenerator § -
% I | generateData(Data) | | generateData(Data) E
£ | &
I I
I 29 30

Dimensional Hierarchies with 1-T--H
(Bridge with Template/Hook Constraint)

=

Internationalization as
Dimensional Class Hierarchy with 1-T--H

Implementation B
... hookObject.hookMethod

-

the templateMethod should
fulfill a contract!

templateMethod fulfills the contract
that all content of the page has

... layout fromleft to right
language.getText()

. (J
1§
> i I~ - — —
Al _Ter_nplfte _classes cannot be varied by user, but by the hook subclass " Framework |
Framework | T
II— —_——— = — = = = — —h _kObl t | LayoutAlgorith Template langudge Hook }guage
TemplateClas: 00kDbled w HookClass
| P Template | { Hook | layoutPage() e} | getText()
) templateMethod (> | ‘ hookMethod() | ~layout from Ieft fo righ |
= : | language.getText() |
§ ; I ... layout...
gl hookObject.hookMethod(| | |
E | | |
%' MoreC t NMoreC t || MoreConcrete MoreConcrete I English (GB) Chinese
5 Tc:rr‘e | on;:-\re e Tt:rrlelon;re e ConcreteHookClassA| ConcreteHookClassB | TemplateA TemplateB |
¢l TemplateA | | Template '
o
gl templateMethod()? templateMethod(}ID hookMethod() hookMethod() ! layoutPage() Q layoutPage() Q | getText() getText()
£ T T 1 I
2| ! ! — ' |
§| Implementation A ; | i.a.r:gz:;te ggg;g(r;t toleft : |
5 L hookObject.hookMethod(); :‘ Attention: To be a template class, I layout... 5 In the template class, the
i | |
| I
!

(4

—_— — —

31

... layout... been layouted. 32

Prof. Uwe ARmann, Design Patterns and Frameworks

&

Internationalization as Multiple Internationalization as
Dimensional Class Hierarchy with 1-T--H ml| Dimensional Class Hierarchy with n-T--H
| _Framework | _ _ [Framework | _ _ _ _ _ _

iayout from left to righ
getText() for I in languages |
layout(l.getText())

» may be abbreviated to:

| LayoutAlgorith{ Tomplate 'a"g“algei[Hook)_anguage
| *
LayoutAlgorith(Template languagel” ook WLanguage : layoutPage() ~ © | |getText()
layoutPage() |
|
|
|
|

MoreConcrete MoreConcrete . .
_— — — = — English (GB) Chinese
-
Framework | TemplateA TemplateB
getText() getText()

I 1

... layout from left to right

for I in languages

LayoutAlgorithm | Language
layout(l.getText())

In the template class, the
templateMethod fulfills the contract
that all content of the page has

= = — — — WS 1 layoutPage() ¢ layoutPage() ¢

... layout from right to left
for | in languages

_ —_— — — ——

.
r

Prof. Uwe ABmann, Design Patterns and Frameworks

=

- - - 4 33 layout(l.getText()) J been layouted. 34
Multiple Internationalization as Multiple Internationalization as
Dimensional Class Hierarchy with n-T--H ml| N-T—H Dimensional Hierarchy
» n-T—H is based on *-Bridge pattern B vl
. o o _ Framework , _ _
» This framework hook allows for multiple internationalized texts || 1
= An application can layout several languages at the same time | |
» The layout algorithm can l?e couplled V\(ith Fiifferent languages that use | LayoutAlgorith(Template languages, Hook |Language
the same layout (multiple internationalization) | *
» However, mixin of different layout languages freely with languages is | layoutPage() | getText()
impossible! | |
» Here, you can see the power of the T—H concept:]
* 1-T-H:dynamic variability _
= n-T—H: dynamic extension (flat, non-recursive) Framework

______J__.l

I
LayoutAlgorithm | - Language

Prof. Uwe ABmann, Design Paﬁenr

—_— e —

35 _— e _ — - = = 4 36

&

Observer Runtime Scenario: Several
Observer as n-T—H of a Framework . . .
o ml| Visualizers in Parallel

e | —
Framework |

[
I
| | Subject Template observers Observer Template object Hook objects
| register(Observer) | update () [“Framework _J 4
[unregister(Observer)) for all b in observers { | ¢ |_ e LSS
| notify() O -1 b.update () | g | / |
| } | 3 :SortingAlgorithm | :TextVisualizer
/ \ 5o >

| | § | registgr(Observer) update()
| | | ConcreteObserver T unr_?glster(Observer) |

; Subject g | notify() :HtmlVisualizer
| | ConcreteSubject I update () o-|-| Observerstate = 8 getState() | N

Subject.qetState() 5 | setState() | update()
| | getState() O, | [Observerstate g
| | setState() \ | i Lo o ! \| :JDKVisualizer
| SubjectState | «
| return SubjectState | update()
s | 37 @ 38
Observer-based Extensible
Observer
ml| Frameworks ml
R L —— » The Observer pattern is used for extensibility
— = = B » With T&H, it becomes clear that Observers are a perfect way to
| achieve product lines with new feature extensions:

= Model a critical template algorithm as Subject (template of the n-T--H)

SortingAlgorithp- o Visualizer
Template | visvalzerst ook = Model an extension as a new Observer (hook of the n-T--H)

Y

;I_ Framework
I
I
I
I
I

- T 7 71

SortingAlgorithm| « Visualizer

Prof. Uwe ABmann, Design Patterns and Frameworks

Prof. Uwe ABmann, Design Pattenr

Il’ Framework
[
[
[
[

- - - — — - — 4 39 40

=
&

Bridge Frameworks Have

T—H Hooks Bridge Framework Runtime Scenario

» Every dimension corresponds to a T—H hook
» Bridges, Strategy, Adapter can be used as mini-connectors

Template object Hook objects

Core Facet: Animal Domain _ [T /
2 [1T1 | [12] [713 | Mini-connectorl , '__Framework | _ _, _ _ _
ST RX - B ¥ |
3))) 7) — < :Animal | :AnimalGroup
5 First facet dimension (e.g., Group) - 5| i >
: H1 : ! g | |
] | | g | .| :AnimalAge
g Second facet (e.g., Age) ‘ ’ £ | |
: / P I |
g H2 \ / % Lo «| :AnimalNurture
Third facet (e.g., Nurture) I P
O a 42
Bridge Framework Runtime Scenario, Extensible Bridge Framework with n-
ml| with dimension 1 in Framework wll T--H
" Framework |
Template object Hook objects I’ _ rramework , _ _ 1
————— /
Framework | !
- SR | . . el |
| '/ | BusinessObjectCor: |
£ | :Animal :AnimalGroup | g | " Framework |
: O : Templat | ! |
£ [g empiate
£ | | S | | |
e | | EoL - = T— — - | |
oA g :
5 — - - - - - - — — — — — - - - - - — — - 5 * | extensions ! Eoelibiect !
8 2\ . 8 — _
g :AnimalAge g - Extension *
£ £
3 2 BusinessObjectExtension
2 N 2
& :AnimalNurture &
43 44

=

&

n-T—H Makes Bridge Frameworks T—H Patterns Result in Blackbox
m|| Extensible ml| Frameworks
» An n-T—H framework hook makes dimensional bridge frameworks » The main relation between T and H is delegation.
extensible with new dimensions at run time » Hence, when overriding and instantiating H, the framework is
» New extensions in new dimensions can be added and removed on- untouched (blackbox framework)
the-fly » 1-T—H gives variability
. Applications ., > n-T—H gives extensibility
g = Business applications g
& = System software 5
H - 3-and n-tier architectures g
45 @ 46
H<=T Recursive Connection
__ || 11.4 The H<=T Recursion -
hﬁ i 1 =
=) Meta patte n » T&H recursive connection pattern (H<=T framework hook, deep
extension pattern)
= with 1- or n-ObjectRecursion
= H-class inherits from T; T is part of H
= His decorator of T (1:1) or a composed class in a composite pattern (1:n)
£
% H<=T (deep list extension) n-H<=T (deep graph extension)
2 T part of H Hhas n T parts
g H inherit from T T inherit from H
_%, 1-ObjectRecursion/Decorator n-ObjectRecursion/Composite
& n
: T L T L
(a2 rene
Design Patterns and Frameworks, © Prof. Uwe ARmann 47 @ 48

— —e— — — — — ——

of |Uwe ARmann

P

3 Decorator as Framework Hook
Decorator as 1-H<=T
- ml| Pattern
» All decorator objects have to conform to the template class of the » Lists extend the framework
Decorator pattern L
e — - T T < ~Mink-connector Template object
Record T ~ ~ p]
‘ Template | mimiced A — = = —
access() » | _Framework , -
& .‘i ‘/I
? [l :TransientRecord !
TransientRecord | PersistentDecorator i | Hook objects
access() || access(). . = = g !
| mimiced.access() i | =
T T L] | :PersistentRecord > | :PersistentRecord
‘§ ________
PersistentRead PersistentRecord é
OnlyRecord 0 if (lloaded()) load(); 2
£ if (lloaded|()) load()f —~ | access() aceesst) = = T === super.access(); &
;pr‘e’ﬁaicé)s’sg? (boolean loaded() boolean loaded() if (modified()) dump():

load()

boolean modified()

load()
@ dump() 49 @ 50
. a Composite as Framework Hook
Composite as n-H<=T
0 ol Pattern
» Composite is as instance of n-ObjectRecursion and n-H<=T » Part/Whole hierarchies extend the framework
[~ ~ Fameok | Template object
e ——— — = — 1 o
> Component [| Framework ,
é | commonOperation() | 4 A Hook objects
@ { »
g | add(Component) | Picture Ll
= | remove(Component) | i |
getType(int) (L :
5 | IETRELE chidObjects] |
- -F-—--- - ! | - * >
& j | :Picture :Line :Rectangle
: o - / \
< (o]0} <
2 Leaf Composite ; 2 / \ N
2 : i O------ 2 -Pi i .
commonOperation() ggg‘(fgg"m?)gi;a;'gn() for all g in childObjects :Picture :Line :Rectangle
remove(Component) g.commonOperation()
@ getType(int) 51 @ 52

Production Data Systems Production Data Systems
3 |
» Piece lists are part/whole hierarchies of technical artefacts in » Piece lists are part/whole hierarchies of technical artefacts in
production production
» The roles of a composite form the hook of the framework » Example: SAP PDM module, IBM San Francisco
Template object Hook objects
Template class Composed [Framewok ,
7 Car 1 /I
—_ — = = u Vg
| Framework , _/ 1 :PieceList Lar
! s
1

Prof. Uwe ARmann, Design Patterns and Frameworks

ComposedPiece

<‘_

CarPart

AtomicPiece

AtomicCarPart

AluannnDAn

SN

.

:Chassis

:Motor

:Window

<‘_

Atomic

53

Prof. Uwe

=

i

:Roof :Cabin

/ \\;
:Door
54

Bridge Frameworks Can Be Done with
H<=T (Bridge H<=T Framework)

Prof. Uwe ABmann, Design Patterns and Frameworks

=

» H<=T framework hooks result in frameworks between black-box and
white-box

» Mini-connector H<=T is used

» Attention: The class with the Template role carries the HookM role,
the class with the Hook role carries TemplateM role

= The template (fixed) class in the framework is called from the hook class
in the application (which carries the template method role)

= Pree calls the pattern T<=H, but means TemplateM <= HookM !!

55

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Adimension may correspond to a H<=T hook of the core framework
» Composite, Decorator, Bureaucracy can be used as mini-connectors

Core Facet: Animal Domain

L1112] |
AN ZN

IMﬁi-&)anctEq
| Decorator
-—

First facet dimensign ‘ —
(e.g., Group) | <>
H1

Second facet (e.g., Age)

H2

Third facet (e.g., Nurture)

56

Bridge Frameworks Can Be Done with

m|| H<=T (Bridge H<=T Framework)
 Composite a5 min-conmector I 11.5 The TH Unification Metapattern
2 Core Facet: Core Domalin | | | |Mﬁi-c5nrﬁct3r|
: | 1] [T2 T i
SETAN P Composium _
= L \ _ =
First facet dimension | -
< |
F H1 ! !
§ | |
%Second facet > ‘ !
5 H2 /
& \ /
7
Third facet | H3 |
@ 57 Design Patterns and Frameworks, © Prof. Uwe ARmann 58
TH ChainOfResponsibility as 1-TH
(3 |
» Unified T&H pattern (TH framework hook) » A Chain is recursing on the abstract super class, i.e.,
= T-class == H-class = All classes in the inheritance tree know they hide some other class
(unlike the ObjectRecursion)
Successor
_ _ T Framework
TH 1-TH (deep list extension) n-TH (deep tree - -+t —
T== T== extension) |
TH part of TH TH part of TH T== Client
“funny” Decorator “funny” Decorator TH has n TH parts |
“funny” 1:n-Composite I

TH TH <>__] TH <>__]

n

ConcreteWorker1 ConcreteWorker2

rof. Uwe ABmann, Design Patterns and Frameworks
Prof. Uwe ABmann, Design Patterns and Frameworks

Work() Work()

Template K > El'emplau%:'p(Hook) El'emplate §->
3 . @ 60

Event Handlers

Event Handlers: Object Diagram

Successor

- -
L Framework

Client

Logger SecurityHandler

Prof. Uwe ARmann, Design Patterns and Frameworks

handleEvent() handleEvent()

61

&

Why TH Unification Makes Sense

Prof. Uwe ABmann, Design Patterns and Frameworks

=

Template object

\ o - - - -
AN L __Framework
N |_ - - -
> |
Client :Authentication |
handleEvent() |
/ . 4
£
:Logger :SecurityHandler|
:Personalizer|
Hook objects handleEvent() handleEvent() “
handleEvent()
62

Bridge Frameworks Can Be Done with
TH (Bridge TH Framework)

» If a hook class is the same as the template class,
= Some methods are template methods, others are hook methods
= Together with the template, the hooks can be exchanged
» Template methods in the template class are not abstract, but
concrete
= They are build from referencing hook methods of the hook class
» As we saw in the last chapter, merging role types in one class can
make an application faster, but less flexible

Prof. Uwe ABmann, Design Patterns and Frameworks

63

=

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» A dimension may correspond to a H<=T hook
» Chain can be used as mini-connector

Core Facet: Animal Domain

T1 T2 T3
<& <& &
First facet dimen| H1
H2
H3
Second facet (e.g., Age)

Third facet (e.g., Nurture)

I
1

64

11.6 The H<T Whitebox Inheritance =i
Metapattern

O

Design Patterns and Frameworks, © Prof. Uwe ARmann

Whitebox Framework with H<T
Framework Hook

65

H<T

Prof. Uwe ABmann, Design Patterns and Frameworks

=

Prof. Uwe ABmann, Design Patterns and Frameworks

=

» Also TemplateMethod can be applied (HookM <= TemplateM)

Client

—_—_ —_ —

Framework

I_____. _______

Worker

I
I
| Work()
I
I

Template

ConcreteWorker1

ConcreteWorker2

Work()

Work()

» If H inherits from T, H<T framework port (whitebox framework pattern)

= Whitebox reuse of T in the framework, while deriving H in the application
= (not of Pree, earlier known)

» If a hook class inherits from a template class, it inherits the skeleton

algorithm
= Template methods in the template class are not abstract, but concrete
= They are build from referencing hook methods of the hook class

» A H<T framework hook means whitebox framework

HeT T K| H

66

Summary of
T&H Patterns and Framework
Hooks

Design Patterns and Frameworks, © Prof. Uwe ARmann 68

Prof. Uwe ABmann, Design Patterns and Frameworks

=)

Cardinalities and Extensibility of
Framework Hook Patterns
Framework Hooks =l
Inheritance———————Unification
» 1:1-Tand H correspond 1:1 H<T
= Thas 1H part H inherit from T T"l_
= Hooks are not extensible at runtime whitebox T==
= 1:1 T&H framework hooks should be used when the behavior of the Aggregation/Association T <—| H TH
framework should be varied, but not extended at the variation point
£ Because variability patterns form the mini-connector between T and H, derived £ - <= q R
g from 1-ObjectRecursion E L p:Irt of T -|I-| pa-r!-t of H Recursion :1|- IE
“g » 1:n—Tand H correspond 1:n Lg T is core class of H inherit from T TH part of TH
¢ = ThasnH parts g complex object Decorator “funny” Decorator
& = Hooks are extensible, also dynamically £ —
g s | T K> H T |4 H TH
8 = 1:n T&H framework hooks should be used when the behavior of the 8 <>—_l
] framework should not only be varied, but also extended dynamically at £ _
s the variation point 5 nhT-H n-H<=T n-TH
B . s ThasnH parts H has n T parts T==
H Because extensibility patterns form the mini-connector between T and H, 2 Ti | f H inherit f T
8 derived from n-ObjectRecursion 3 IS core class o inherit from TH has n TH parts _
& & complex object 1:n-Deﬁ,orator “funny” 1:n-Composite
n ——<
O o o] [T L e
Deriving a Simple Notation for Short-Hand Notation for Framework
Framework Hooks ml| HooOks
H<T TH H<T TH
T H ™ O] T H TH

1-T-H H<=T 1-TH ; 1-T--H H<=T 1-TH
T K> H T H T |H 1 H TH 1
TH | 5
1
n-T--H n-H<=T n-TH 5 nT-H n-H<=T n-TH
2

71 72

&

@)

11.7 T&H in Frameworks

O

Design Patterns and Frameworks, © Prof. Uwe ARmann 73

Pree's First Law of Framework
Instantiation

Advantages of T&H Framework Hook
Patterns

Prof. Uwe ABmann, Design Patterns and Frameworks

=

» One big mess with frameworks is the trustworthy framework
instantiation problem:

= |If a framework is instantiated by inheritance (whitebox) or delegation
(blackbox), illegal combinations of parameters appear

= Applications may not run stable

» Framework Hook Patterns describe much more precise how the
variation points of a framework should be instantiated

= They allow for determining whether the framework is varied or extended
in a product line

74

Pree's Second Law of Framework
Instantiation

» Variability-based framework hooks define framework variation points

= |If you want to constrain the uses of a framework to a fixed set of
variations, use variability patterns for framework hooks
(1-TH patterns)

Prof. Uwe ABmann, Design Patterns and Frameworks

=

If a framework hook is based on a variability pattern,

the framework is varied, but NOT extended

75

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Extensibility-based framework hooks define framework extension
points

= If you do not want to constrain the uses of a framework to a fixed set of
variations, use extensibility patterns for framework hooks (n-TH patterns)

If a framework hook is based on an extensibility pattern,

the framework is extended, but not varied

76

7N\

A Multi-lingual dimensional Data ;

Layout ‘Language

G e n e ra tO r l:“ produceLayout()l] /laroduceLayout()

Prof. Uwe ARmann, Design Patterns and Frameworks

&

» One framework hook may have several bridge dimensions | -~ \
ayou >| GeneratorStrategy
OMC generateData(Data) ~
DataGenerator
[=———
,Eerﬂatiﬁa_meﬂrk_l_ _____________ | generate() Of .. data

I | Y
| § imp.generateData(deE#)
| | :'é ExhaustiveGenerator] RandomGenerator
I
| RN Ve \ /7 \ | § gi\era\teData(Data) generateDa}a(Eeta)
l ml \ LoF \ hoo
[DataGenera;tor Laymit Data | TestDataGenerator | | ReportGenerator . |'Data . « | Grammar
| | _| — 1
\ ’ Data createData() bata createData(),
uagex* * enerate enerate M
Data | I Lang pg f Grammar | g 0 9 9 0 9 - X I
T 1 1
GenerationStrategy \ \ 5 ot : | \
ata = I
o N\ \r E parseTestDataGrammar(); ': \—r
g imp.generateData(data); !
T T data = TestData ReportData
Var!aple _ Extens!ble _ readFromForm();
Variation Point Extension Points 77 @ imp.generateData(data); | | TestData createData()| ReportData createD4a() 78

Framework Instantiation Market A Multi-lingual Business Framework

Prof. Uwe ABmann, Design Patterns and Frameworks

=

» Today, frameworks are the most important software technology for
product lines in large companies
» Instantiating big frameworks is very hard
= Requires special instantiation consultancy, which is a big market
= SAP Germany has a marker for instantiation companies of their

framework! §
= If you go to a big company, teach them framework instantiation patterns! fgf [Business Framework | Product

: SR — — — —p - =~ — -]
2 | Piecelist I
3 I I
. |
i | Business Object Layout Workflow I
> — Scheduling | _ _ _ __
: Extensions Language Scheduling

79 80

&

A Business Framework with Several

ml| Languages Simultaneously -l OpenOffice

» Problem: business frameworks have an enormous number of > Variabilities
framework hooks Type of program (word, slides, drawings, calc, ...)
Structured documents (Composite pattern)

Embeddings of all document types into other document types possible

Language
GUI
% _____ Product % Visible toolbar (visibility, position) of MainToolbar, FunctionBar, ObjectBar, ColorBar,
§ [_Busiﬂess_Framewzk [R E, OptionBar, PresentationBar, HyperlinkBar
& | . . v I £ Views, such as StandardView, OutlineView, HandoutView
o | Piecelist | °
£ I g ™ Office Framework Document .
3 s —_—— = = = % S
g | : £ | Editor |
d | : | |
5 I
5 | Business Object Layout Workflow | 5 | |
E - /: _____ 2 Editor Layout DocumentLayout| | SpellChecker |
= Extensions * Langua&Q‘ Schedulir@: = _ v _
a & DimensionaLT — »| Toolbars * Language Language
IFramework View *
@ 81 @J"ﬂ_ _ Language | 82
GEBOS Banking Layered Framework Relations Extensibility Patterns
[(]
» If a template class of a framework hook has several hook classes —
(e.g., as an n-Bridge), then the Framework becomes layered Specialized Patterns Proxy Visitor
S e
_____ Bridge n-Brigde

[. | T |ObjectRecursion
[TechnicalKernel

Chai
an Observer

@
m
[0y}
o
(/)
m
o
3
@
2
o
=1
WI
4—}
<I-_" I

-~

Composite

Design Patterns and Frameworks

Framework Patterns Connection
T--H Pattern

Recursive
H<=T Pattern

I
|
1 | § | Dimensional
|] I § | ClassHierarchies
|1g ,
N Banking Objects Banking Values Folders | | § I ‘?‘
- I - — 4 = |
Layered li’ — :::tlil:,ensss * ValueHierarchy TechnicalFolders | £ TH Pattern |
Fgamework| = — — - - 1 | I
| ST_H | Application = 3 v
r—kg ~'— <+ | knowledge | (- \i

84

D) 83

Summary

The End

Prof. Uwe ARmann, Design Patterns and Frameworks

&

» When overlayed with a T--H metapattern, a design pattern becomes
a framework hook pattern for the interface of a framework

» These are mini-connectors between a framework and its application
classes

= More flexible that just generic classes (generic frameworks) or delegation
(blackbox) or inheritance (whitebox)

» The framework hook patterns determine very precisely how a
framework is to be instantiated

» There are more kinds of dimensional frameworks

= Dimensional T—H (n-Bridge LF), H<=T, TH, T>H dimensional
frameworks

» 1-T&H framework hook patterns can be used for variability of the
framework

» n-T&H for extensibility.

85

Prof. Uwe ABmann, Design Patterns and Frameworks

=

86

