

## 11. Frameworks and Patterns - Framework Variation Patterns

Prof. Dr. U. Aßmann
Software Engineering
Faculty of Informatics
Dresden University of
Technology
Version 11-0.2, 11/28/11

- 1. Open Role Framework Hooks
- 2. Framework Hook Patterns
- 3. Delegation-Based Framework Hook Patterns
- Recursion-Based Framework Hook Patterns
- Unification-Based
- Inheritance-Based
- 7. T&H in Frameworks



### Literature (To Be Read)

- W. Pree. Framework Development and Reuse Support. In Visual Object-Oriented Programming, Manning Publishing Co., editors M. M. Burnett and A. Goldberg and T. G. Lewis, Pp, 253-268, 1995. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.4711
- D. Bäumer, G. Gryczan, C. Lilienthal, D. Riehle, H. Züllighoven. Framework Development for Large Systems. Communications of the ACM 40(10), Oct. 1997. http://dirkriehle.com/computer-science/research/1997/cacm-1997-frame



## **Secondary Literature**

- W. Pree. Design Patterns for Object-oriented Software Development.
   Addison-Wesley 1995. Unfortunately out of print.
- M. Fontoura, W. Pree, B. Rumpe. The UML Profile for Framework Architectures. Addison-Wesley, Object Technology Series. 2002.



#### Goal

- Studying variabilities of frameworks with the T&H concept
- Introducing different types of hooks for frameworks and components (TH patterns)
- Understand framework hook patterns
  - The box-like notation for frameworks and framework hooks patterns
- More types of dimensional frameworks



#### Patterns and Frameworks

- Historically, design patterns were discovered during framework development
  - Smalltalk MVC [Goldberg, Reenskaug]
  - ET++ [Gamma]
  - Interviews [Vlissides]
- Design patterns are building blocks of frameworks
  - Framework developers vary and extend classes of the framework
- Design patterns are for the making of the products of a product line architecture
  - Application developers vary and extend classes of the framework
  - Variability design patterns can be used as framework variation points (framework variation hooks)
  - Extensibility design patterns can be used as framework extension points (framework extension hooks)





# 11.1 Framework Instantiation and Merging With Open Roles



# Framework Instantiation with Open Roles (Role Hot Spots)

- The most simple form of framework instantiation is Riehle/Gross' open role instantiation
  - Here, frameworks are class models with "open" role hot spots
  - Open role hooks (free, unbound abilities) are role types that have not yet been assigned to classes
  - The hot spots form an integration repertoire (integration role type set)
    - the set of role types, by which the framework can be integrated into an application
    - Aka framework hooks, framework variation points
- A framework is instantiated by binding its integration repertoire to classes
  - The abilities are bound, role constraints have to be respected
- Hence, role models play the bridge between a framework and its clients



# Remember: The Partial Figure Model, a Standard Class-Ability Model





# The Figure Framework, Partially Instantiated



# The Figure Framework, Fully Instantiated to an Editor





### Merging of Frameworks

- Two frameworks are merged by binding the integration abilities of A to classes of B
  - Role constraints have to be respected
- Hence, role models play the bridge between different frameworks
  - Or layers of frameworks



#### A Graphics Framework







#### Limitations of Open Role Instantiation

- [Riehle/Gross] role-based framework instantiation relies on simple role binding, with role constraints
- Role binding for framework instantiation and merging can be even more elaborated





## 11.2 Framework Hook Patterns



# Pree's Framework Hook Patterns (Template&Hook Role Models)

- In Pree's work, framework hooks are characterized by design patterns (framework hook patterns)
  - They describe the roles of classes on the border of the framework
  - The framework hook pattern determines the way how the classes interact with each other at the border of the framework
- A framework variation point is characterized with a *Template&Hook conceptual pattern* 
  - Pree called this a T&H metapattern, we call this a T&H role model
- A T&H role model has 2 parts:
  - A template class (or template role type), which gives the skeleton algorithm of the framework: Fix, grasps commonalities
  - A hook class, which can be exchanged (or: a hook role type which can be bound to a client class): Variable, even extensible, grasps variability and extension





## **T&H Patterns and Standard Patterns**

- A TH-role model overlays another pattern (hence Pree called it a metapattern)
  - The template part fixes parts of the pattern
  - The hook part keeps parts of the pattern variable, i.e., open for binding.





## T&H in Standard Design Patterns

- Subject and Observer can vary; nothing is fixed
  - SortingAlgorithm and AnimationEngine can be exchanged





#### T&H in Framework Hook Patterns

- Subject can no longer vary; it is fixed
  - SortingAlgorithm cannot be exchanged (exeption: DimensionalClassHierarchies)





#### Metapatterns are Special Role Models

- Due to the Riehle-Gross Law, we know that metapatterns are role models that overlay the role models of design patterns
  - Metapatterns are very general role models that can be mixed into every design pattern
  - As design patterns describe application models, metapatterns describe design patterns
- In [Pree], roles are not considered. Pree has only hook classes and hook methods
- Here, we combine [Pree] and [Riehle/Gross]



# Why T&H Patterns Add More to Standard Patterns

- If a metapattern is overlayed to a role model of a design pattern, it adds commonality/variability knowledge
  - It describes a framework variation point
  - The template part characterizes the framework's fixed parts
  - The hook part characterizes the framework's variation point
- Hence we call a design pattern with metapattern information framework hook pattern





## Framework Hook Patterns

- The template-hook role model
  - adds more pragmatics to a standard design pattern, information about commonality and variability. Hence, framework variation points are described
  - The template-hook role model adds more constraints to a standard design pattern. Some things can no longer be exchanged
- Pree discovered 7 framework hook patterns, i.e., 7 template-hook role models for framework hooks
  - The template-hook role models describe the parameterization of the framework by open role hooks
  - They include Riehle's open role hooks, but add more variants
  - There are even other ones (see next chapter)



#### Remark

- Note: we mean in the following:
  - with the role *Template*, that the class of the role type belongs to the framework
  - with the role Hook, that the class of the role type belongs to the application
  - with the role TemplateM(ethod) that the role defines a template method, calling a hook method HookM(ethod)
- Problem: Pree uses TemplateM/HookM, but calls them Template/Hook
  - and varies HookM classes, which is misleading because the variation is actually in the framework and the fixed part in the application



# Differences between Standard Patterns and Framework Hook Patterns

- Standard design pattern
  - Often, no template parts;
     everything flows (exception:
     TemplateClass and -Method)
  - Rich pattern and role model
  - Applicable everywhere in the framework
  - No T&H metapattern overlayed

- Framework hook pattern
  - Fixed and variable part
  - Elementary pattern and role model
  - Applicable only at the border of the framework,
  - or at the border of a component, i.e., in an "interface"
  - One T&H metapattern overlayed



## A Simple Notation for Framework Hook Patterns

- Insight: A framework hook pattern does something like this
  - It provides a design pattern at the border of a framework
  - It combines a T&H role model with standard role models







# 11.3 Delegation-Based Framework Hook Patterns



## T—H Connection Pattern

- T&H connection pattern (T--H framework hook)
  - T and H classes are coupled by a template-hook role model, the hook is a delegatee (the relation is called a mini-connector)
  - Similar to Riehle/Gross open role type, but with aggregation instead of association





#### TemplateClass with 1-T--H

 Attention: in this case, the Template role also carries the TemplateM role (framework has template method, application has hook method)





# Prof. Uwe Aßmann, Design Patterns and Frameworks

## TemplateClass Runtime Scenario





# Dimensional Hierarchies with 1-T--H (Bridge with Template/Hook Constraint)

► Template classes cannot be varied by user, but by the hook subclass



#### Internationalization as Dimensional Class Hierarchy with 1-T--H



#### Internationalization as Dimensional Class Hierarchy with 1-T--H



may be abbreviated to:





#### Multiple Internationalization as Dimensional Class Hierarchy with n-T--H



#### Multiple Internationalization as Dimensional Class Hierarchy with n-T--H

- n-T—H is based on \*-Bridge pattern
- This framework hook allows for multiple internationalized texts
  - An application can layout several languages at the same time
- The layout algorithm can be coupled with different languages that use the same layout (multiple internationalization)
- However, mixin of different layout languages freely with languages is impossible!
- Here, you can see the power of the T—H concept:
  - 1-T--H: dynamic variability
  - n-T—H: dynamic extension (flat, non-recursive)



## Multiple Internationalization as n-T—H Dimensional Hierarchy





### Observer as n-T—H of a Framework



### Observer Runtime Scenario: Several Visualizers in Parallel





Prof. Uwe Aßmann, Design Patterns and Frameworks

### Observer-based Extensible Frameworks







#### Observer

- The Observer pattern is used for extensibility
- With T&H, it becomes clear that Observers are a perfect way to achieve product lines with new feature extensions:
  - Model a critical template algorithm as Subject (template of the n-T--H)
  - Model an extension as a new Observer (hook of the n-T--H)



### Bridge Frameworks Have T—H Hooks

- Every dimension corresponds to a T—H hook
- Bridges, Strategy, Adapter can be used as mini-connectors





### Bridge Framework Runtime Scenario





# Prof. Uwe Aßmann, Design Patterns and Frameworks

# Bridge Framework Runtime Scenario, with dimension 1 in Framework





#### Extensible Bridge Framework with n-T--H







### n-T—H Makes Bridge Frameworks Extensible

- An n-T—H framework hook makes dimensional bridge frameworks extensible with new dimensions at run time
- New extensions in new dimensions can be added and removed onthe-fly
- Applications
  - Business applications
  - System software
  - 3- and n-tier architectures



### T—H Patterns Result in Blackbox Frameworks

- The main relation between T and H is delegation.
- Hence, when overriding and instantiating H, the framework is untouched (blackbox framework)
- 1-T—H gives variability
- n-T—H gives extensibility





# 11.4 The H<=T Recursion Metapattern



### H<=T Recursive Connection

- T&H recursive connection pattern (H<=T framework hook, deep extension pattern)
  - with 1- or n-ObjectRecursion
  - H-class inherits from T; T is part of H
  - H is decorator of T (1:1) or a composed class in a composite pattern (1:n)

#### H<=T (deep list extension)

T part of H
H inherit from T
1-ObjectRecursion/Decorator





#### n-H<=T (deep graph extension)

H has n T parts
T inherit from H
n-ObjectRecursion/Composite







#### Decorator as 1-H<=T

All decorator objects have to conform to the template class of the Decorator pattern



# Decorator as Framework Hook Pattern

Lists extend the framework





### Composite as n-H<=T

Composite is as instance of n-ObjectRecursion and n-H<=T</p>





# Composite as Framework Hook Pattern

Part/Whole hierarchies extend the framework





### **Production Data Systems**

- Piece lists are part/whole hierarchies of technical artefacts in production
- The roles of a composite form the hook of the framework





#### **Production Data Systems**

- Piece lists are part/whole hierarchies of technical artefacts in production
- Example: SAP PDM module, IBM San Francisco





- H<=T framework hooks result in frameworks between black-box and white-box
- Mini-connector H<=T is used</p>
- Attention: The class with the Template role carries the HookM role, the class with the Hook role carries TemplateM role
  - The template (fixed) class in the framework is called from the hook class in the application (which carries the template method role)
  - Pree calls the pattern T<=H, but means TemplateM <= HookM !!</p>



# Bridge Frameworks Can Be Done with H<=T (Bridge H<=T Framework)

- A dimension may correspond to a H<=T hook of the core framework</p>
- Composite, Decorator, Bureaucracy can be used as mini-connectors





# Bridge Frameworks Can Be Done with H<=T (Bridge H<=T Framework)

Composite as mini-connector





### 11.5 The TH Unification Metapattern



- Unified T&H pattern (TH framework hook)
  - T-class == H-class

TH

T == H

TH part of TH

"funny" Decorator

TH

1-TH (deep list extension)

T == H

TH part of TH

"funny" Decorator



n-TH (deep tree extension)

T == H

TH has n TH parts

"funny" 1:n-Composite









### ChainOfResponsibility as 1-TH

- A Chain is recursing on the abstract super class, i.e.,
  - All classes in the inheritance tree know they hide some other class (unlike the ObjectRecursion)





### **Event Handlers**





### Event Handlers: Object Diagram





### Why TH Unification Makes Sense

- If a hook class is the same as the template class,
  - Some methods are template methods, others are hook methods
  - Together with the template, the hooks can be exchanged
- Template methods in the template class are not abstract, but concrete
  - They are build from referencing hook methods of the hook class
- As we saw in the last chapter, merging role types in one class can make an application faster, but less flexible



# Bridge Frameworks Can Be Done with TH (Bridge TH Framework)

- A dimension may correspond to a H<=T hook</p>
- Chain can be used as mini-connector







# 11.6 The H<T Whitebox Inheritance Metapattern





- If H inherits from T, H<T framework port (whitebox framework pattern)</p>
  - Whitebox reuse of T in the framework, while deriving H in the application
  - (not of Pree, earlier known)
- If a hook class inherits from a template class, it inherits the skeleton algorithm
  - Template methods in the template class are not abstract, but concrete
  - They are build from referencing hook methods of the hook class
- A H<T framework hook means whitebox framework</p>





# Whitebox Framework with H<T Framework Hook

Also TemplateMethod can be applied (HookM <= TemplateM)</li>







# Summary of T&H Patterns and Framework Hooks



# Cardinalities and Extensibility of Framework Hooks

- 1:1 T and H correspond 1:1
  - T has 1 H part
  - Hooks are not extensible at runtime
  - 1:1 T&H framework hooks should be used when the behavior of the framework should be varied, but not extended at the variation point
    - Because variability patterns form the mini-connector between T and H, derived from 1-ObjectRecursion
- 1:n T and H correspond 1:n
  - T has n H parts
  - Hooks are extensible, also dynamically
  - 1:n T&H framework hooks should be used when the behavior of the framework should not only be varied, but also extended dynamically at the variation point
    - Because extensibility patterns form the mini-connector between T and H, derived from n-ObjectRecursion



#### Framework Hook Patterns

#### **Inheritance**

#### **Unification**

#### H<T

H inherit from T whitebox



#### TH

T == H

TH

#### Aggregation/Association

#### **T--H**

H part of T T is core class of complex object



#### H<=T

Recursion

T part of H
H inherit from T
Decorator



#### 1-TH

T == H

TH part of TH "funny" Decorator



#### n-T--H

T has n H parts
T is core class of
complex object



#### n-H<=T

H has n T parts
H inherit from T
1:n-Decorator



#### n-TH

T == H

TH has n TH parts "funny" 1:n-Composite



# Deriving a Simple Notation for Framework Hooks



# Short-Hand Notation for Framework Hooks





### 11.7 T&H in Frameworks



## Advantages of T&H Framework Hook Patterns

- One big mess with frameworks is the trustworthy framework instantiation problem:
  - If a framework is instantiated by inheritance (whitebox) or delegation (blackbox), illegal combinations of parameters appear
  - Applications may not run stable
- Framework Hook Patterns describe much more precise how the variation points of a framework should be instantiated
  - They allow for determining whether the framework is varied or extended in a product line



## Pree's First Law of Framework Instantiation

- Variability-based framework hooks define framework variation points
  - If you want to constrain the uses of a framework to a fixed set of variations, use variability patterns for framework hooks (1-TH patterns)

If a framework hook is based on a variability pattern, the framework is varied, but NOT extended



### Pree's Second Law of Framework Instantiation

- Extensibility-based framework hooks define framework extension points
  - If you do not want to constrain the uses of a framework to a fixed set of variations, use extensibility patterns for framework hooks (n-TH patterns)

If a framework hook is based on an extensibility pattern, the framework is extended, but not varied



## A Multi-lingual dimensional Data Generator

One framework hook may have several bridge dimensions





Extensible
Extension Points





#### Framework Instantiation Market

- Today, frameworks are the most important software technology for product lines in large companies
- Instantiating big frameworks is very hard
  - Requires special instantiation consultancy, which is a big market
  - SAP Germany has a marker for instantiation companies of their framework!
  - If you go to a big company, teach them framework instantiation patterns!



#### A Multi-lingual Business Framework





# A Business Framework with Several Languages Simultaneously

 Problem: business frameworks have an enormous number of framework hooks





- **Variabilities** 
  - Type of program (word, slides, drawings, calc, ...)
    - Structured documents (Composite pattern)
    - Embeddings of all document types into other document types possible
  - Language
  - **GUI** 
    - Visible toolbar (visibility, position) of MainToolbar, FunctionBar, ObjectBar, ColorBar, OptionBar, PresentationBar, HyperlinkBar
    - Views, such as StandardView, OutlineView, HandoutView



Uwe Aßmann, Design Patterns and Frameworks Dimensional.

Framework

**s**⊓n-T--H

#### **GEBOS** Banking Layered Framework

If a template class of a framework hook has several hook classes (e.g., as an n-Bridge), then the Framework becomes layered





#### Relations Extensibility Patterns



#### Summary

- When overlayed with a T--H metapattern, a design pattern becomes a framework hook pattern for the interface of a framework
- These are mini-connectors between a framework and its application classes
  - More flexible that just generic classes (generic frameworks) or delegation (blackbox) or inheritance (whitebox)
- The framework hook patterns determine very precisely how a framework is to be instantiated
- There are more kinds of dimensional frameworks
  - Dimensional T—H (n-Bridge LF), H<=T, TH, T>H dimensional frameworks
- 1-T&H framework hook patterns can be used for variability of the framework
- n-T&H for extensibility.



### The End



