11. Frameworks and Patterns -
Framework Variation Patterns

Prof. Dr. U. ARmann 1. Open Role Framework Hooks
Software Engineering 2. Framework Hook Patterns
Faculty of Informatics 3. Delegation-Based Framework Hook
Dresden University of Patterns

Technology

4. Recursion-Based Framework Hook
Patterns

5. Unification-Based
6. Inheritance-Based

Version 11-0.2, 11/28/11

7. T&H in Frameworks

Design Patterns and Frameworks, © Prof. Uwe Allmann 1

Literature (To Be Read)

Prof. Uwe ARmann, Design Patterns and Frameworks

G

» W. Pree. Framework Development and Reuse Support. In Visual
Object-Oriented Programming, Manning Publishing Co., editors M. M.

Burnett and A. Goldberg and T. G. Lewis, Pp, 253-268, 1995.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.4711

» D. Baumer, G. Gryczan, C. Lilienthal, D. Riehle, H. Zullighoven.
Framework Development for Large Systems. Communications of the
ACM 40(10), Oct. 1997.
http://dirkriehle.com/computer-science/research/1997/cacm-1997-frame

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.4711
http://dirkriehle.com/computer-science/research/1997/cacm-1997-frameworks.html

Secondary Literature

Prof. Uwe ARmann, Design Patterns and Frameworks

G

» W. Pree. Design Patterns for Object-oriented Software Development.
Addison-Wesley 1995. Unfortunately out of print.

» M. Fontoura, W. Pree, B. Rumpe. The UML Profile for Framework
Architectures. Addison-Wesley, Object Technology Series. 2002.

Prof. Uwe ARmann, Design Patterns and Frameworks

G

Studying variabilities of frameworks with the T&H concept

Introducing different types of hooks for frameworks and components
(TH patterns)

Understand framework hook patterns
= The box-like notation for frameworks and framework hooks patterns

More types of dimensional frameworks

Patterns and Frameworks

» Historically, design patterns were discovered during framework
development

= Smalltalk MVC [Goldberg, Reenskaug]
= ET++ [Gammal]
= Interviews [Vlissides]

» Design patterns are building blocks of frameworks
= Framework developers vary and extend classes of the framework
» Design patterns are for the making of the products of a product line
architecture
= Application developers vary and extend classes of the framework

= Variability design patterns can be used as framework variation
points (framework variation hooks)

= Extensibility design patterns can be used as framework extension
points (framework extension hooks)

Prof. Uwe ARmann, Design Patterns and Frameworks

G

11.1 Framework Instantiation and
. Merging With Open Roles

Design Patterns and Frameworks, © Prof. Uwe Allmann 6

Prof. Uwe ARmann, Design Patterns and Frameworks

G

Framework Instantiation with Open
m|/| Roles (Role Hot Spots)

The most simple form of framework instantiation is Riehle/Gross'
open role instantiation

= Here, frameworks are class models with “open” role hot spots

= Open role hooks (free, unbound abilities) are role types that have not yet
been assigned to classes

» The hot spots form an integration repertoire (integration role type
set)

= the set of role types, by which the framework can be integrated
into an application

= Aka framework hooks, framework variation points
A framework is instantiated by binding its integration repertoire to
classes
= The abilities are bound, role constraints have to be respected

Hence, role models play the bridge between a framework and its
clients

Remember: The Partial Figure Model,
m|/| 2@ Standard Class-Ability Model

Figure

Figure
(Figure Hierarchy),

Client

(Figure Hierarchy) »
Observer Or—
(Figure Observer)

Partial class model for figure editor

Predecessor
(Figure Chain)

Client
(Graphics)

Child
(Figure Hierarchy)

ubject
Int. Fig. Observer

AN

|

RectangleFigure CompositeFi

gure

Client
(RectangleFigure)

Figure Successor
(RectangleFigure) (Figure Chain)

Parent
(Figure Hierarchy),

Observer
Int. Fig. Observer

AN

ClassFigure

RootFigure

Prof. Uwe ARmann, Design Patterns and Frameworks

Client
(ClassFigure)

(ClassFigure)

Graphics

Graphics
(Graphics)

Root RootClient
(FigureHierarchy) (FigureHierarchy)

G

The Figure Framework, Partially
Instantiated

Framework |

Graphics

Editor I

Client
(Graphics)

Client
(Figure Hierarchy)

Figure
(Figure Hierarchy),

Graphics
(Graphics)

\

Predecessor

(Figure Chain)

_

| Frozen spots,

ﬁopen role txpeé) [| bound role

RectangleFigure CompositeFigure |t |
| types)
(Figure Hierarchy)

Figure Successor
(RectangleFigure) (Figure Chain) I
Observer
Int. Fig. Observer I I

AN | I

| Widget

Parent

\ I [

\ ClassFigure RootFigure

Client
(ClassFigure)

RootClient
(FigureHierarchy)

Root
(FigureHi

Figure
(ClassFigure)

G

Prof. Uwe Almann, Design Patterns and Frameworks

Editor

lient
Figure Hierarchy

Client
(CIassFlgure

)

Observer
Figure Observer

Framework

— — e —

L

lient
RectangIeFlgu

M EE

ootClient
gureHlerarch

O*

I T

The Figure Framework, Fully
Instantiated to an Editor

Figure

Graphics

igure
Figure Hierarchy

ubject
Figure Observer

Predecessor
(Figure Chain)

Client I

Graphics

(Graphics) (Graphics)

/N

=

RectangleFigur

igure

LéectangleFigu;

| A

CompositeFigure

are

Successor
(Figure Chain)

Figure Hierarchy

Dbserver
Int. Fig. Observer,

nt

JAN

ClassFigure

lient
RectangleFigure

Figure

G

(ClassFigure)

RootFigure

oot
(FigureHierarchy)

I 10

UMLEditor

Client

(Figure Hierarchy)

Framework |
I‘__— - T]

Figure

Client

(Figure Observer)/ 0..*

Client

(CIasleagram

RootClient
F|gureH|erarchy

Tool

(Graphics)
Predecessor

Child
(Figure Hierarchy)
(Figure Chain)

| AN |

RectangleFigure

Figure
(RectangleFigure)

(Figure Hierarchy)

RectangleTool

Client

(RectangleFigure)

Prof. Uwe AlSmann, Design Patterns and Frameworks

Parent

CompositeFigure
(Figure Hierarchy)
Observer

I Successor
| (Figure Chain)
Int. Fig. Observer

| ZAN |

ClassFigure

RootFigure

Figure
(Class

\ |
Root
I (FigureHierarchy) |

Figure)
A

|
ClassDiagram

Client
(ClassFigure)

ClassDiagram

&;

(ClassDiagram)

The Figure Framework Instantiated to an UML Editor

Graphics

Graphics
(Graphics)

11

Merging of Frameworks

Prof. Uwe ARmann, Design Patterns and Frameworks

G

» Two frameworks are merged by binding the integration abilities of A to
classes of B

= Role constraints have to be respected

» Hence, role models play the bridge between different frameworks
= Or layers of frameworks

12

A Graphics Framework

T G_rap_hicg _1

r.——.——.——.——.—

Graphics

Client I Graphics
——> .

(Graphics) (Graphics)

Cllent

Graphics
(Cl|pp|ng) | I (Clipping)

Client Polyliner
(Polylining) (Polylining)

Cllent —>

g
S
2
[}
5
0 Textlng) (Texting)
o
&
o Client
2 .
5 (Imaging) I (Imaging)
o Image
c
(®)]
2 — Imagg
o I (Imaging)
=
S
£ I Font
<
<
o
: | Font
- 1 >((Texting))<
J
& |
Polygon

I (Polygon)¢
> (Polylining)

G

13

The Figure and Graphics Frameworks

Client
Merged
D g Client
(Clipping)
" Figure Graphlcs_/_ 1
- l'__ el el el el — — r—— —l—— el — e
Editor . | :
I Figure I Graphlcsl |
Client \ | Graphics

(Figure Hierarchy) (Figure Hierarchy) (Graphics) I (Graphics) |
Observer § (Subject e Graphics |

(Figure Observer)) 0.* (Figure Observer) | (Clipping)
@ Predecessor I Polyliner |

5 (Figure Chain) | (Polylining)
: | |

CI. t
1en Textin

(RectangleFigure) | // | (9) |
RectangleFigure I CompositeFiguy Imager |

I (Imaging)

Successor Parent

(Figure Chain) (Figure Hierarchy) | I Image |

Observer Image

G

I /l | I Font |
I

ClassFigure I RootFigure /I/J Font

(Texting)
Client Client Root
(RectangleFigure)\ (Texting)

I (FigureHierarchy)
Figure - - -
(ClassFigure)

Figure
(RectangleFigure) I

Client
(Polylining)

ann, Design Patterns a

Client
(ClassFigure)

Polygon |

Polygon
(Polylining)

RootClient
(FigureHierarchy)

Limitations of Open Role Instantiation

» [Riehle/Gross] role-based framework instantiation relies on simple
role binding, with role constraints

» Role binding for framework instantiation and merging can be even
more elaborated

Prof. Uwe ABmann, Design Patterns and Frameworks

15

G

. 11.2 Framework Hook Patterns

Design Patterns and Frameworks, © Prof. Uwe Allmann

16

Pree's Framework Hook Patterns
(Template&Hook Role Models)

> In Pree's work, framework hooks are characterized by design
patterns (framework hook patterns)

= They describe the roles of classes on the border of the framework

= The framework hook pattern determines the way how the classes interact
with each other at the border of the framework

» A framework variation point is characterized with a Template&Hook
conceptual pattern
= Pree called this a T&H metapattern, we call this a T&H role model

» A T&H role model has 2 parts:

= Atemplate class (or template role type), which gives the skeleton
algorithm of the framework: Fix, grasps commonalities

= A hook class, which can be exchanged (or: a hook role type which can be
bound to a client class): Variable, even extensible, grasps variability and
extension

Fixed Part (Temmate\ .(Hook) Flexible Part, Variation Point

Prof. Uwe ARmann, Design Patterns and Frameworks

J

@ 17

T&H Patterns and Standard Patterns

» A TH-role model overlays another pattern (hence Pree called it a
metapattern)

= The template part fixes parts of the pattern
= The hook part keeps parts of the pattern variable, i.e., open for binding.

&

% | Fixed Part, Framework | | Flexible Part, Variation Point |

% | (Template) | { Hook) |

2 ! / || \ |

e ! / || Role\mapping |

£ I

. '] ‘ |

5 | Subject —t—> Observer |

: | | |
I _______ - L o e e e e

18

G

T&H in Standard Design Patterns

» Subject and Observer can vary; nothing is fixed
= SortingAlgorithm and AnimationEngine can be exchanged

Prof. Uwe ARmann, Design Patterns and Frameworks

G

N
(Subject y »(Observer) Pattern role model
/
/ \ Role mapping
/ \
SortingAlgorithm » AnimationEngine Class model

19

T&H in Framework Hook Patterns

» Subject can no longer vary; it is fixed

= SortingAlgorithm cannot be exchanged (exeption:
DimensionalClassHierarchies)

— — — — — — — — — — — — — — — — —

| Fixed Part Plexible Part, Variation Point

| o * Framewolrk hook role
I Template Hook model (T&H role

I

I

I | | model) |
I I |
| ! |
I

I

I

I

|
|

| (Subject)O
| 7

|

|

|

’L(Observer) Pattern roje model

I
\ |

\
|

/
/

Prof. Uwe ARmann, Design Patterns and Frameworks

SortingAlgorithm

—| AnimationEngine Cla§s model

Metapatterns are Special Role Models

» Due to the Riehle-Gross Law, we know that metapatterns are role
models that overlay the role models of design patterns

= Metapatterns are very general role models that can be mixed into every
design pattern

= As design patterns describe application models, metapatterns describe
design patterns

> In [Pree], roles are not considered. Pree has only hook classes and
hook methods

» Here, we combine [Pree] and [Riehle/Gross]

Prof. Uwe ARmann, Design Patterns and Frameworks

21

G

Why T&H Patterns Add More to
al| Standard Patterns

adds commonality/variability knowledge
= |t describes a framework variation point
= The template part characterizes the framework's fixed parts
= The hook part characterizes the framework's variation point

» Hence we call a design pattern with metapattern information
framework hook pattern

T&H Pattern
(Metapattern)

Framework
Hook Pattern

Prof. Uwe ARmann, Design Patterns and Frameworks

Standard
Design Pattern

G

» If a metapattern is overlayed to a role model of a design pattern, it

22

Framework Hook Patterns

» The template-hook role model

= adds more pragmatics to a standard design pattern, information about
commonality and variability. Hence, framework variation points are
described

= The template-hook role model adds more constraints to a standard
design pattern. Some things can no longer be exchanged

» Pree discovered 7 framework hook patterns, i.e., 7 template-hook
role models for framework hooks

= The template-hook role models describe the parameterization of the
framework by open role hooks

= They include Riehle's open role hooks, but add more variants
= There are even other ones (see next chapter)

Prof. Uwe ARmann, Design Patterns and Frameworks

23

G

> Note: we mean in the following:

= with the role Template, that the class of the role type belongs to the
framework

= with the role Hook, that the class of the role type belongs to the
application

= with the role TemplateM(ethod) that the role defines a template method,
calling a hook method HookM(ethod)

» Problem: Pree uses TemplateM/HookM, but calls them
Template/Hook

= and varies HookM classes, which is misleading because the variation is
actually in the framework and the fixed part in the application

Prof. Uwe ARmann, Design Patterns and Frameworks

24

G

» Standard design pattern

= Often, no template parts;
everything flows (exception:
TemplateClass and -Method)

= Rich pattern and role model

= Applicable everywhere in the
framework

= No T&H metapattern overlayed

Prof. Uwe ARmann, Design Patterns and Frameworks

G

Differences between Standard Patterns
al| and Framework Hook Patterns

» Framework hook pattern

Fixed and variable part

Elementary pattern and role
model

Applicable only at the border of
the framework,

or at the border of a
component, i.e., in an
“interface”

One T&H metapattern
overlayed

25

A Simple Notation for Framework Hook
ml| Patterns

» Insight: A framework hook pattern does something like this
= |t provides a design pattern at the border of a framework
= |t combines a T&H role model with standard role models

: Fixed Part

£ (framework)

§ T H [

@ N

S N

g ~

< Flexible Part, Variation Point
£ e

< Fixed Part s

= (framework) 7

e

26

G

11.3 Delegation-Based
Framework Hook Patterns

Design Patterns and Frameworks, © Prof. Uwe Allmann

27

T—H Connection Pattern

» T&H connection pattern (T--H framework hook)

= T and H classes are coupled by a template-hook role model, the hook is
a delegatee (the relation is called a mini-connector)

= Similar to Riehle/Gross open role type, but with aggregation instead of

N d n
T H| 7 T O— H
~— /
(Templatej}(} (Template —:

association
S
£ 1-T—H (open role hook) n-T—H (flat extension)
5 Hpartof T T has n H parts, n is dynamic
3 __Mini-connectorl
~ 7
$ _ y
al — A&
:
2
:

G

TemplateClass with 1-T--H

> Attention: in this case, the Template role also carries the TemplateM
role (framework has template method, application has hook method)

generateData(Data)

generateData(Data)

B SN Mini-connecto
Framework M2 ctor
| T A I | P
g | — A
5 DataGenerato | imp Generatorimpl
- | Data data; | JHook enerateData(Data)
L,g | enerate() — - g
s | N / \
% imp.generateData(data)
£ -
g
§ | TestDataGenerator ExhaustiveGenerat0|| RandomGenerator
<
g |
g |
I

29

TemplateClass Runtime Scenario

Template object

imp

Y

Hook object

/
/

¥

————— /

[
, _ Framework , _ _, _ _
: |
- ¥
5 | :TestDataGenerator N |
2 | Data data; |
£ generate()
. | |
g | |
E L . . - . - - J
S
<
E
2

G

:ExhaustiveGenerator

generateData(Data)

30

Dimensional Hierarchies with 1-T--H
(Bridge with Template/Hook Constraint)

» Template classes cannot be varied by user, but by the hook subclass

| Framework |
| hookOb%ect
TemplateClas Template | Hook HookClass
N\ S
| templateMethod(}p | hookMethod()

AN . /\

|
hookObject.hookMethod() |
|

atterns and Frameworks

%1 MoreConcrete MoreConcrete ConcreteHookClassA| ConcreteHookClassB
TemplateA TemplateB

hookMethod() hookMethod()

Implementation A
... hookObject.hookMethod();

Implementation B
§|'J ... hookObject.hookMethod

Prof. Uwe A&mann, Des

templateMethod()? templateMethod(ﬁI)

he templateMethod should

',:Attention: To be a template class,
) ulfill a contract!

84 _

31

1

Internationalization as
m{| Dimensional Class Hierarchy with 1-T--H

- - — — 7

Framework

- - 1 - - - — — _—

LayoutAIgorith(Template)O
N\
layoutPage() Q

1

Iangueige(Hook }]guage
| —/

getText()

iayout from left to righ |
[\ language.getText() | [\

... layout... |
I
MoreConcrete MoreConcrete |])
TemplateA TemplateB English (GB) Chinese
: | getText() getText()

I-/'.— — — — — — — — — — — — — —

... layout from right to left
language.getText()
... layout...

layoutPage() @ layoutPage() ?

| In the template class, the

language.getText()
... layout...

... layout fromleft to righ

been layouted.

| emplateMethod fulfills the contract
jl hat all content of the page has

32

— |

—

'r o FLamework

r— — —

Prof. Uwe ABmann, Design Patterns and Frameworks

G

- — — "1

Internationalization as
m|| Dimensional Class Hierarchy with 1-T--H

N I
]
|
LayoutAIgorith(-|-emp|ate 'anguagﬁ(Hook WLanguage
o e
layoutPage() ' getText()
|
> may be abbreviated to:
F e _k_)
. Lamewor o |
|
LayoutAlgorithm | Language

— — — — — — —]

33

Multiple Internationalization as
m{| Dimensional Class Hierarchy with n-T--H

— - — — — 1
Framewclk_ F
LayoutAIgorith(Template)O Iangualges(Hook)— anguage
N\ * /
layoutPage() @) | getText()

f E iayout from left to righ\\I f E
for | in languages

layout(l.getText())

MoreConcrete MoreConcrete]]
TemplateA TemplateB English (GB) Chinese

... layout from left to right

for | in languages

layoutPage() Q layoutPage() ? IgetText() getText()
layout(l.getText()) IE

| In the template class, the

emplateMethod fulfills the contract
hat all content of the page has
been layouted. 34

for | in languages
layout(l.getText())

I-/'.— — — — — — — — — — — — — —

... layout from right to IeftjI

Multiple Internationalization as
Dimensional Class Hierarchy with n-T--H

» n-T—H is based on *-Bridge pattern
» This framework hook allows for multiple internationalized texts
= An application can layout several languages at the same time

» The layout algorithm can be coupled with different languages that use
the same layout (multiple internationalization)

» However, mixin of different layout languages freely with languages is
impossible!
» Here, you can see the power of the T—H concept:
= 1-T--H: dynamic variability
= n-T—H: dynamic extension (flat, non-recursive)

Prof. Uwe ARmann, Design Patterns and Frameworks

35

G

- — — — — /1

Prof. Uwe ABmann, Design Patterrr

G

Framework

Multiple Internationalization as

- — — /"

al| N-T—H Dimensional Hierarchy

_J__'I

layoutPage()

—

LayoutAIgorith(—l-emplate)<> Ianguagfi(Hook]Language
A\ S

getText()

* Language

— — — — m— — —]

36

—— A — — — — — — — — — — — —

Observer as n-T—H of a Framework

return SubjectState

Framework |
| |
Subject (T | t)@ observers (Hook \ Observer
empiate > oo
\ | — update ()
register(Observer) P
unregister(Observer) _ |
notify() o-1 for all b in observers {
b.update () |
N |
|
| | ConcreteObserver
ConcreteSubject (SUbJeCt | update () O--{ ObserverState =
Subject.getState()
getState() O, | | Observerstate
setState() |
SubjectState N |
|
I

37

Prof. Uwe ABmann, Design Patterns and Frameworks

G

Observer Runtime Scenario: Several
ml| Visualizers in Parallel

Template object

:SortingAlgorithm

Hook objects

register(Observer)
unregister(Observer)
notify()

getState()

setState()

Y

-TextVisualizer

update()

A :HtmlVisualizer

update()

:JDKVisualizer

update()

38

Prof. Uwe ABRmann

G

Framework

Observer-based Extensible
ml| Frameworks

_J__'I

SortingAlgorith

kTempIat

Vlsuallzer
]<> visualizers
e >‘ |

e e e e ee—m e—m e— e—)

_ 1

" Framework |

'r ramewor o :

| |

| SortingAlgorithm| « Visualizer
|

|

39

Observer

» The Observer pattern is used for extensibility
» With T&H, it becomes clear that Observers are a perfect way to
achieve product lines with new feature extensions:
= Model a critical template algorithm as Subject (template of the n-T--H)
= Model an extension as a new Observer (hook of the n-T--H)

Prof. Uwe ARmann, Design Patterns and Frameworks

40

G

Bridge Frameworks Have
al| T—H Hooks

» Every dimension corresponds to a T—H hook
» Bridges, Strategy, Adapter can be used as mini-connectors

Core Facet: Animal Domain

T1 T2 T3 Mini-connectort
< < A e
II \\ — =
First facet dimengion (e.g., Group) | \ .~
H1 | |

| |
\ I

Second facet (e.g., Age)

H2

Prof. Uwe ARmann, Design Patterns and Frameworks

Third facet (e.g., Nurture)

41

G

Prof. Uwe ABmann, Design Patterns and Frameworks

G

Bridge Framework Runtime Scenario

Template object

Hook objects

:AnimalGroup

:AnimalAge

:AnimalNurture

42

n Patterns and Frameworks

ig

Prof. Uwe ARmann, Des

G

—

Template object

/

¥

Hook objects

:Animal

:AnimalAge

:AnimalNurture

Bridge Framework Runtime Scenario,
al| with dimension 1 in Framework

43

Extensible Bridge Framework with n-

. F_ramework I

BusinessObjectCore

'——{}énwmﬂ%)————

*y extensions

Hook

BusinessObjectExtension

Prof. Uwe ABmann, Design Patterns and Frameworks

G

_ — — — —_ — — — d

Core Object

Extension *

L — — —

44

n-T—H Makes Bridge Frameworks
ml| Extensible

» An n-T—H framework hook makes dimensional bridge frameworks
extensible with new dimensions at run time

» New extensions in new dimensions can be added and removed on-
the-fly
» Applications
= Business applications
= System software
= 3- and n-tier architectures

Prof. Uwe ARmann, Design Patterns and Frameworks

45

G

T—H Patterns Result in Blackbox
ml| Frameworks

» The main relation between T and H is delegation.

» Hence, when overriding and instantiating H, the framework is
untouched (blackbox framework)

» 1-T—H gives variability
» n-T—H gives extensibility

Prof. Uwe ABmann, Design Patterns and Frameworks

G

46

11.4 The H<=T Recursion
. Metapattern

Design Patterns and Frameworks, © Prof. Uwe Allmann

47

H<=T Recursive Connection

» T&H recursive connection pattern (H<=T framework hook, deep
extension pattern)

= with 1- or n-ObjectRecursion
= H-class inherits from T; T is part of H
= His decorator of T (1:1) or a composed class in a composite pattern (1:n)

H<=T (deep list extension) n-H<=T (deep graph extension)
T part of H H has n T parts

H inherit from T T inherit from H
1-ObjectRecursion/Decorator n-ObjectRecursion/Composite

TﬁH TWH

(Template (Template ’
48

Prof. Uwe ARmann, Design Patterns and Frameworks

G

Decorator as 1-H<=T

» All decorator objects have to conform to the template class of the
Decorator pattern

_Framework _ ~Mini-connectorl

| Eromevere _, _ -
Record T ~
| \
| access() _
%
| |
| TransientRecord | PersistentDecorator
| access() || access(). . . = S .) \
| | =~ ~ mimiced.access
LC — e
£
?;) PersistentRead PersistentRecord
= OnlyRecord if (lloaded()) Ioad();\
Eit (loaded() |oad$i—— - access() roomaondeds T super.access();
: boolean loaded oolean loade if (modified()) dump():
super.access(); IO‘;‘;(e)a” oaded() boolean modified() (()) dump()
load() 49
@ dump()

Decorator as Framework Hook
ml| Pattern

» Lists extend the framework

A G A thauue A Auaale T natea s - ok —

Prof. Uwe ARman=~—-~

G

Framework

_ 1 - —

:TransientRecord

Template object
7

/
N

Hook objects

N

:PersistentRecord

:PersistentRecord

50

Prof. Uwe ARmann, Design Patterns and Frameworks

G

Composite as n-H<=T

N

[Framework]
— — — 1
Client I > Component |
| commonOperation() |
add(Component)
| |
remove(Component)
| getType(int) M
| A Veim(pls IchiIdObjects
(Hook)O
Leaf Composite
. t' O_ _______
commonOperation() ggrdn(rggnmcr))zi;an;c))n() for all g in childObjects
remove(Component) g.commonOQOperation()
getType(int)

51

ml| Pattern

Composite as Framework Hook

» Part/Whole hierarchies extend the framework

Template object

A G A thauue A Auaale T natea s - ok —

Prof. Uwe ARman=~—-~

G

Framework

_ 1 - —

:Picture

/
/

y

Hook objects

>N

D N
:Picture :Rectangle
:Picture Rectangle
52

Production Data Systems

» Piece lists are part/whole hierarchies of technical artefacts in
production

» The roles of a composite form the hook of the framework

Composed
Car

@omposecD

ComposedPiece

Template class

_FraEewFrk _J /

—|
|
|
|
|

CarPart

|
lCompone@ |— AtomicPiece <l_ AtomicCarPart

Atomic

9
®
0
®
r
®
[

Prof. Uwe ARmann, Design Patterns and Frameworks

@ 53

Production Data Systems

» Piece lists are part/whole hierarchies of technical artefacts in
production

» Example: SAP PDM module, IBM San Francisco

Template object Hook objects
| ~ Framework 4
] —_ =" 1 _ _/I /
i Y
1 PieceList | | :Car
i
_‘l | / \
| | : * >
j | :Chassis :Motor :Window
T T T T T T T / \\
/ \ N

:Roof :Door :Cabin

@ 54

» H<=T framework hooks result in frameworks between black-box and
white-box

» Mini-connector H<=T is used

» Attention: The class with the Template role carries the HookM role,
the class with the Hook role carries TemplateM role

= The template (fixed) class in the framework is called from the hook class
in the application (which carries the template method role)

= Pree calls the pattern T<=H, but means TemplateM <= HookM !!

Prof. Uwe ARmann, Design Patterns and Frameworks

55

G

Bridge Frameworks Can Be Done with
al| H<=T (Bridge H<=T Framework)

» A dimension may correspond to a H<=T hook of the core framework
» Composite, Decorator, Bureaucracy can be used as mini-connectors

o Core Facet: Animal Domain IMEi-cEnn_ectEq
AT AT A Pecorgtor_
= . \ =

2 First facet dimemnsign - -

: (e.g., Group) | & : \

5 H1 | |

é | |

§ Second facet (e.g., Age) <> \ |

3 H2 | /

ne_ \ /\/

_ 1
Third facet (e.g., Nurture) | H3

D s6

Core Facet; Core Domain

Bridge Frameworks Can Be Done with
al| H<=T (Bridge H<=T Framework)

» Composite as mini-connector

IMini-connector,
Compositum _,

irst facet dimension

gn Patteuﬁ and Frameworks

Second facet

Prof. Uwe ARmann, Desi

Third facet

)

T1 T2 T3
/\ |, Z> VAN =
/ \
l -
> \
H1 |
|
<> |
H2 /
\ /\/
18
— H3 [—

57

. 11.5 The TH Unification Metapattern

Design Patterns and Frameworks, © Prof. Uwe Allmann 58

» Unified T&H pattern (TH framework hook)
= T-class == H-class

TH 1-TH (deep list extension) n-TH (deep tree
T== T== extension)

TH part of TH TH part of TH T ==

“funny” Decorator “funny” Decorator TH has n TH parts

“funny” 1:n-Composite

™ . o

n

Template : } Template R §

2
4
—
o
=
(@)
S
@
—
w
o
c
@
(2]
e
—
9]
=
©
o
c
2
(%]
o
(]
=
c
@
(S
2
<
)
=
o
Y—
o
[
(]

ChainOfResponsibility as 1-TH

Prof. Uwe ARmann, Design Patterns and Frameworks

G

» A Chain is recursing on the abstract super class, i.e.,

All classes in the inheritance tree know they hide some other class
(unlike the ObjectRecursion)

Client

Y

Successor

1] T ErewoR

Work()

Worker (Template)
&

ConcreteWorker1

ConcreteWorker2

Work()

Work()

|

— — -

60

Prof. Uwe ABmann, Design Patterns and Frameworks

G

Client

Event Handlers

1

Hook

Successor

, Framework

> EventHandIe(Template)
\
handleEvent()

Logger

SecurityHandler

handleEvent()

handleEvent()

|

=
|
|
|

d

61

Event Handlers: Object Diagram

Template object

N
\ -_ _— -_ — i |
g N . Framework
: N | .
£ R\ |
§ Client > :Authentication |
iy handleEvent() |
§ / N -
i;’ :Logger . :SecurityHandler :
N :Personalizer|
& Hook objects handleEvent() handleEvent() “
handleEvent()
62

G

Why TH Unification Makes Sense

» |If a hook class is the same as the template class,
= Some methods are template methods, others are hook methods
= Together with the template, the hooks can be exchanged
» Template methods in the template class are not abstract, but
concrete
= They are build from referencing hook methods of the hook class

> As we saw in the last chapter, merging role types in one class can
make an application faster, but less flexible

Prof. Uwe ARmann, Design Patterns and Frameworks

63

G

Prof. Uwe ARmann, Design Patterns and Frameworks

G

Bridge Frameworks Can Be Done with
al| TH (Bridge TH Framework)

» A dimension may correspond to a H<=T hook
» Chain can be used as mini-connector

Core Facet; Animal Domain

T1

<&

First facet dimen H1

Second facet (e.g., Age)

T2

<&

H2

Third facet (e.g., Nurture)

H3

64

11.6 The H<T Whitebox Inheritance
. Metapattern

Design Patterns and Frameworks, © Prof. Uwe Allmann 65

» If H inherits from T, H<T framework port (whitebox framework pattern)
= Whitebox reuse of T in the framework, while deriving H in the application
= (not of Pree, earlier known)

» If a hook class inherits from a template class, it inherits the skeleton
algorithm

= Template methods in the template class are not abstract, but concrete
= They are build from referencing hook methods of the hook class

» A H<T framework hook means whitebox framework

Prof. Uwe ARmann, Design Patterns and Frameworks

HeT T K| H

66

G

Prof. Uwe ABmann, Design Patterns and Frameworks

G

Whitebox Framework with H<T
ml| Framework Hook

>

Also TemplateMethod can be applied (HookM <= TemplateM)

Client

L |

J — — — — — — —

> Worker

Work()

TTemplate '

ConcreteWorker1 ConcreteWorker2

Work() Work()

67

Summary of
T&H Patterns and Framework
Hooks

Design Patterns and Frameworks, © Prof. Uwe Allmann

68

Cardinalities and Extensibility of
ml| Framework Hooks

» 1:1—-T and H correspond 1:1
= T has 1H part
= Hooks are not extensible at runtime

= 1:1 T&H framework hooks should be used when the behavior of the
framework should be varied, but not extended at the variation point
Because variability patterns form the mini-connector between T and H, derived
from 1-ObjectRecursion

» 1:n—T and H correspond 1:n
= T has nH parts
= Hooks are extensible, also dynamically

= 1:n T&H framework hooks should be used when the behavior of the
framework should not only be varied, but also extended dynamically at
the variation point

Because extensibility patterns form the mini-connector between T and H,
derived from n-ObjectRecursion

Prof. Uwe ARmann, Design Patterns and Frameworks

69

G

Framework Hook Patterns

Aggregation/Association

H

T

G

T has n H parts
T is core class of
complex object

s T--H

[}

5 Hpartof T

L .

= T is core class of
2 complex object
_.G_J‘

o

s | T K>

A

 p-T--H

2

<

o

s

)

I

o

H has n T parts
H inherit from T
1 :n-Deﬁorator

<>_”

H

=3
T<17H

T ==

TH has n TH parts

Inheritance ~Unification
H<T
H inherit from T Tl'l_
whitebox T==
T K—| H TH
H<=T Recursion 1-TH
T part of H T ==
H inherit from T TH part of TH
Decorator “funny” Decorator
T _<><] H TH
n-H<=T n-TH

“funny” 1:n-Composite

TH

<>_.

n

70

nd Frameworks

Prof. Uwe ABmann, Design Patterns a

S

ml| Framework Hooks

Deriving a Simple Notation for

H<T TH
L
T H ™ O
1 'T"H H<=T 1 _TH
L
T i T H H]
‘A 1
n-T--H n-H<=T n-TH

nd Frameworks

Prof. Uwe ABmann, Design Patterns a

G

Short-Hand Notation for Framework

1-T--H H<=T 1-TH
T H T H TH
n-T--H n-H<=T n-TH

. 11.7 T&H in Frameworks

Design Patterns and Frameworks, © Prof. Uwe Allmann

73

Advantages of T&H Framework Hook
ml| Patterns

> One big mess with frameworks is the trustworthy framework
instantiation problem:

= |f a framework is instantiated by inheritance (whitebox) or delegation
(blackbox), illegal combinations of parameters appear

= Applications may not run stable

» Framework Hook Patterns describe much more precise how the
variation points of a framework should be instantiated

= They allow for determining whether the framework is varied or extended
in a product line

Prof. Uwe ARmann, Design Patterns and Frameworks

74

G

Pree's First Law of Framework
Instantiation

» Variability-based framework hooks define framework variation points

= If you want to constrain the uses of a framework to a fixed set of
variations, use variability patterns for framework hooks
(1-TH patterns)

If a framework hook is based on a variability pattern,
the framework is varied, but NOT extended

Prof. Uwe ARmann, Design Patterns and Frameworks

75

G

Pree's Second Law of Framework
Instantiation

Prof. Uwe ARmann, Design Patterns and Frameworks

G

» Extensibility-based framework hooks define framework extension
points

= |If you do not want to constrain the uses of a framework to a fixed set of
variations, use extensibility patterns for framework hooks (n-TH patterns)

If a framework hook is based on an extensibility pattern,
the framework is extended, but not varied

76

A Multi-lingual dimensional Data
al| Generator

» One framework hook may have several bridge dimensions

I
I
I
| 7 N\ 7 N\ 7\
I

o
:
g DataGeneraItor \ LayouI \ Data \
5 |] I | I 4 - — — —
% Data \ I Langque* ’Gramm‘ar I
& GenerationSt\fategy \ \
E N \ \
Variable Extensible
Variation Point Extension Points 77

G

G

R
Layout . anguage
I i
I —1 1
producelLayout() producelLayout()
>| GeneratorStrategy \ I
OMC enerateData(Data)
DataGenerator g
he data Z&
generate() O
; /\
g imp.generateData(data
% ExhaustiveGenerator; RandomGenerator
i
% generateData(Data) generateDa)a(EQta)
2 7z S
— " "
TestDataGenerator ReportGenerator >\Data s « | Grammar
: .
\ (Data createData() bata createData()
generate() O generate() © . i
1 1 ~ 7 1 '
g | ! \
< data = i /
3 parseTestDataGrammar(); : \
5 imp.generateData(data); !
[l |
data = TestData ReportData
readFromForm();
imp.generateData(data); TestData createData() | ReportData createData() 78

Framework Instantiation Market

» Today, frameworks are the most important software technology for
product lines in large companies

» Instantiating big frameworks is very hard
= Requires special instantiation consultancy, which is a big market

= SAP Germany has a marker for instantiation companies of their
framework!

= |If you go to a big company, teach them framework instantiation patterns!

Prof. Uwe ARmann, Design Patterns and Frameworks

79

G

Prof. Uwe ABmann, Design Patterns and Frameworks

G

|—

[Busine_ss FTam;vork__L Product .
Piecelist
Business Object Layout Workflow
Scheduling
Extensions * Language Scheduling

A Multi-lingual Business Framework

80

framework hooks

Product

*

Piecelist

Business Object

Layout

A Business Framework with Several
m/| Languages Simultaneously

» Problem: business frameworks have an enormous number of

Workflow

Extensions *

Prof. Uwe ABmann, Design Patterns and Frameworks

Language*

)_ Scheduli

G

81

OpenOffice

» Variabilities
= Type of program (word, slides, drawings, calc, ...)
Structured documents (Composite pattern)
Embeddings of all document types into other document types possible
= Language
= GUI

% Visible toolbar (visibility, position) of MainToolbar, FunctionBar, ObjectBar, ColorBar,
é OptionBar, PresentationBar, HyperlinkBar
2 Views, such as StandardView, OutlineView, HandoutView
g ™ Office Framework Document
g —_— = — — * — — — — =
g I Editor |
2 |
(@]
o |
5 |
£
2 | |
E Editor Layout DocumentLayout | SpellChecker |
. | - —
EPimEnSEna—[_ »| Toolbars = Language Language
Framework View *
gin-T--H .
—_—— anguage 82
T guag

GEBOS Banking Layered Framework

» If a template class of a framework hook has several hook classes
(e.g., as an n-Bridge), then the Framework becomes layered

[1
|] TechnicalKernel |

|| Banking Objects Banking Values Folders ||
— L — d
| "Business . : | |

hn, Design Patterns and Frameworks

|
|
|
|
|
|
= > | Sections

|L§yered | ValueHierarchy | | TechnicalFolders
FEameWth Application « | -
ZT'i_I— - | knowledge | |

@ 83

Relations Extensibility Patterns

Specialized Patterns (Proxy) (Visitor)

— 4=
II /(Decorator)\ (Bridge)H(n-Brigde)

ObjectRecurs@ (Chain) N
C Observer)

: K
| Composite) | [Dimensional Sj

| | ClassHierarchie

' 4

|
| [TH Pattern j I
I |

Prof. Uwe ABmann, Design Patterns and Framewq” \

v \
Recursive Framework Patterns Connection
H<=T Pattern T--H Pattern

84

Summary

Prof. Uwe ARmann, Design Patterns and Frameworks

G

» When overlayed with a T--H metapattern, a design pattern becomes
a framework hook pattern for the interface of a framework

» These are mini-connectors between a framework and its application
classes

= More flexible that just generic classes (generic frameworks) or delegation
(blackbox) or inheritance (whitebox)

» The framework hook patterns determine very precisely how a
framework is to be instantiated

» There are more kinds of dimensional frameworks

= Dimensional T—H (n-Bridge LF), H<=T, TH, T>H dimensional
frameworks

» 1-T&H framework hook patterns can be used for variability of the
framework

> n-T&H for extensibility.

85

The End

SyIomawel{ pue sulajed ubiseq ‘UuBwgY amn "10id

86

o)

	Coaster in Space
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Structure Compositum
	Compositum
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Structure for ChainOfResponsibility
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Folie 74
	Folie 75
	Folie 76
	Folie 77
	Folie 78
	Folie 79
	Folie 80
	Folie 81
	Folie 82
	Folie 83
	Folie 84
	Folie 85
	Folie 86

