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Studying variabilities of frameworks with the T&H concept

Introducing different types of hooks for frameworks and components
(TH patterns)

Understand framework hook patterns
=  The box-like notation for frameworks and framework hooks patterns

More types of dimensional frameworks



Patterns and Frameworks

» Historically, design patterns were discovered during framework
development

=  Smalltalk MVC [Goldberg, Reenskaug]
= ET++ [Gammal]
= Interviews [Vlissides]

» Design patterns are building blocks of frameworks
= Framework developers vary and extend classes of the framework
» Design patterns are for the making of the products of a product line
architecture
= Application developers vary and extend classes of the framework

= Variability design patterns can be used as framework variation
points (framework variation hooks)

= Extensibility design patterns can be used as framework extension
points (framework extension hooks)
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11.1 Framework Instantiation and
. Merging With Open Roles
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Framework Instantiation with Open
m|/| Roles (Role Hot Spots)

The most simple form of framework instantiation is Riehle/Gross'
open role instantiation

= Here, frameworks are class models with “open” role hot spots

= Open role hooks (free, unbound abilities) are role types that have not yet
been assigned to classes

» The hot spots form an integration repertoire (integration role type
set)

= the set of role types, by which the framework can be integrated
into an application

= Aka framework hooks, framework variation points
A framework is instantiated by binding its integration repertoire to
classes
= The abilities are bound, role constraints have to be respected

Hence, role models play the bridge between a framework and its
clients



Remember: The Partial Figure Model,
m|/| 2@ Standard Class-Ability Model
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The Figure Framework, Partially
Instantiated

Framework |

Graphics

Editor I

Client
(Graphics)

Client
(Figure Hierarchy)

Figure
(Figure Hierarchy),

Graphics
(Graphics)

\

Predecessor

(Figure Chain)

_

| Frozen spots,

ﬁopen role txpeé) [ | bound role

RectangleFigure CompositeFigure |t |
| types)
(Figure Hierarchy)

Figure Successor
(RectangleFigure) (Figure Chain) I
Observer
Int. Fig. Observer I I

AN | I

| Widget

Parent

\ I [

\ ClassFigure RootFigure

Client
(ClassFigure)

RootClient
(FigureHierarchy)

Root
(FigureHi

Figure
(ClassFigure)

G




Prof. Uwe Almann, Design Patterns and Frameworks

Editor

lient
Figure Hierarchy

Client
(CIassFlgure

)

Observer
Figure Observer

Framework

— — e —

L

lient
RectangIeFlgu

M EE

ootClient
gureHlerarch

O*

I T

The Figure Framework, Fully
Instantiated to an Editor

Figure

Graphics

igure
Figure Hierarchy

ubject
Figure Observer

Predecessor
(Figure Chain)

Client I

Graphics

(Graphics) (Graphics)

/N

=

RectangleFigur

igure

LéectangleFigu;

| A

CompositeFigure

are

Successor
(Figure Chain)

Figure Hierarchy

Dbserver
Int. Fig. Observer,

nt

JAN

ClassFigure

lient
RectangleFigure

Figure

G

(ClassFigure)

RootFigure

oot
(FigureHierarchy)

I 10




UMLEditor

Client

(Figure Hierarchy)

Framework |
I‘__— - T ]

Figure

Client

(Figure Observer)/ 0..*

Client

(CIasleagram

RootClient
F|gureH|erarchy

Tool

(Graphics)
Predecessor

Child
(Figure Hierarchy)
(Figure Chain)

| AN |

RectangleFigure

Figure
(RectangleFigure)

(Figure Hierarchy)

RectangleTool

Client

(RectangleFigure)

Prof. Uwe AlSmann, Design Patterns and Frameworks

Parent

CompositeFigure
(Figure Hierarchy)
Observer

I Successor
| (Figure Chain)
Int. Fig. Observer

| ZAN |

ClassFigure

RootFigure

Figure
(Class

\ |
Root
I (FigureHierarchy) |

Figure)
A

|
ClassDiagram

Client
(ClassFigure)

ClassDiagram

&;

(ClassDiagram)

The Figure Framework Instantiated to an UML Editor

Graphics

Graphics
(Graphics)

11




Merging of Frameworks
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» Two frameworks are merged by binding the integration abilities of A to
classes of B

= Role constraints have to be respected

» Hence, role models play the bridge between different frameworks
= Or layers of frameworks

12



A Graphics Framework
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The Figure and Graphics Frameworks
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Limitations of Open Role Instantiation

» [Riehle/Gross] role-based framework instantiation relies on simple
role binding, with role constraints

» Role binding for framework instantiation and merging can be even
more elaborated
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. 11.2 Framework Hook Patterns
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Pree's Framework Hook Patterns
(Template&Hook Role Models)

> In Pree's work, framework hooks are characterized by design
patterns (framework hook patterns)

= They describe the roles of classes on the border of the framework

= The framework hook pattern determines the way how the classes interact
with each other at the border of the framework

» A framework variation point is characterized with a Template&Hook
conceptual pattern
= Pree called this a T&H metapattern, we call this a T&H role model

» A T&H role model has 2 parts:

= Atemplate class (or template role type), which gives the skeleton
algorithm of the framework: Fix, grasps commonalities

= A hook class, which can be exchanged (or: a hook role type which can be
bound to a client class): Variable, even extensible, grasps variability and
extension

Fixed Part (Temmate\ .( Hook ) Flexible Part, Variation Point

Prof. Uwe ARmann, Design Patterns and Frameworks
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T&H Patterns and Standard Patterns

» A TH-role model overlays another pattern (hence Pree called it a
metapattern)

= The template part fixes parts of the pattern
= The hook part keeps parts of the pattern variable, i.e., open for binding.

&

% | Fixed Part, Framework | | Flexible Part, Variation Point |

% | (Template) | { Hook ) |

2 ! / || \ |

e ! / || Role\mapping |

£ I

. ' ] ‘ |

5 | Subject —t—> Observer |

: | | |
I _______ - L o e e e e
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T&H in Standard Design Patterns

» Subject and Observer can vary; nothing is fixed
= SortingAlgorithm and AnimationEngine can be exchanged
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N
( Subject y »( Observer) Pattern role model
/
/ \ Role mapping
/ \
SortingAlgorithm » AnimationEngine Class model
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T&H in Framework Hook Patterns

» Subject can no longer vary; it is fixed

= SortingAlgorithm cannot be exchanged (exeption:
DimensionalClassHierarchies)
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Metapatterns are Special Role Models

» Due to the Riehle-Gross Law, we know that metapatterns are role
models that overlay the role models of design patterns

= Metapatterns are very general role models that can be mixed into every
design pattern

= As design patterns describe application models, metapatterns describe
design patterns

> In [Pree], roles are not considered. Pree has only hook classes and
hook methods

» Here, we combine [Pree] and [Riehle/Gross]

Prof. Uwe ARmann, Design Patterns and Frameworks
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Why T&H Patterns Add More to
al| Standard Patterns

adds commonality/variability knowledge
= |t describes a framework variation point
= The template part characterizes the framework's fixed parts
= The hook part characterizes the framework's variation point

» Hence we call a design pattern with metapattern information
framework hook pattern

T&H Pattern
(Metapattern)

Framework
Hook Pattern
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» If a metapattern is overlayed to a role model of a design pattern, it

22



Framework Hook Patterns

» The template-hook role model

= adds more pragmatics to a standard design pattern, information about
commonality and variability. Hence, framework variation points are
described

= The template-hook role model adds more constraints to a standard
design pattern. Some things can no longer be exchanged

» Pree discovered 7 framework hook patterns, i.e., 7 template-hook
role models for framework hooks

= The template-hook role models describe the parameterization of the
framework by open role hooks

= They include Riehle's open role hooks, but add more variants
= There are even other ones (see next chapter)
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> Note: we mean in the following:

= with the role Template, that the class of the role type belongs to the
framework

= with the role Hook, that the class of the role type belongs to the
application

= with the role TemplateM(ethod) that the role defines a template method,
calling a hook method HookM(ethod)

» Problem: Pree uses TemplateM/HookM, but calls them
Template/Hook

= and varies HookM classes, which is misleading because the variation is
actually in the framework and the fixed part in the application

Prof. Uwe ARmann, Design Patterns and Frameworks
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» Standard design pattern

= Often, no template parts;
everything flows (exception:
TemplateClass and -Method)

= Rich pattern and role model

= Applicable everywhere in the
framework

= No T&H metapattern overlayed
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Differences between Standard Patterns
al| and Framework Hook Patterns

» Framework hook pattern

Fixed and variable part

Elementary pattern and role
model

Applicable only at the border of
the framework,

or at the border of a
component, i.e., in an
“interface”

One T&H metapattern
overlayed
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A Simple Notation for Framework Hook
ml| Patterns

» Insight: A framework hook pattern does something like this
= |t provides a design pattern at the border of a framework
= |t combines a T&H role model with standard role models

: Fixed Part

£ (framework)

§ T H [

@ N

S N

g ~

< Flexible Part, Variation Point
£ e

< Fixed Part s

= (framework) 7

e
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11.3 Delegation-Based
Framework Hook Patterns
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T—H Connection Pattern

» T&H connection pattern (T--H framework hook)

= T and H classes are coupled by a template-hook role model, the hook is
a delegatee (the relation is called a mini-connector)

= Similar to Riehle/Gross open role type, but with aggregation instead of

N d n
T H| 7 T O— H
~— /
(Templatej}(} (Template —:

association
S
£ 1-T—H (open role hook) n-T—H (flat extension)
5 Hpartof T T has n H parts, n is dynamic
3 __Mini-connectorl
~ 7
$ _ y
al — A&
:
2
:
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TemplateClass with 1-T--H

> Attention: in this case, the Template role also carries the TemplateM
role (framework has template method, application has hook method)

generateData(Data)

generateData(Data)

B SN Mini-connecto
Framework M2 ctor
| T A I | P
g | — A
5 DataGenerato | imp Generatorimpl
- | Data data; | JHook enerateData(Data)
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g |
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I
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TemplateClass Runtime Scenario

Template object
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Dimensional Hierarchies with 1-T--H
(Bridge with Template/Hook Constraint)

» Template classes cannot be varied by user, but by the hook subclass

| Framework |
| hookOb%ect
TemplateClas Template | Hook HookClass
N\ S
| templateMethod(}p | hookMethod()

AN . /\

|
hookObject.hookMethod() |
|

atterns and Frameworks

%1 MoreConcrete MoreConcrete ConcreteHookClassA| ConcreteHookClassB
TemplateA TemplateB

hookMethod() hookMethod()

Implementation A
... hookObject.hookMethod();

Implementation B
§|'J ... hookObject.hookMethod
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templateMethod()? templateMethod(ﬁI)

he templateMethod should

',:Attention: To be a template class,
) ulfill a contract!

84 _

31



1

Internationalization as
m{| Dimensional Class Hierarchy with 1-T--H
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Internationalization as
m|| Dimensional Class Hierarchy with 1-T--H
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Multiple Internationalization as
m{| Dimensional Class Hierarchy with n-T--H

— - — — — 1
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Multiple Internationalization as
Dimensional Class Hierarchy with n-T--H

» n-T—H is based on *-Bridge pattern
» This framework hook allows for multiple internationalized texts
= An application can layout several languages at the same time

» The layout algorithm can be coupled with different languages that use
the same layout (multiple internationalization)

» However, mixin of different layout languages freely with languages is
impossible!
» Here, you can see the power of the T—H concept:
= 1-T--H: dynamic variability
= n-T—H: dynamic extension (flat, non-recursive)
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Observer as n-T—H of a Framework

return SubjectState

Framework |
| |
Subject (T | t)@ observers ( Hook \ Observer
empiate > oo
\ | — update ()
register(Observer) P
unregister(Observer) _ |
notify() o-1 for all b in observers {
b.update () |
N |
|
| | ConcreteObserver
ConcreteSubject (SUbJeCt | update () O--{ ObserverState =
Subject.getState()
getState() O, | | Observerstate
setState() |
SubjectState N |
|
I
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Observer Runtime Scenario: Several
ml| Visualizers in Parallel

Template object

:SortingAlgorithm

Hook objects

register(Observer)
unregister(Observer)
notify()

getState()

setState()

Y

-TextVisualizer

update()

A :HtmlVisualizer

update()

:JDKVisualizer

update()
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Framework

Observer-based Extensible
ml| Frameworks
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Observer

» The Observer pattern is used for extensibility
» With T&H, it becomes clear that Observers are a perfect way to
achieve product lines with new feature extensions:
= Model a critical template algorithm as Subject (template of the n-T--H)
= Model an extension as a new Observer (hook of the n-T--H)

Prof. Uwe ARmann, Design Patterns and Frameworks

40

G



Bridge Frameworks Have
al| T—H Hooks

» Every dimension corresponds to a T—H hook
» Bridges, Strategy, Adapter can be used as mini-connectors

Core Facet: Animal Domain

T1 T2 T3 Mini-connectort
< < A e
II \\ — =
First facet dimengion (e.g., Group) | \ .~
H1 | |

| |
\ I

Second facet (e.g., Age)

H2
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Third facet (e.g., Nurture)
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Bridge Framework Runtime Scenario

Template object

Hook objects

:AnimalGroup

:AnimalAge

:AnimalNurture
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Template object

/

¥

Hook objects

:Animal

:AnimalAge

:AnimalNurture

Bridge Framework Runtime Scenario,
al| with dimension 1 in Framework
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Extensible Bridge Framework with n-

. F_ramework I

BusinessObjectCore

'——{}énwmﬂ%)————

*y extensions

Hook

BusinessObjectExtension
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Extension *
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n-T—H Makes Bridge Frameworks
ml| Extensible

» An n-T—H framework hook makes dimensional bridge frameworks
extensible with new dimensions at run time

» New extensions in new dimensions can be added and removed on-
the-fly
» Applications
= Business applications
= System software
= 3- and n-tier architectures

Prof. Uwe ARmann, Design Patterns and Frameworks
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T—H Patterns Result in Blackbox
ml| Frameworks

» The main relation between T and H is delegation.

» Hence, when overriding and instantiating H, the framework is
untouched (blackbox framework)

» 1-T—H gives variability
» n-T—H gives extensibility

Prof. Uwe ABmann, Design Patterns and Frameworks
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11.4 The H<=T Recursion
. Metapattern

Design Patterns and Frameworks, © Prof. Uwe Allmann
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H<=T Recursive Connection

» T&H recursive connection pattern (H<=T framework hook, deep
extension pattern)

= with 1- or n-ObjectRecursion
= H-class inherits from T; T is part of H
= His decorator of T (1:1) or a composed class in a composite pattern (1:n)

H<=T (deep list extension) n-H<=T (deep graph extension)
T part of H H has n T parts

H inherit from T T inherit from H
1-ObjectRecursion/Decorator n-ObjectRecursion/Composite

TﬁH TWH

(Template (Template ’
48
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Decorator as 1-H<=T

» All decorator objects have to conform to the template class of the
Decorator pattern

_Framework _ ~Mini-connectorl

| Eromevere _, _ -
Record T ~
| \
| access() _
%
| |
| TransientRecord | PersistentDecorator
| access() || access(). . . = S . ) \
| | =~ ~ mimiced.access
LC — e
£
?;) PersistentRead PersistentRecord
= OnlyRecord if (lloaded()) Ioad();\
Eit (loaded() |oad$i—— - access() roomaondeds T super.access();
: boolean loaded oolean loade if (modified()) dump():
super.access(); IO‘;‘;(e)a” oaded() boolean modified() ( ()) dump()
load() 49
@ dump()




Decorator as Framework Hook
ml| Pattern

» Lists extend the framework

A G A thauue A Auaale T natea s - ok —
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Framework

_ 1 - —

:TransientRecord

Template object
7

/
N

Hook objects

N

:PersistentRecord

:PersistentRecord
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Composite as n-H<=T

N

[ Framework ]
— — — 1
Client I > Component |
| commonOperation() |
add(Component)
| |
remove(Component)
| getType(int) M
| A Veim(pls IchiIdObjects
( Hook )O
Leaf Composite
. t' O_ _______
commonOperation() ggrdn(rggnmcr))zi;an;c))n() for all g in childObjects
remove(Component) g.commonOQOperation()
getType(int)
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ml| Pattern

Composite as Framework Hook

» Part/Whole hierarchies extend the framework

Template object

A G A thauue A Auaale T natea s - ok —
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Framework
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:Picture

/
/

y

Hook objects

>N

D N
:Picture :Rectangle
:Picture Rectangle
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Production Data Systems

» Piece lists are part/whole hierarchies of technical artefacts in
production

» The roles of a composite form the hook of the framework

Composed
Car

_@omposecD_

ComposedPiece

Template class

_FraEewFrk _J /

—|
|
|
|
|

CarPart

|
lCompone@ |— AtomicPiece <l_ AtomicCarPart

Atomic

9
®
0
®
r
®
[
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Production Data Systems

» Piece lists are part/whole hierarchies of technical artefacts in
production

» Example: SAP PDM module, IBM San Francisco

Template object Hook objects
| ~ Framework 4
] —_ =" 1 _ _/I /
i Y
1 PieceList | | :Car
i
_‘l | / \
| | : * >
j | :Chassis :Motor :Window
T T T T T T T / \\
/ \ N

:Roof :Door :Cabin
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» H<=T framework hooks result in frameworks between black-box and
white-box

» Mini-connector H<=T is used

» Attention: The class with the Template role carries the HookM role,
the class with the Hook role carries TemplateM role

= The template (fixed) class in the framework is called from the hook class
in the application (which carries the template method role)

= Pree calls the pattern T<=H, but means TemplateM <= HookM !!
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Bridge Frameworks Can Be Done with
al| H<=T (Bridge H<=T Framework)

» A dimension may correspond to a H<=T hook of the core framework
» Composite, Decorator, Bureaucracy can be used as mini-connectors

o Core Facet: Animal Domain IMEi-cEnn_ectEq
AT AT A Pecorgtor_
= . \ =

2 First facet dimemnsign - -

: (e.g., Group) | & : \

5 H1 | |

é | |

§ Second facet (e.g., Age) <> \ |

3 H2 | /

ne_ \ /\/

_ 1
Third facet (e.g., Nurture) | H3

D s6




Core Facet; Core Domain

Bridge Frameworks Can Be Done with
al| H<=T (Bridge H<=T Framework)

» Composite as mini-connector

IMini-connector,
Compositum _,

irst facet dimension

gn Patteuﬁ and Frameworks

Second facet
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Third facet

)

T1 T2 T3
/\ |, Z> VAN =
/ \
l -
> \
H1 |
|
<> |
H2 /
\ /\/
18
— H3 [—
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. 11.5 The TH Unification Metapattern
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» Unified T&H pattern (TH framework hook)
= T-class == H-class

TH 1-TH (deep list extension) n-TH (deep tree
T== T== extension)

TH part of TH TH part of TH T ==

“funny” Decorator “funny” Decorator TH has n TH parts

“funny” 1:n-Composite

™ . o

n

Template : } Template R §

2
4
—
o
=
(@)
S
@
—
w
o
c
@
(2]
e
—
9]
=
©
o
c
2
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o
(]
=
c
@
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2
<
)
=
o
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o
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ChainOfResponsibility as 1-TH
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» A Chain is recursing on the abstract super class, i.e.,

All classes in the inheritance tree know they hide some other class
(unlike the ObjectRecursion)

Client

Y

Successor

1] T ErewoR

Work()

Worker (Template)
&

ConcreteWorker1

ConcreteWorker2

Work()

Work()

|

— — -
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Client

Event Handlers

1

Hook

Successor

, Framework

> EventHandIe(Template)
\
handleEvent()

Logger

SecurityHandler

handleEvent()

handleEvent()

|

=
|
|
|

d
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Event Handlers: Object Diagram

Template object

N
\ -_ _— -_ — i |
g N . Framework
: N | .
£ R\ |
§ Client > :Authentication |
iy handleEvent() |
§ / N -
i;’ :Logger . :SecurityHandler :
N :Personalizer|
& Hook objects handleEvent() handleEvent() “
handleEvent()
62

G



Why TH Unification Makes Sense

» |If a hook class is the same as the template class,
=  Some methods are template methods, others are hook methods
= Together with the template, the hooks can be exchanged
» Template methods in the template class are not abstract, but
concrete
= They are build from referencing hook methods of the hook class

> As we saw in the last chapter, merging role types in one class can
make an application faster, but less flexible

Prof. Uwe ARmann, Design Patterns and Frameworks

63

G



Prof. Uwe ARmann, Design Patterns and Frameworks

G

Bridge Frameworks Can Be Done with
al| TH (Bridge TH Framework)

» A dimension may correspond to a H<=T hook
» Chain can be used as mini-connector

Core Facet; Animal Domain

T1

<&

First facet dimen H1

Second facet (e.g., Age)

T2

<&

H2

Third facet (e.g., Nurture)

H3
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11.6 The H<T Whitebox Inheritance
. Metapattern
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» If H inherits from T, H<T framework port (whitebox framework pattern)
=  Whitebox reuse of T in the framework, while deriving H in the application
= (not of Pree, earlier known)

» If a hook class inherits from a template class, it inherits the skeleton
algorithm

= Template methods in the template class are not abstract, but concrete
= They are build from referencing hook methods of the hook class

» A H<T framework hook means whitebox framework
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Whitebox Framework with H<T
ml| Framework Hook

>

Also TemplateMethod can be applied (HookM <= TemplateM)

Client

L |

J — — — — — — —

> Worker

Work()

TTemplate '

ConcreteWorker1 ConcreteWorker2

Work() Work()
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Summary of
T&H Patterns and Framework
Hooks
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Cardinalities and Extensibility of
ml| Framework Hooks

» 1:1—-T and H correspond 1:1
= T has 1H part
= Hooks are not extensible at runtime

= 1:1 T&H framework hooks should be used when the behavior of the
framework should be varied, but not extended at the variation point
Because variability patterns form the mini-connector between T and H, derived
from 1-ObjectRecursion

» 1:n—T and H correspond 1:n
= T has nH parts
= Hooks are extensible, also dynamically

= 1:n T&H framework hooks should be used when the behavior of the
framework should not only be varied, but also extended dynamically at
the variation point

Because extensibility patterns form the mini-connector between T and H,
derived from n-ObjectRecursion
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Framework Hook Patterns

Aggregation/Association

H

T

G

T has n H parts
T is core class of
complex object

s T--H

[}

5 Hpartof T

L .

= T is core class of
2 complex object
_.G_J‘

o

s | T K>

A

 p-T--H

2

<

o

s

)

I

o

H has n T parts
H inherit from T
1 :n-Deﬁorator

<>_”

H

=3
T<17H

T ==

TH has n TH parts

Inheritance ~Unification
H<T
H inherit from T Tl'l_
whitebox T==
T K—| H TH
H<=T Recursion 1-TH
T part of H T ==
H inherit from T TH part of TH
Decorator “funny” Decorator
T _<><] H TH
n-H<=T n-TH

“funny” 1:n-Composite

TH

<>_.

n
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nd Frameworks
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ml| Framework Hooks

Deriving a Simple Notation for

H<T TH
L
T H ™ O
1 'T"H H<=T 1 _TH
L
T i T H H ]
‘A 1
n-T--H n-H<=T n-TH




nd Frameworks
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Short-Hand Notation for Framework

1-T--H H<=T 1-TH
T H T H TH
n-T--H n-H<=T n-TH




. 11.7 T&H in Frameworks
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Advantages of T&H Framework Hook
ml| Patterns

> One big mess with frameworks is the trustworthy framework
instantiation problem:

= |f a framework is instantiated by inheritance (whitebox) or delegation
(blackbox), illegal combinations of parameters appear

= Applications may not run stable

» Framework Hook Patterns describe much more precise how the
variation points of a framework should be instantiated

= They allow for determining whether the framework is varied or extended
in a product line
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Pree's First Law of Framework
Instantiation

» Variability-based framework hooks define framework variation points

= If you want to constrain the uses of a framework to a fixed set of
variations, use variability patterns for framework hooks
(1-TH patterns)

If a framework hook is based on a variability pattern,
the framework is varied, but NOT extended
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Pree's Second Law of Framework
Instantiation
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» Extensibility-based framework hooks define framework extension
points

= |If you do not want to constrain the uses of a framework to a fixed set of
variations, use extensibility patterns for framework hooks (n-TH patterns)

If a framework hook is based on an extensibility pattern,
the framework is extended, but not varied
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A Multi-lingual dimensional Data
al| Generator

» One framework hook may have several bridge dimensions

I
I
I
| 7 N\ 7 N\ 7\
I

o
:
g DataGeneraItor \ LayouI \ Data \
5 | ] I | I 4 - — — —
% Data \ I Langque* ’Gramm‘ar I
& GenerationSt\fategy \ \
E N \ \
Variable Extensible
Variation Point Extension Points 77
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I —1 1
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>| GeneratorStrategy \ I
OMC enerateData(Data)
DataGenerator g
he data Z&
generate() O
; /\
g imp.generateData(data
% ExhaustiveGenerator; RandomGenerator
i
% generateData(Data) generateDa)a(EQta)
2 7z S
— " "
TestDataGenerator ReportGenerator >\Data s « | Grammar
: .
\ (Data createData() bata createData()
generate() O generate() © . i
1 1 ~ 7 1 '
g | ! \
< data = i /
3 parseTestDataGrammar(); : \
5 imp.generateData(data); !
[l |
data = TestData ReportData
readFromForm();
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Framework Instantiation Market

» Today, frameworks are the most important software technology for
product lines in large companies

» Instantiating big frameworks is very hard
= Requires special instantiation consultancy, which is a big market

=  SAP Germany has a marker for instantiation companies of their
framework!

= |If you go to a big company, teach them framework instantiation patterns!
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[ Busine_ss FTam;vork__L Product .
Piecelist
Business Object Layout Workflow
Scheduling
Extensions * Language Scheduling

A Multi-lingual Business Framework
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framework hooks

Product

*

Piecelist

Business Object

Layout

A Business Framework with Several
m/| Languages Simultaneously

» Problem: business frameworks have an enormous number of

Workflow

Extensions *
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OpenOffice

»  Variabilities
= Type of program (word, slides, drawings, calc, ...)
Structured documents (Composite pattern)
Embeddings of all document types into other document types possible
= Language
= GUI

% Visible toolbar (visibility, position) of MainToolbar, FunctionBar, ObjectBar, ColorBar,
é OptionBar, PresentationBar, HyperlinkBar
2 Views, such as StandardView, OutlineView, HandoutView
g ™ Office Framework Document
g —_— = — — * — — — — =
g I Editor |
2 |
(@]
o |
5 |
£
2 | |
E Editor Layout DocumentLayout | SpellChecker |
. | - —
EPimEnSEna—[ _ »| Toolbars = Language Language
Framework View *
gin-T--H .
—_—— anguage 82
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GEBOS Banking Layered Framework

» If a template class of a framework hook has several hook classes
(e.g., as an n-Bridge), then the Framework becomes layered

[ 1
| ] TechnicalKernel |

|| Banking Objects Banking Values Folders ||
— L — d
| "Business . : | |

hn, Design Patterns and Frameworks

|
|
|
|
|
|
= > | Sections

|L§yered | ValueHierarchy | | TechnicalFolders
FEameWth Application « | -
ZT'i_I— - | knowledge | |
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Relations Extensibility Patterns

Specialized Patterns ( Proxy ) ( Visitor )

— 4=
II /( Decorator )\ ( Bridge )H( n-Brigde)

ObjectRecurs@ ( Chain ) N
C Observer )

: K
| Composite ) | [Dimensional Sj

| | ClassHierarchie

' 4

|
| [ TH Pattern j I
I |
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Recursive Framework Patterns Connection
H<=T Pattern T--H Pattern
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Summary
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» When overlayed with a T--H metapattern, a design pattern becomes
a framework hook pattern for the interface of a framework

» These are mini-connectors between a framework and its application
classes

= More flexible that just generic classes (generic frameworks) or delegation
(blackbox) or inheritance (whitebox)

» The framework hook patterns determine very precisely how a
framework is to be instantiated

» There are more kinds of dimensional frameworks

= Dimensional T—H (n-Bridge LF), H<=T, TH, T>H dimensional
frameworks

» 1-T&H framework hook patterns can be used for variability of the
framework

> n-T&H for extensibility.
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The End
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