Obligatory Literature
o 24. Trustworthy Framework 2
) I I » Uwe ABmann, Andreas Bartho, Falk Hartmann, llie Savga, Barbara
InStantlatlon Wittek. Trustworthy Instantiation of Frameworks. In Trustworthy
Components, Reussner, Ralf and Szyperski, Clemens (ed.), Jan.

2006. LNCS 3938, Springer. Available at
http://www.springerlink.com/index/104074p5h8581115.pdf

Prof. Dr. Uwe ABmann
TU Dresden

Institut fiir Software— und
Multimediatechnik

Lehrstuhl Softwaretechnologie
11-0.1, 23.12.11

® Design Patterns and Frameworks, © Prof. Uwe ABmann

1)The framework instantiation problem
2)Remedies

Prof. Uwe ABmann, Design Patterns and Frameworks

e

24.1 The Framework Instantation .
Problem 1: A Car Configurator
o[Problem ol
» Frameworks are often hard to instantiate, because they have many » How to instantiate two 1-T-H hooks, if there are dependencies
extension and variation points between them (multi-point constraints)?
= and dependencies between them » Static constraint, domain-specific

» Whitebox frameworks are often instantiated with non-conformant

subclasses Hook
» Blackbox frameworks are often instantiated with non-fitting classes m

. . . Catalysator
(multi-point dependencies) Catalytic — y @

<
» Some constraints cannot be checked statically Converter S DirEiter

4[Template] [Hook]7

Engine <1 GasEngine

Q\M
DieselEngine

Car

Prof. Uwe ABmann, Design Patterns and Frameworks
Prof. Uwe ABmann, Design Patterns and Frameworks

=
=

Problem 2: SalesPoint Framework

Problem 3: Parallel Hierarchies

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Catalog and Stock hierarchies must be isomorphic
» Dynamic constraint; domain-specific

e -
= CambgStockCollaboration e,
‘- catalogitam: stookHam: %
h Carkal ogtem Stockltem \
= -
K ¥ = e L
’ Sa e T
_ | ariant= r"_\“ d"_,l"_" = =M ":"
T [Capth = stock lam, cepth! at | CatnlogStockCollaboration
S - x

- = . -
- —

e ——— L -
-

S

Carialogiiam " I Stockltam
L W
- dgmih: int e ‘.-' S 4 dapt: int |
a.r ~, cmacgham-© skcklem o 7 0.
+parant +parart
P cavinlogliem siockltam: % P
| - Catalog Caialogiiam Stockham St

contes Cataksg tem depth
dariver F parant-==Empiyd
then O else panent deph + |

dariwe: Il parent-= SEMEtYL)
than O @lss parent.dapt + |

e
contet Siockiem: daph T

Problem 4: Dynamic Assumptions

» Window types must be varied parallely
» Static constraint, but technical

——— S

e ManuDacormied Window Faa,

o T,
whdowClhass Clhass meruClass Class h"'.

o L]
7] i S i
< 1 r
g 5, =irnanan= i’
2 - el = GTEWIindow implas manus les = STHMan uand o
g Ty Seil = W roow Implies mensciass - Oidanu) - -
° ST —
5 Sl —
@ - ——
£ e
o = el
< +° Gt ManuDacormbedWindow "
2 L 3
Q Ty -
% LT I -
< windowJlass manutiass
o
H "
2 AR
9 ,
o r

i
| GTEW Ind o J | CIEw nd o | I GTEManu I CriManu |

Classification of Instantiation
=l| Constraints

Prof. Uwe ABmann, Design Patterns and Frameworks

=

» Other dynamic contract checks

Null-checks
Range checks
Sortedness of ordered collections

Dynamic technical constraints

Facet 1: Stage
Static Dynamic

Facet 2: Cause

SalesPoint
isomorphic hierarchies
of Catalogs and Stocks

Car configurator

Domain-specific cont)
multi-point constraint

(analysis-related)

Technical

! Dynamic assumptions
(design-related)

Dynamic contracts

Windows parallel
hierarchies

Prof. Uwe ABmann, Design Patterns and Frameworks

=

24.2 Remedies for Trustworthy
Instantiation

SSSSSS chnclogic

Design Patterns and Frameworks, © Prof. Uwe ABmann

Remedy 1:
Refactoring of Multi-Point Constraints

B

Checking Mechanisms in All Phases of
the Life Cycle

Prof. Uwe ABmann, Design Patterns and Frameworks

e

—— = — Framework ~ .
~ e - o~
7 Refactorings — — — Instantiation)~ — — Documentation
__ - ~ _Languages — ~ _ -
T~ . _ — = .~
—_— _— ~ — ~ — — ~

e
Dynamic
Static checking of checking
domain constraints of technical
- traint.
joniralis - System and
- Testing of technical Integration Test
- constraints
: /
S Implementati
mplementation :
Static checking of ‘ o Model ‘* 7‘ Unit Tests ‘

technical constraints

10

Remedy 2:
Static Verification of Static Constraints

Prof. Uwe ABmann, Design Patterns and Frameworks

=

» Multi-point constraints can be refactored such that the constraint
moves inside the framework
= One point is removed

» Advantage: Framework can control itself

-

-~ 1 iy Do] W ks) L9

i
— o
- a,
-' Y I." iz M
! Heulecovisi@ndos
l‘. Wi oW e 1 s = 4
e e Ty -
pe e T -
S

..........

X o

G Windoa |

+ peillanCiEsfi: Ja= l- geieulam] : Clax

conisri ST KWindos—g si e Osm] : Clam
bexdy:reiam GTHWan da=

EonisE CfA coar: gt e Ol Clam
by reian Cillerucies

11

Prof. Uwe ABmann, Design Patterns and Frameworks

=

» UML collaborations are appropriate to describe static (technical and
domain-specific) instantiation constraints.
= OCL specifies static invariants of the framework, instantiation
preconditions and postconditions
= OCL can reason over types, hence, instantiations or extensions of the
framework can be analyzed and verified

J— —

Mo MUIC Sorkd NG W

- -
P R
-~ -
ra ElL-Er=F R=F i Lelt bl] .
s o il
h

rmalats
\ Self= GTHYINb W mplle s MerUCl s = G TH kb and
Yoo | =P ceandew mp ks menucl &5 = Cerw)

—

hon e
o -

- .—-""J
rJ T
Wi = _\5
iy LR
AN K . [
|I) .
|GTK‘MndcwI | | Qfndos | | GTEMNU | itk | 12

Remedy 3:
Framework TestingL

Misuse Diagrams

= Negative test cases have to be derived
- specifying ill instantiation conditions
- and the behavior of the framework

= Framework must react reasonably

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Frameworks must be negatively tested
= Beyond functional tests (positive tests), censorious negative tests for the

behavior in case of misinstantiiaton must be conducted

- NOT dump core

- Handle exceptions appropriately

- Emit comprehensible error messages, also to the end user

Negative Test Table Entries

13

Prof. Uwe ABmann, Design Patterns and Frameworks

» Misuse diagrams specify misuse cases, dually to use case diagrams,
which specify functional use cases

» [Sindre, G., Opdahl, A.L. Eliciting security requirements with misuse
cases. Requirements Engineering 10 (2005) 34—44]

» Used to describe system abuse (intrusion, fraud, security attacks)
» Coarse-grain technique to specify also framework misuse

\

Student Catalog/Stock
designer

[

SalesPoint framework

Mismatch
of Catalogs
and Stocks

Don't leave
a Sales State
correctly

Enter a Stockltem

X

Student tester

e

that is not catalogued

Negative Test Case Entries for
Misuse of Frameworks

Student programmer

14

orks

- Output parameters
- Reaction, state afterwards

» From use case diagrams, usually test tables are derived

= Atest table contains test case entries, describing one test case
- Class of test case (positive, negative)
- Onput parameters of method

» Input parameters must be refined

= Dynamic constraints are tested as usual negative test cases, with input
and output parameter specification

= Static constraints, however, work on types. Hence, their test case entries
are different. Negative test cases specify ill instantiations, framework error
messages and exception handling

=

15

)

TestcasgTestclass |Input Output Reaction f
g String date Date d1 sTestcase [Testclass |Input Reaction
hook 1 |hook 2
3 day month |year 5
1 pos!t!ve 1. Januar 2006 1 1| 2006 2 1pos. stafic |QiMenu QtBution
g 2positive |05/12/2008 &) 12| 2008 g 2|pos. static |GtkMenu |GtkButton
g 3positive |January 23, 2007 23 11 2007 3 3neg. static |QtMenu |GtkButton |error ,for multi-point, use parallel classes"
3 4negative Mak 44, 2007 failure 3 4neg. static |GtkMenu |QtButton |error ,for multi-point, use parallel classes*
i Snegative March 44, 2007 failure i

16

Derivation of JUnit Test Cases

Remedy 4:
Framework Instantiation Languages

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» From every test table entry dealing with a dynamic constraint, a JUnit
test case is derived (www.junit.org)
= Test method or test class with test method, deriving from class TestCase

» From every test table entry dealing with a static constraint, a
compilation test suite case is derived

= Stored in a database

= Sold with the framework to the customer of the framework
= Helps the customer to instantiate right
» See course Softwaretechnologie Il, summer semester

Eclipse Extension Specs

17

Prof. Uwe ABmann, Design Patterns and Frameworks

e

» Eclipse has demonstrated that a framework extension (instantiation)
language can be beneficial
= to type variability and extension points

= to describe not only extension points for code, but also for other
resources, such as GUI elements, business objects, etc.

» Eclipse language is based on XML, thus restricted on:
= XML tree specifications
= XML base types

18

Why A Framework Extension
Language Should Be Based on Logic

Prof. Uwe ABmann, Design Patterns and Frameworks

=

plugin.xsd

example.exsd

<schema ...>
<element name = “plugin”>

</element>

<element name = “extension-point”>
<attribute name="id” type="string” />
<attribute name="name” type="string” />

</element>
</schema>

<attribute name="schema” type="string” />

<<refers-to>>

<schema ...>
<element name = “extension”>
<attribute name="point” type="string”
use="required” />
<attribute name="class” type="string"/>
</element>
</schema>

A =

|
<<instance-of>> |
|
|

plugin.xml (extended)

N

<plugin name="extended” ...>

id="example"
name="example"
schema="example.exsd"/>

</plugin>

<extension-point - - -/

™ <<instance-of>>
N

A

<<insfance-of>>
|

plugin.xml (extending)

<plugin name="extending”...>

- <extension point="example"

class="package org.savga.Runner’/>

</plugin>

Prof. Uwe ABmann, Design Patterns and Frameworks

=

» Beyond XML, logic can capture context-sensitive static constraints
= also static multi-point framework instantiation constraints
» However, the logic must be enriched with domain-specific concepts,
such as framework, hook, variation point, extension point,
instantiation, etc.
» Good candidates are typed logic languages
= Ontology languages OWL, SWRL
= Frame logic (F-logic, on top of XSB)
= OCL on UML class diagrams (UML collaborations)

20

Remedy S: Framework Contract Layers

Prof. Uwe ABmann, Design Patterns and Frameworks

&

|| Dynamic Contract Checking -
» Dynamic multi-point constraints must be checked at run-time » Best practice is to check a dynamic constraint (single- or multi-point)
= Mainly, this amounts to contract checking of the framework in a separate layer, encapsulating the contract concern
» Two best practices can be applied: » The checking layer is called from outside (the application), but the

inner layer from inside the framework. This is much faster than
checking always!
= When composing the framework with others, the contract layer can be
class Collection {
public boolean sorted() { ... /* sortedness predicate */ }
public Element searchBinary(ElementKey key) {
// contract checking
if (!sorted())
sort () ;
// calling the inner layer
return searchBinaryInternal (key);
}
// inner layer
protected Element searchBinaryInternal (ElementKey key) {
. binary search algorithm ...

= Framework contract layers
= Contract aspects

Prof. Uwe ABmann, Design Patterns and Frameworks

}

21 !

e

Prof. Uwe ABmann, Design Patterns and Frameworks

=

Remedy 6: What Have We Learned?
m|/| Contract Aspects -
» Once encapsulated in a layer, contract checks can be moved into a » Framework instantiation and extension is hard, because there are
contract aspect many constraints, both domain-specific and technical, to obey
= Tools such as Aspect/J can weave the contract in » Multi-point constraints describe dependencies between two or several
= Here: methods of package framework that have a parameter of type framework hooks
Menu are checked on null value » Appropriate remedies against misinstantiations are:

» Advantage: the aspect can easily be exchanged
= Reduces effort, in particular when the aspect is crosscutting

= Thorough documentation (well, of course with the pyramid principle)
= Refactoring (removal) of multi-point constraints

= Negative testing with misuse diagrams and negative test table entries
= Using logic to verify static constraints

= Use contract layers and contract aspects to facilitate checking of dynamic
constraints

efore (Menu m) : call (* framework.*.* (Menu)) && args(m) {
if (m == null) {
throw new Exception ("Null Menu parameter passed when " +
thisJoinPoint.getThis () + " was called ");

Prof. Uwe ABmann, Design Patterns and Frameworks

24

23

=

The End

SyJomawe. 4 pue suialed ubisa ‘UUBWIgY dMN Joid

25

o)

