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1)The framework instantiation problem
2)Remedies
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24.1 The Framework Instantation .
Problem 1: A Car Configurator
o[ Problem ol
» Frameworks are often hard to instantiate, because they have many » How to instantiate two 1-T-H hooks, if there are dependencies
extension and variation points between them (multi-point constraints)?
= and dependencies between them » Static constraint, domain-specific

» Whitebox frameworks are often instantiated with non-conformant
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Problem 2: SalesPoint Framework

Problem 3: Parallel Hierarchies
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» Catalog and Stock hierarchies must be isomorphic
» Dynamic constraint; domain-specific
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Problem 4: Dynamic Assumptions

» Window types must be varied parallely
» Static constraint, but technical
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Classification of Instantiation
=l| Constraints
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» Other dynamic contract checks

Null-checks
Range checks
Sortedness of ordered collections

Dynamic technical constraints

Facet 1: Stage
Static Dynamic

Facet 2: Cause

SalesPoint
isomorphic hierarchies
of Catalogs and Stocks

Car configurator

Domain-specific cont )
multi-point constraint

(analysis-related)

Technical

! Dynamic assumptions
(design-related)

Dynamic contracts

Windows parallel
hierarchies
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24.2 Remedies for Trustworthy
Instantiation
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Remedy 1:
Refactoring of Multi-Point Constraints

B

Checking Mechanisms in All Phases of
the Life Cycle
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Remedy 2:
Static Verification of Static Constraints
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» Multi-point constraints can be refactored such that the constraint
moves inside the framework
= One point is removed

» Advantage: Framework can control itself

-

-~ 1 iy Do ] W ks ) L9

i
— o
- a,
-' Y I." iz M
! Heulecovisi@ndos
l‘. Wi oW e 1 s = 4
e e Ty -
pe e T -
S

..........

X o

G Windoa |

+ peillanCiEsfi: Ja= l- geieulam] : Clax

conisri ST KWindos—g si e Osm] : Clam
bexdy:reiam GTHWan da=

EonisE CfA coar: gt e Ol Clam
by reian Cillerucies

11

Prof. Uwe ABmann, Design Patterns and Frameworks

=

» UML collaborations are appropriate to describe static (technical and
domain-specific) instantiation constraints.
= OCL specifies static invariants of the framework, instantiation
preconditions and postconditions
= OCL can reason over types, hence, instantiations or extensions of the
framework can be analyzed and verified
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Remedy 3:
Framework TestingL

Misuse Diagrams

= Negative test cases have to be derived
- specifying ill instantiation conditions
- and the behavior of the framework

= Framework must react reasonably
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» Frameworks must be negatively tested
= Beyond functional tests (positive tests), censorious negative tests for the

behavior in case of misinstantiiaton must be conducted

- NOT dump core

- Handle exceptions appropriately

- Emit comprehensible error messages, also to the end user

Negative Test Table Entries
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» Misuse diagrams specify misuse cases, dually to use case diagrams,
which specify functional use cases

» [Sindre, G., Opdahl, A.L. Eliciting security requirements with misuse
cases. Requirements Engineering 10 (2005) 34—44]

» Used to describe system abuse (intrusion, fraud, security attacks)
» Coarse-grain technique to specify also framework misuse

\

Student Catalog/Stock
designer

[

SalesPoint framework

Mismatch
of Catalogs
and Stocks

Don't leave
a Sales State
correctly

Enter a Stockltem

X

Student tester

e

that is not catalogued

Negative Test Case Entries for
Misuse of Frameworks

Student programmer
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- Output parameters
- Reaction, state afterwards

» From use case diagrams, usually test tables are derived

= Atest table contains test case entries, describing one test case
- Class of test case (positive, negative)
- Onput parameters of method

» Input parameters must be refined

= Dynamic constraints are tested as usual negative test cases, with input
and output parameter specification

= Static constraints, however, work on types. Hence, their test case entries
are different. Negative test cases specify ill instantiations, framework error
messages and exception handling

=
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TestcasgTestclass |Input Output Reaction f
g String date Date d1 sTestcase [Testclass |Input Reaction
hook 1 |hook 2
3 day month |year 5
1 pos!t!ve 1. Januar 2006 1 1| 2006 2 1pos. stafic |QiMenu QtBution
g 2positive  |05/12/2008 &) 12| 2008 g 2|pos. static  |GtkMenu |GtkButton
g 3positive |January 23, 2007 23 11 2007 3 3neg. static |QtMenu |GtkButton  |error ,for multi-point, use parallel classes"
3 4negative Mak 44, 2007 failure 3 4neg. static |GtkMenu |QtButton |error ,for multi-point, use parallel classes*
i Snegative March 44, 2007 failure i
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Derivation of JUnit Test Cases

Remedy 4:
Framework Instantiation Languages
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» From every test table entry dealing with a dynamic constraint, a JUnit
test case is derived (www.junit.org)
= Test method or test class with test method, deriving from class TestCase

» From every test table entry dealing with a static constraint, a
compilation test suite case is derived

= Stored in a database

= Sold with the framework to the customer of the framework
= Helps the customer to instantiate right
» See course Softwaretechnologie Il, summer semester

Eclipse Extension Specs
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» Eclipse has demonstrated that a framework extension (instantiation)
language can be beneficial
= to type variability and extension points

= to describe not only extension points for code, but also for other
resources, such as GUI elements, business objects, etc.

» Eclipse language is based on XML, thus restricted on:
= XML tree specifications
= XML base types
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Why A Framework Extension
Language Should Be Based on Logic
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plugin.xsd

example.exsd

<schema ...>
<element name = “plugin”>

</element>

<element name = “extension-point”>
<attribute name="id” type="string” />
<attribute name="name” type="string” />

</element>
</schema>

<attribute name="schema” type="string” />

<<refers-to>>

<schema ...>
<element name = “extension”>
<attribute name="point” type="string”
use="required” />
<attribute name="class” type="string"/>
</element>
</schema>

A =

|
<<instance-of>> |
|
|

plugin.xml (extended)

N

<plugin name="extended” ...>

id="example"
name="example"
schema="example.exsd"/>

</plugin>

<extension-point - - -/

™ <<instance-of>>
N

A

<<insfance-of>>
|

plugin.xml (extending)

<plugin name="extending”...>

- <extension point="example"

class="package org.savga.Runner’/>

</plugin>
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» Beyond XML, logic can capture context-sensitive static constraints
= also static multi-point framework instantiation constraints
» However, the logic must be enriched with domain-specific concepts,
such as framework, hook, variation point, extension point,
instantiation, etc.
» Good candidates are typed logic languages
= Ontology languages OWL, SWRL
= Frame logic (F-logic, on top of XSB)
= OCL on UML class diagrams (UML collaborations)

20



Remedy S: Framework Contract Layers
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|| Dynamic Contract Checking -
» Dynamic multi-point constraints must be checked at run-time » Best practice is to check a dynamic constraint (single- or multi-point)
= Mainly, this amounts to contract checking of the framework in a separate layer, encapsulating the contract concern
» Two best practices can be applied: » The checking layer is called from outside (the application), but the

inner layer from inside the framework. This is much faster than
checking always!
= When composing the framework with others, the contract layer can be
class Collection {
public boolean sorted() { ... /* sortedness predicate */ }
public Element searchBinary(ElementKey key) {
// contract checking
if (!sorted())
sort () ;
// calling the inner layer
return searchBinaryInternal (key);
}
// inner layer
protected Element searchBinaryInternal (ElementKey key) {
. binary search algorithm ...

= Framework contract layers
= Contract aspects
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Remedy 6: What Have We Learned?
m|/| Contract Aspects -
» Once encapsulated in a layer, contract checks can be moved into a » Framework instantiation and extension is hard, because there are
contract aspect many constraints, both domain-specific and technical, to obey
= Tools such as Aspect/J can weave the contract in » Multi-point constraints describe dependencies between two or several
= Here: methods of package framework that have a parameter of type framework hooks
Menu are checked on null value » Appropriate remedies against misinstantiations are:

» Advantage: the aspect can easily be exchanged
= Reduces effort, in particular when the aspect is crosscutting

= Thorough documentation (well, of course with the pyramid principle)
= Refactoring (removal) of multi-point constraints

= Negative testing with misuse diagrams and negative test table entries
= Using logic to verify static constraints

= Use contract layers and contract aspects to facilitate checking of dynamic
constraints

efore (Menu m) : call (* framework.*.* (Menu)) && args(m) {
if (m == null) {
throw new Exception ("Null Menu parameter passed when " +
thisJoinPoint.getThis () + " was called ");
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The End
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