Design Patterns and Frameworks Exercise Sheet No. 4

Dipl.-Inf. Florian Heidenreich Software Technology Group
INF 2080 Institute for Software and Multimedia Technol-
http://st.inf.tu-dresden.de/teaching/dpf ogy

Department of Computer Science
Technische Universitat Dresden
01062 Dresden

Extensibility Patterns

Task 1: Raytracer Objects

Raytracing is a technology for generating photo-realistic images from scene description data. Very
advanced types of this technology have recently been used for creating quite a few, and very impressive,
animated pictures (such as “Shrek”, or “Nemo”).

Imagine you have to realise a raytracer application. At the core of such an application is a data structure
which maintains and represents the scene graph or the “world”. Objects can be very simple objects which
have a geometrically defined shape and a typically algorithmically defined material, but they can also
be arbitrarily complex compositions of other objects. The scene graph is then repeatedly traversed to
check for intersections with various optical rays.

Task: Design a class structure which can represent a scene graph. What design pattern is
applicable?

Solution: We use COMPOSITE to represent the arbitrary grouping of objects into a scene graph hierarchy.
All classes have an operation public HitPoint hitTest (Ray r) which is abstract in RTObject and is
implemented in the subclasses.

1 | RTObject 1..%
World .
HitPoint hitTest (Ray r) children
|
RTSimpleObject RTGroupObject
HitPoint hitTest (Ray r) HitPoint hitTest (Ray r)

Task: It is often useful to be able to transform existing objects in a scene graph—for example, by
moving, scaling or rotating them. This should be possible for simple and complex objects alike. Enhance
the class structure from the previous subtask to enable transformation of objects. Which design pattern
do you use?

Hint A standard raytracing trick is to transform the ray vectors (a start location and a direction)
instead of the objects. This is mathematically equivalent and makes life much easier for most situations.

Solution: We add a DECORATOR RTTransformingObject which transforms the ray coordinates. In
our solution we even used an additional pattern by reifying the transformations as a STRATEGY.

transformed

'y
1 | RTObject 1..%
World]
HitPoint hitTest (Ray r) children
|
RTSimpleObject RTGroupObject
HitPoint hitTest (Ray r) HitPoint hitTest (Ray r)
RTTransformingObject
HitPoint hitTest (Ray r) [-
HitPoint h = B
transformed.hitTest (new Ray(
tform. transformLocVec (r.start()),
. tform. transformDirVec (r.dir
Transformation) (0)
Vector transformDirVec (Vector v));
Vector transformLocVec (Vector v) if (h '= null)
Vector untransformLocVec (Vector v) h.setPosition (

tform.untransformLocVec (
h.getPosition()
)
)

return h;

Task: When transforming an object it is typical to construct the transformation from the basic
transformation scaling, rotation, and translocation by putting them in a sequence of transformation
operations. Extend the class structure to represent such sequences of transformations. Discuss different
solutions.

Solution: Chaining transformations can already be done using the design from the last subtask and
simply wrapping multiple RTTransformingObject instances around the actual object to be transformed.
A maybe more efficient way to go about it is to use a CHAIN OF RESPONSIBILITY of the Transformations:

transformed
'y
1 | RTObject 1..%

World L |
HitPoint hitTest (Ray r) children

JAN

|
RTSimpleObject RTGroupObject
HitPoint hitTest (Ray r) HitPoint hitTest (Ray r) <>—
RTTransformingObject

HitPoint hitTest (Ray r)

Transformation
Vector transformDirVec (Vector v) 2
Vector transformLocVec (Vector v) next
Vector untransformLocVec (Vector v)

If we change this slightly by having the RTTransformingObject invoke each elementary transformation
in the sequence instead of passing the call from one transformation to the next, we can even pre-process
the transformation chain and optimise its performance by condensing it into a single transformation.

Task: When tracing complex objects it is often worthwhile to first check whether the ray will

ever intersect their bounding box (i.e., the smallest box completely enclosing the object). Enhance the
class structure to add this functionality. What design pattern could you use? Are there other ways of
doing it?

Solution: We use a PROXY RTGroupProxy which gets the bounding box and checks against that before
allowing the actual hit point to be computed. We could also have included the functionality directly into
the RTGroupObject, but that would have mixed it with the core functionality (while keeping memory
footprint slightly lower). Another possibility would have been to use a DECORATOR. This would have
made it possible to apply the optimisation also to transformed objects.

1 | RTObject 1..%
World .
HitPoint hitTest (Ray r) children
RTGroupProxy RTGroupObject
Box BoundingBox — | s . . <:>__
HitPoint hitTest (Ray r)
HitPoint hitTest (Ray r) group
== l
if (boundingBox.hitTest (r) !'= null)
return group.hitTest (r);
else
return null;

Task 2: Record Extension

Design an access layer for record-oriented employee data, which is held in several files. Your access layer
should support the following operations:

e getSalaryFor (id) returns the salary for the employee with the given id.
e addToSalary (id, value) increases the salary for the employee with the given id.

Employee data is stored in hierarchically organised files. Each file contains a sequence of records, each
of which either stores information about one employee or references another file with further employee
records. This structure has been used to reflect the hierarchy of the companies organisation in the
structure of the data storage.

Task: Design the core class structure. Your design should hide from the client all information

regarding the specific file in which a record is situated, while maintaining this information internally.
Which design pattern could you use?

Solution: We can use COMPOSITE as in the figure. The top-level file probably contains links to the
files containing the actual data (perhaps one per department).

DataHolder
. 1 1..*
Client -
getSalaryFor (id) children
addToSalary (id, value)
|

Record File

getSalaryFor (id) getSalaryFor (id)

addToSalary (id, value) addToSalary (id, value)

Task: The employee database can become rather big. It is therefore not very intelligent to load all

records into memory when the database is first opened. Rather, we would like to load only the records
that are accessed. Use CHAIN OF RESPONSIBILITY to implement this feature.

Solution: We change the composite pattern into a chain pattern, where each data holder knows its
next data holder. Initially, we have a File instance for the top-level file, containing only one instance
of FetchRecord. When getSalaryFor() is called on a FetchRecord, this will load the corresponding
record (respectively open the corresponding file) and link a corresponding instance directly before itself.
The getSalaryFor () call will then be redirected to the new instance.

next
1y
DataHolder
Client E -
getSalaryFor (id)
addToSalary (id, value) 1 content
| |
Record FetchRecord File
getSalaryFor (id) getSalaryFor (id) getSalaryFor (id)
addToSalary (id, value) addToSalary (id, wvalue) addToSalary (id, value)
| T1
owner

Task: Employee information is rather sensitive data, so we do not want everybody to be able to
access it. Enhance the design to allow for role-based access control (RBAC) to data.

Solution: We use a protection PROXY that we hand to our clients. This proxy collects all references to
the actual record and performs RBAC on each access..

Record

getSalaryFor (id)
addToSalary (id, value)

ActualRecord RBACProxy
getSalaryFor (id) 0..1 getSalaryFor (id)
addToSalary (id, value) record addToSalary (id, wvalue)

2d)| Task: Add the capability to keep the physical records in the files updated whenever addToSalary ()
has been called. Realise it so that files can be opened in read-only or in read-write mode.

Solution: We use an additional DECORATOR PersistenceDecorator which saves the record to the
disk when it has been changed. FetchRecord gets an additional parameter which tells it whether to
create the additional decorator.

Record

getSalaryFor (id)
addToSalary (id, value)

JAN

PersistenceDecorator

ActualRecord

RBACProxy

getSalaryFor (id)
addToSalary (id, value)

getSalaryFor (id)
addToSalary (id, value)

getSalaryFor (id)
addToSalary (id, value)

