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Formal Models of Design Patterns II

Task 1: Composite in RBML

Read and understand [1]. This paper presents RBML, a UML-like notation for representing design
patterns. The formal backing of this notation (representing the design patterns’ role models as extension
of the meta-model) allows for formal treatment of design patterns in actual models.

1a) Task:

Use RBML to represent the Composite design pattern.

Solution:
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1b) Task:

Go back to the task sheet on extensibility patterns and look at your solution for task 1a). Use the RBML
techniques presented in [1] to show that this is indeed a realisation of Composite.

Solution: Unfortunately, solution hint is not available.

Bibliography

1. Robert France, Dae-Kyoo Kim, Sudipto Ghosh, Eungee Song, A UML-Based Pattern Specification

Technique. IEEE Transactions on Software Engineering, Vol 30, number 3, pp 193-206, March 2004.
This paper is available online at the IEEE digital library by visiting http://ieeexplore.ieee.org/Xplore/DynWel.jsp and

searching for it by title. You should have access to the digital library from any computer in the domain of the Computer

Science Department.

Task 2: OWL Observant

Read and understand [1]. This presents an approach that uses Semantic Web technology (in particular
ontologies) to model design patterns. An ontology can be viewed (grossly simplifying) as a special kind
of class diagram modelling concepts and their relations. An ontology, thus, provides vocabulary allowing
to talk about a specific domain.

2a) Task:

Use the technology from [1] to model the Observer design pattern.

Solution: The following is a graphical representation of the resulting ontology. To simplify matters
we have left out all properties relating to concepts from ODOL (as specified in wop.rdf). Instead, we
have used ellipses to denote class templates, diamonds to denote association templates, parallelograms
for method templates and rectangles for data-type values.
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Task 3: Discussion: Formal Representation of Design Patterns

From your experience with the pattern formalisations looked at so far, what are the benefits and draw-
backs of attempts at formalising design patterns?

Solution: The main points to be discussed here are: Ambiguity, Relations between Patterns, Automa-
tion and Tool Support, Difficulty, Lack of Variation in formally specified patterns, . . .

3


