
Design Patterns and Frameworks

Dipl.-Inf. Florian Heidenreich
INF 2080
http://st.inf.tu-dresden.de/teaching/dpf

Exercise Sheet No. 9

Software Technology Group
Institute for Software and Multimedia Technol-
ogy
Department of Computer Science
Technische Universität Dresden
01062 Dresden

Formal Models of Design Patterns II

Task 1: Composite in RBML

Read and understand [1]. This paper presents RBML, a UML-like notation for representing design
patterns. The formal backing of this notation (representing the design patterns’ role models as extension
of the meta-model) allows for formal treatment of design patterns in actual models.

1a) Task:

Use RBML to represent the Composite design pattern.

Solution:

Class Role

|Client

1 Class Role

|Component

Operation Role

|Operation (Parameter Role |p: |t 0..*) 0..*

1 Association

Role

Class Role

|Leaf

Operation Role

|Operation (Parameter Role |p: |t 0..*) 0..*

1..*

Class Role

|Composite

Operation Role

|Operation (Parameter Role |p: |t 0..*) 0..*

1..*

Generalization Role

Association

Role

|child

1

{isAbstract}

{not isAbstract}
Class Role

|CompSpec

0

|parent

1

1

1b) Task:

Go back to the task sheet on extensibility patterns and look at your solution for task 1a). Use the RBML
techniques presented in [1] to show that this is indeed a realisation of Composite.

Solution: Unfortunately, solution hint is not available.

Bibliography

1. Robert France, Dae-Kyoo Kim, Sudipto Ghosh, Eungee Song, A UML-Based Pattern Specification

Technique. IEEE Transactions on Software Engineering, Vol 30, number 3, pp 193-206, March 2004.
This paper is available online at the IEEE digital library by visiting http://ieeexplore.ieee.org/Xplore/DynWel.jsp and

searching for it by title. You should have access to the digital library from any computer in the domain of the Computer

Science Department.

Task 2: OWL Observant

Read and understand [1]. This presents an approach that uses Semantic Web technology (in particular
ontologies) to model design patterns. An ontology can be viewed (grossly simplifying) as a special kind
of class diagram modelling concepts and their relations. An ontology, thus, provides vocabulary allowing
to talk about a specific domain.

2a) Task:

Use the technology from [1] to model the Observer design pattern.

Solution: The following is a graphical representation of the resulting ontology. To simplify matters
we have left out all properties relating to concepts from ODOL (as specified in wop.rdf). Instead, we
have used ellipses to denote class templates, diamonds to denote association templates, parallelograms
for method templates and rectangles for data-type values.

2

ConcreteSubjectConcreteSubject SubjectSubject ObserverObserver ConcreteObserverConcreteObserver

Subject.notifySubject.notify Observer.updateObserver.update CO.updateCO.update

isSubClassOf isSubClassOf

contains contains contains

calls overrides

client supplier

TRUETRUE

isDirected

ONE2MANYONE2MANY

card

ONE2ONEONE2ONE

isDirected

card

supplier client

Bibliography

1. Jens Dietrich and Chris Elgar. A Formal Description of Design Patterns Using OWL. In Proc.
2005 Australian Software Engineering Conference (ASWEC’05), IEEE Press, 2005.

Task 3: Discussion: Formal Representation of Design Patterns

From your experience with the pattern formalisations looked at so far, what are the benefits and draw-
backs of attempts at formalising design patterns?

Solution: The main points to be discussed here are: Ambiguity, Relations between Patterns, Automa-
tion and Tool Support, Difficulty, Lack of Variation in formally specified patterns, . . .

3

