
Fakultät Informatik, Institut für Software- und Multimediatechnik, Lehrstuhl für Softwaretechnologie

2. Software Development as
Engineering Activity

Prof. Dr. U. Aßmann
Technische Universität Dresden
Institut für Software- und Multimediatechnik
Gruppe Softwaretechnologie
http://st.inf.tu-dresden.de
WS 11-0.3, 17.10.11

1.  Software Engineering Scenarios
2.  A simple run through the life cycle

Obligatory Reading

►  Balzert Introduction
►  Maciaszek/Liong Chap. 1
►  Ghezzi Chap 5+7 or
►  Pfleeger Chap 2+4
►  Ed Seidewitz. What models mean. IEEE Software, 20:26-32, September

2003.
►  http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1231147&tag=1

Prof. U. Aßmann Engineering

References

►  M. Pidd. Tools for Thinking. Modeling in Management Science. Wiley. Gives
a good overview on modeling in general (soft and hard models)

►  www.omg.org/mda Model driven architecture® is a process that structures
refinement-based development, using UML

►  Favre’s papers on egyptology:
►  Jean-Marie Favre. Foundations of model (driven) (reverse) engineering: Models -

episode I: Stories of the fidus papyrus and of the solarus. In Jean Bezivin and Reiko
Heckel, editors, Language Engineering for Model-Driven Software Development,
number 04101 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2005.
Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl, Germany.

►  Jean-Marie Favre. Foundations of meta-pyramids: Languages vs. metamodels-
episode II: Story of thotus the baboon1. In Jean Bezivin and Reiko Heckel, editors,
Language Engineering for Model-Driven Software Development, number 04101 in
Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2005. Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl,
Germany.

Ø  JR Abrial, Stephan Hallerstede. Refinement, decomposition, and
instantiation of discrete models: Application to Event-B. Fundamenta
Informaticae, 2007
•  http://dl.acm.org/citation.cfm?id=1365974&CFID=49627514&CFTOKEN=73132377

Prof. U. Aßmann Engineering

Scenario of Running Example

Ø  You are a project manager in Hamann/Becker Car Radios, Inc, Karlsruhe,
Germany

Ø  Your boss comes into your office and says:

Ø  “Our competitor Smith Car Radios has a new satellite radio. Their sales
are growing, and our customers demand it, too. How quickly can you
deliver me a satellite radio?”

Prof. U. Aßmann Engineering

First Ideas

►  How many people?
■  do we have the right ones?

►  Which milestones (deadlines)?
►  How many resources?
►  What should the radio be able to do?
►  Why will it better than the competitors? (competitive business edge)

►  How can we go the way in a structured way towards the product?
►  How can we engineer it?

Prof. U. Aßmann Engineering

What is Software Engineering?

►  It teaches the production of software with engineering techniques (the
engineer's toolkit)

►  Model
►  Analysis
►  Prediction
►  Construction
►  Reuse
►  Validation
►  Improvement
►  Sell

Prof. U. Aßmann Engineering

Specification,
Models, Code

Software engineers model, measure, predict,
build, validate, improve, and sell

The (Software) Engineer's Toolkit

Ø  Model a reality (a domain or a system)
•  Describe or specify
•  World and problem modeling vs. system modeling

Ø  Analyze (measure) a reality (a model or a system)
■  Identifying the problem (problem analysis, goal analysis, risk analysis)
■  Measuring (Software metrics)
■  Searching and finding
■  Controlling

►  Predict features of a product from the model (form hypotheses, prove)
■  Specifying features and requirements of a system
■  Forming hypotheses about the system

►  Construct a product (realize, develop, invent, build)
■  Elaboration (adding more details to the model to arrive at an implementation)
■  Compose a system from components
■  Describing the infinite and the unknown with finite descriptions
■  Structure a model (making the model more clear)

.  Refinement (making the model more precise and detailed)

.  Abstraction (leaving out detail, focusing on the essential)

.  Domain Transformation (changing representation of model)
►  Reuse parts of products

►  Engineer a product line (product family)

Prof. U. Aßmann Engineering

The (Software) Engineer's Toolkit

►  Validate hypotheses on the product
■  Experimentation (empirical software engineering)
■  Checking (consistency, integrity, wellformedness, completeness, soundness)
■  Testing
■  Proving (formal software engineering, formal methods)
■  Statistics (not covered here)

►  Improve the product
■  Reverse engineer
■  Restructure
■  Optimize with regard to a value model

►  Sell the product(s)
■  The software engineer solves problems to earn money for his company and himself
■  How to come to products?
■  How to talk to customers?
■  How to see the problem of the customer?
■  How to reach a market with a product?
■  How to found a startup?
■  Often, engineers are good technicians, but fail to sell the products

Prof. U. Aßmann Engineering

2.1. SCENARIOS OF
SOFTWARE ENGINEERING

Forward Engineering, Backward Engineering,
Improvement, Round-Trip Engineering

Prof. U. Aßmann Engineering

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

Changed
Requirements

Changed
Design

Changed
Code

Evolution

Forward Engineering

With CASE tools, implementations can be generated
from implementation models

Forward Engineering and Evolution

Prof. U. Aßmann Engineering

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

Changed
Requirements

Changed
Design

Changed
Code

Software Evolution

►  Changed requirements require refactoring and extensions

Prof. U. Aßmann Engineering

Changed
Requirements

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

Changed
Requirements

Gained
Design

Changed
Code

Lost Requirements
Lost Design

Software Reengineering

►  Reverse Engineering attempts to recover design from code
►  Reengineering uses the gained design for further forward engineering

Prof. U. Aßmann Engineering

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

Requirements

Automated
Design

Automated
Code

The Dream: Automated Programming

►  Automated programming (generative programming) generates code
from requirements automatically.
■  It will need planning and expert system support

Prof. U. Aßmann Engineering

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

Changed
Requirements

Changed
Design

Changed
Code

Round-Trip Engineering
(Forward and Backward)

►  Round-trip engineering combines forward and reverse engineering
■  It allows for editing on all levels, keeping all artefacts consistent

Prof. U. Aßmann Engineering

2.2 A RUN THROUGH AN
ENGINEERING CYCLE

Prof. U. Aßmann Engineering

2.2.1 First Step: Analysis

►  How do we arrive from the
requirements at the
product? Let's take an
engineer's approach
(Analysis steps):
■  Engineers analyze problems to

understand what to do
■  Engineers specify a solution and

realize (construct) it
■  For both activities, engineers

model the world to master it

►  Steps
■  We fix the requirements in a

requirement specification
(requirements models)

■  We go step by step through
different design models

■  ... until we arrive at the
implementation model (which is
the system)

Prof. U. Aßmann Engineering

Satellite radio requirement specification
(using analysis model 1, milestone 2)

Design (model 3, milestone 3)

Prototype (model 4, milestone 4)

Prototype 2 (model 5, milestone 5).
Will be delivered to beta-testers

System (model 6, milestone 6)

Satellite radio domain analysis
(milestone 1)

But... What Is A Model?

►  Pidd suggests a hierarchy of definitions:
■  A model is a representation of reality
■  A model is a representation of reality intended for some definite purpose
■  A model is a representation of reality intended to be of use to someone charged

with understanding, changing, managing, and controlling that reality
■  A model is a representation of a part of reality as seen by the people who wish

to use it
■  To understand that reality
■  To change, manage, and control that reality

►  More simply:
■  A model is a representation of a part of a domain, or of a function of a system,

its structure, or behavior
■  A model is an abstraction of a system

►  A model is partial, i.e., abstract, and neglects some parts of the reality
►  A descriptive model allows to understand a reality
►  A prescriptive model allows to change, manage, and control a reality

►  Question: what does this mean for the Satellite radio?

Prof. U. Aßmann Engineering

The World

Problem Domain

Problem Analysis

What is the problem?

Problem model

(Analysis model)

Models the problem reality

Software Systems

System Domain

System Design

What is the solution?

System model
(Design model)

Models the system reality

To Produce Software, We Model

►  Software construction uses two kinds of models

Prof. U. Aßmann Engineering

Prescriptive
models
(specifications)

Descriptive
(analytic)
models

The World

Problem Domain

Problem Analysis

No FM in USA

Digital radio quality required

everywhere

Software Systems

System Domain

System Design

Satellite Radio

Software-controlled
embedded system

The Satellite Radio as Example

Prof. U. Aßmann Engineering

Radio

Loudness

Tuner

RadioFeature

Loudness
Brightness

Tremble
Loudness

Descriptive Models:
Glossaries, Classifications and Taxonomies

►  A glossary is a set of explained terms
►  A classification is a grouping of the concepts of a domain into classes
►  A taxonomy superimposes a hierarchical or acyclic is-a relationship

■  Analyse similarity (commonality-variability analysis)

Prof. U. Aßmann Engineering

Ontologies as Standardized Domain Models

►  A (domain) ontology is a shared, standardized model for a domain,
consisting of a taxonomy and integrity constraints (consistency
constraints) constraining the hierarchy
■  Rules to produce derived parts of the hierarchy. The derived parts are intentionally

specified
►  Ontologies are standardized domain models and play an important role in

domain analysis
■  In general, a domain model need not necessarily be standardized
■  For many domains, domain modeling will start from these ontologies
■  Domain engineers produce domain ontologies

►  Example:
■  Dublin Core ontology with concepts such as Date, Author, Comment
■  Medical ontologies, such as gopubmed.org
■  Upper ontologies (conceptual ontologies), such as SUO suo.ieee.org
■  Biochemical ontologies (Gene ontology www.geneontology.org)

►  Ontologies in the Semantic Web
■  In 2003, the W3C has standardized the first ontology language for the web: OWL

(web ontology language)

Prof. U. Aßmann Engineering

Ontology in OWL „Manchester Syntax“

Prof. U. Aßmann Engineering

What is a Specification?

►  A specification is a prescriptive model (blue print) of the system, i.e., a
precise description what a system
■  should deliver (service, delivery, postconditions, guarantees)
■  requires for the delivery (requirements, preconditions, assumptions)
■  “the truth lies in the model” (J.M. Favre)

►  A specification must be realized (implemented). An implementation can be
verified with regard to a specification
■  showing that the implementation derives the delivery from the requirements

►  A specification contains one or several models of the system
■  Models are abstract, partial representations of partial knowledge

►  However, often, the word specification and model are used interchangeably

(which is not precise)

Prof. U. Aßmann Engineering

Different Kinds of Specifications and Models

Ø  Descriptive (Analysis) models
Ø  Domain model:

•  Domain analysis is the process of
identifying and organizing knowledge
about the application domain

Ø  “Real”-Problem model:
•  Usually, the requirement specification

includes a problem model –
to support description and solution
of these problems

Ø  Goal models
•  What do we want to achieve with the

system?

Prof. U. Aßmann Engineering

Ø  System models (specifications)
Ø  From the analysis models, we

derive the system models.
Ø  Requirements specification (SRS):

•  the specification what the system
should deliver.

•  Functional requirement model:
system functions

•  Non-functional requirement model:
system qualities

Ø  Design models:
Ø  abstract representation of a system

on the level of a design language
Ø  Architecture models

•  Describing the software architecture
Ø  Implementation models:

Ø  partial representation of the
system on the level of an
implementation language

Structural vs. Behavioral Models

►  A structural model captures the structure of a reality
►  Integrity constraints for well-formedness

►  A behavioral model captures its behavior
►  A behavioral model uses a structural model and adds a model how a reality

reacts
■  operations (functions, procedures, methods, …)
■  event-condition-action rules,
■  a state space

►  Objects have a state space, often represented by
■  Petri-nets (see later) and their specializations:

■  a finite state machine
■  a hierarchical state machine (state chart)
■  data-flow diagrams

■  Process algebra

Prof. U. Aßmann Engineering

Domain model, may be an ontology

Implementation model (partial code)

Steps

System requirements specification with
requirements models (SRS)

more details added

Specifications and Models in Software Engineering

►  From declarative to behavioral models

Prof. U. Aßmann Engineering

Code

System design specification with design models (SDS)
starts to be behavioral

2.2.2 Second Step: Prediction

►  Behavioral models allow for prediction.
■  Graph-based models can be consistency-checked with logic reasoners

.  Integrity constraints constrain the object sets (object extents) of the classes

.  Structural constraints (reducibility, layering)
■  Petri nets can be verified with matrix theory

.  Resource consumption (memory consumption)

.  Liveness of the processes

.  Fairness of the processes

.  Deadlocking processes
■  Statecharts can be checked with model checkers
■  Real-time statecharts can be time-checked with real-time model checkers

►  This area is called formal methods of software engineering

Prof. U. Aßmann Engineering

2.2.3 THIRD STEP:
CONSTRUCTION

Prof. U. Aßmann Engineering

How to come to the next model?

Construction with Refinement-Based Development

►  The construction of systems starts off from Domain Model over
Requirement Specification and Design Specification to Implementation
Model to Code:
■  Develop the next specification, starting from the previous ones

Ø  Construction steps:
Ø  For every model, start with some simple form. Then, apply elaboration

steps:
►  Elaboration: Elaborate more details – enrich with more semantics
►  Refinement: Refine an existing specification/model, by detailing an abstract concept
►  Check: Check consistency of models
►  Measure quality and quantity of models
►  Compose from components
►  We can distinguish several methods of development

Prof. U. Aßmann Engineering

Questions for the Methods of Development

►  Elaboration: Elaborate more details
■  Which Elaboration steps exist?
■  How do I know in which direction to elaborate?

►  Pointwise Refinements (concretizations): detailing an abstract
concept
►  With and without correctness proofs that the semantics of the abstract

concept is provided by the refinement

►  Rotations: Apply a semantics-preserving change
■  Rotate: Symmetry operations (semantics-preserving operations)
■  Restructure (refactor) (more structure, but keep requirements and delivery, i.e.,

semantics)
■  Which restructuring? (when is a specification too complex?)

■  Transform Domains (change representation, but keep semantics)
■  Which representation change? (which representations are appropriate for

which purpose?)

Prof. U. Aßmann Engineering

Reuse of Models and Code in Construction

►  Engineers try to reuse well-established solutions
■  Components (CBSE)
■  Design patterns
■  Models (model-driven architecture)
■  Best practives

►  To simplify system construction
■  To save costs
■  To reduce testing effort

Prof. U. Aßmann Engineering

2.2.4. 4TH STEP:
VALIDATION

Prof. U. Aßmann Engineering

Validation in a Software Development Process (V-Process Model)

►  All specifications and models have to be validated or formally verified.
■  Detailed models against more abstract models
■  Implementations against specifications

►  Result: A V-like software development process

Prof. U. Aßmann Engineering

Domain Model

Requirements
Specification

System Design

Code

Maintenance

Acceptance Test

Functional Test

validation

validation

validation

Domain Model
(car, speed, traffic,

GPS, Wireless)

Requirements Specification
(user desires, business models)

System Design
(control, sensors, connection

to car bus, satellite connection)

Code

Maintenance
(Error feedback, customer

feedback)

Acceptance Test
Field test with user

groups and car company

Functional Test
(inhouse at Becker)

validation

validation

validation

Validation of the Satellite Radio in the V-Model

Prof. U. Aßmann Engineering

2.2.5 5TH STEP:
IMPROVEMENT

Prof. U. Aßmann Engineering

5th Step: Improvement

►  Done via iteration, and ad-hoc
■  Not in the focus of the course.

►  Section “Product Lines” will treat some aspects of software evolution,
namely when new products should be derived from an existing product or
product family.

►  Optimization means: Improve on the qualities of the system
■  Speed, reliability, resource consumption

Prof. U. Aßmann Engineering

2.2.6 6TH STEP: SELLING
SOFTWARE

Some aspects in section “Earning Money with Software”.

Prof. U. Aßmann Engineering

The Best Seller Is...

►  .. the one who solves a problem best
►  .. the one who pretends to solve a problem best
►  .. the one who solves a problem just good enough
►  .. the one who solves a problem reliably

Prof. U. Aßmann Engineering

??

What Have We Learned?

►  Specifications (complete representations of what the problem is or the
system should do) consist of models (abstract representations of worlds)
■  Analysis models in the problem domain
■  System models in the system domain

►  Engineers analyze, form hypotheses, construct, validate, improve, sell
■  Detailed models are validated against their more abstract ancestors
■  Implementations are validated against specifications

►  The course is structured along these activities

Prof. U. Aßmann Engineering

Remark: Software and Systems Engineering

►  Software Engineering is closely related to a twin, the Systems Engineering
■  Building software into a system (embedded system)
■  Many concepts can be used in both areas.

.  See study line “Distributed Systems Engineering (DSE)”.

Prof. U. Aßmann Engineering

