14) Abstract Interpretation of
Behavior Specification

||l Languages

Prof. Dr. rer. nat. Uwe ABmann 1) Abstract Interpretation (Al)

Institut fur Software- und 2) lteration
Multimediatechnik

Lehrstuhl Softwaretechnologie
Fakultat fur Informatik
TU Dresden
http://st.inf.tu-dresden.de
Version 11-1.2, 10.12.11

@ SEW, © Prof. Uwe Amann 1

http://st.inf.tu-dresden.de/

- Obligatory Literature

» David Schmidt. Tutorial Lectures on Abstract Interpretation. (Slide
set 1.) International Winter School on Semantics and Applications,
Montevideo, Uruguay, 21-31 July 2003.

http://santos.cis.ksu.edu/schmidt/Escuela03/home.html

» List of analysis tools
http://en.wikipedia.org/wiki/List of tools for static_code analysis

| F
Prof. U. ABmann, SEW 2

Other Resources

» Selective reading:

Neil D. Jones and Flemming Nielson. 1995. Abstract interpretation: a
semantics-based tool for program analysis. In Handbook of logic in
computer science (vol. 4), S. Abramsky, Dov M. Gabbay, and T. S. E.
Maibaum (Eds.). Oxford University Press, Oxford, UK 527-636.

http://dl.acm.org/citation.cfm?id=218637
Michael Schwartzbach's Tutorial on Program Analysis
http://lara.epfl.ch/dokuwiki/ media/sav08:schwartzbach.pdf

» Patrick Cousot's web site on A.l. http://www.di.ens.fr/~cousot/Al/

» [CC92] J. Knoop and B. Steffen. The interprocedural coincidence
theorem. In U. Kastens and P. Pfahler, editors, Proceedings of the
International Conference on Compiler Construction (CC), volume
641 of Lecture Notes in Computer Science, pages 125-140,
Heidelberg, October 1992. Springer.

» [Kam/Ullmann] John B. Kam and Jeffery D. Ullmann. Global data
flow analysis and iterative algorithms. Journal of the ACM, 23:158-

171, 1976.
Prof. U.ABmann,S?VI 3

http://lara.epfl.ch/dokuwiki/_media/sav08:schwartzbach.pdf
http://www.di.ens.fr/~cousot/AI/

14.1 Abstract Interpretation
D (A.l.)

@ SEW, © Prof. Uwe ABmann 4

.

[VW factory]

3

What is Abstraction?

Abstraction is the neglection of unnecessary detail.
(Abstraktion ist das Weglassen von unnotigen Details)

» A thing of the world can be abstracted differently
» This generates mappings from a concrete domain (D) to abstract

domains (D#)

color: dark

i

grey

Species: Car

T

Phaeton

weight: heavy

2 ton

| F
Prof. U. ABmann, SEW 5

Interpretation and Semantics of Programs

» Given a fixed set of input values, a program has a concrete
standard semantics.
Denotational semantics (result semantics):
The output values
Operational semantics:
The set of traces of the execution
The set of states in the execution traces

Axiomatic semantics:
The set of all true predicates at each execution point

» A collecting semantics selects a subset of interest from the
standard semantics, in preparation of the abstract interpretation.
The values stay concrete.

» An abstract interpretation interprets on the abstract
semantics, an abstraction of the the collecting semantics

L
Prof. U. ABmann, SEW 6

Abs

tra

ction

Abstract

Concrete

Program Analysis

Heap
analysis

/
Alias
analysis

Security
analysis

checks | variables . morpnism
semantics analysis

Control-flow analysis

Data-flow analysis '

Collecting Semantics
(concrete interpretation collecting specific concrete values)

Standard Semantics

- What is a Procedure?

» A procedure is a parameterized code component (code template)
for a behavior in a BSL

a hamed lambda abstraction with parameters

has a return instruction that returns a return value

Is @ schema for a runtime instance, an activation record
a schema for execution traces

an abbreviation for code that is called from different reference points
(call sites)

» Code templates (parameterized components) can be found in any
specification or programming language
Z, ..
Generic classes in Generic Java
» However, procedures form the component model of the chip,

because they can be compiled isomorphically to the chip's
instruction pair JUMP-SUBROUTINE-RETURN

» Therefore, procedures are coarse-grain instructions of the chip

L %
Prof. U. ABmann, SEW 8

[VW factory]

3

Abstract Interpretation

» Abstract interpretation is static symbolic execution of the

program with abstract symbolic values

Since the values cannot be concrete we must abstract them to
"easier" values, i.e., simpler domains of finite count, height, or

breadth

» Values are taken from the abstract domains (called D#)

complete partial orders (cpo, with “or” or “subset”),
semi-lattices (cpo with some top elements) or
lattices (semi-lattice with top and bottom element)

» The suprenum operation of the cpo expresses the “unknown”, i.e.,
the unknown decisions at control flow decision points (if's)

weight: heavy
2ton S heavy
2 ton

color; dark
grey<d¢1rk
grey
-
Species: Car
Phaetm?g Car
Phaeton

L F
Prof. U. ABmann, SEW o

- Functions for Abstract Interpretation

» f: D - D, run-time semantics of the program (interpreter)
» abs: D » D#, abstraction function from concrete to abstract
» conc: D# - D, concretization function from abstract to concrete

» f#:D# —» D#, abstract interpretation function (abstract
semantic function, flow/transfer function)

» f# is like a shadow of f

D#
Static analysis
— > — — >
Dynamic] i [i
execution > >
D

Time I
@ Prof. U. ABmann, SEW 10

- The Iron Law of Abstract Interpretation

» The abstract interpretation must be correct, i.e., faithfully abstracting the
run-time behavior of the program

» Abs (abstraction function), conc (concretization function), and f#
(abstract interpretation function) must form a commuting diagram

The abstract interpretation should deliver all correct values, but may be
more

They must be "interchangeable", formally: a Gaulois connection

» The interpretation must be a subset of the abstract interpretation: f subset
conc o f# o abs

The concrete semantics must be a subset of the concretization of the
abstract semantics (conservative approximation)

The abstract semantic value is a superset of the concrete semantic value

after application of the transfer function f#

The concrete value of f must be a subset — >

of the abstracted value after @
application of the transfer function Q CONG

___________ F
Prof. U. ABmann, SEW 11

Ex. Concrete and Abstract Values over int

Concrete Domain is mapped to abstract domain

» Here: subsets of D=int to symbolic D#="abstract sets over ints”
» Top means any-concrete-value, bottom means none

» CpO suprenum operation meet is subsetting

_—vint

(32,0123,
___—»non-negativ

w»Non-negative

__“wnegative

. ——wempty

Prof. U. ARmann, SEW | 12

- Sets of Interpretation Functions

» For an abstract interpretation, for all nodes 1..k in the control flow
graph, set up interpretation functions (transfer functions), each for
one statement of the program:

They form the core of the abstract interpreter

\f L— L]

<

S, L—= L

S, L—L

| F
Prof. U. ARmann, SEW 13

Ubiquituous A.l.

» Any program in any programming or specification language can be
interpreted abstractly, if a collecting semantics is given.

» Examples:
A.l. of embedded C programs
A.l. of Prolog rule sets
A.l. of ECA-rule bases
A.l. of state machines (looks like model checking, see later)
A.l. of Petri Nets

» Quality analyses:
Worst case execution time analysis (WCETA)
Worst case energy analysis (WCENA)
Security analysis

» Functional analysis
Value analysis (“data-flow analysis”)
Range check analysis, null check analysis
Heap analysis, alias analysis

___________ F
Prof. U. ABmann, SEW 14

14.2 Iteration of Abstract
D Interpreters

@ SEW, © Prof. Uwe ABmann 15

= Intraprocedural Coincidence Theorem

[Kam/Ullman] Interprocedural Coincidence Theorem:
The maximum fixpoint of an iterative evaluation of the system of
abstract-interpretation functions f,, at a node N is equal to the value of the meet

over all paths to a node n (MOP(n))

» Forall n:Node: MFP(n,f) = MOP(n,f)

» Means
No matter how the abstract-interpretation functions are iterated, if
they stop, they stop at the meet over all paths

Any iteration algorithm can be used to reach the abstract values at
each node (i.e., the maximal fixpoint of the function system)

L F
Prof. U. ABmann, SEW 16

Example:
a|l Interpretation with Worklist Algorithms

» Iteration can be done with many strategies

» E.qg., iterating forward over a worklist that contains “nodes not
finished”

worklist := nodes;

WHILE (worklist = NULL) DO

SELECT n:node FROM worklist;

// forward propagation from predecessors to n
FORALL p in n.ControlFlowGraph.predecessors

X :=meet(f#(p));

// test fixpoint condition
IF (X |=value(n)) THEN

value(n) = X;
worklist += n.ControlFlowGraph.successors;
END

END

| F
Prof. U. ARmann, SEW 17

Interprocedural Control Flow Graphs and
Valid Paths

» Flow Functions f# can be on Nodes f#(n), or on Edges f#(e)
» Interprocedural edges are call edges from caller to callee
» Local edges are within a procedure from "call" to "return”

» Problem: not all interprocedural paths will be taken at the run time
of the program
Call and return are symmetric
From whereever | enter a procedure, to there | leave

» An interprocedurally valid path respects the symmetry of

call/return
CallerB

I F
Prof. U. ARmann, SEW 18

Interprocedural Problems

» Non-valid interprocedural paths invalidate the coincidence for the
interprocedural case

» Knoop found a restricted one [CC92]:
No global parameters of functions
Restricted return behavior

| F
Prof. U. ARmann, SEW 19

The End

SEW, © Prof. Uwe ABmann 20

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

