

16 Software Model Checking and its Tools

 Courtesy to Willem Visser. Used by permission.

Kapitel 2.9, "Softwarewerkzeuge"

Prof. U. Aßmann, TU Dresden

Available at:

http://www.visserhome.com/willem/presentations/presentations.html

Software Model Checking

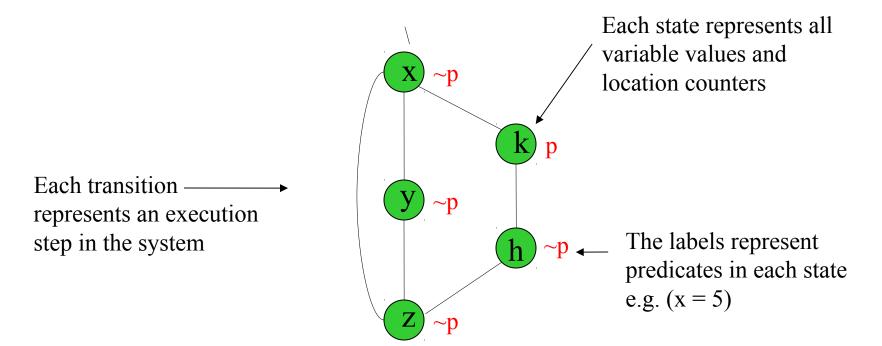
Shortened from Willem Visser, Tutorial at ASE 2002

Research Institute for Advanced Computer Science
NASA Ames Research Center

Overview

- Introduction to Model Checking
 - Hardware and Software Model Checking
- Program Model Checking
 - Major Trends
 - Abstraction
 - Improved model checking technology
 - A Brief History
 - SPIN
 - Hand-translations
 - State-less model checking
 - Semi-automated translations
 - Fully automated translations
 - Current Trends
 - Custom-made model checkers for programs
 - SLAM
 - JPF
 - Summary
- NASA Case Studies Remote Agent, DEOS and Mars Rover
- Future of Software Model Checking

Model Checking The Intuition

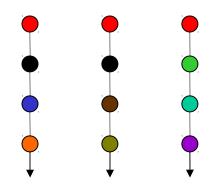


- Calculate whether a system satisfies a certain behavioral property:
 - Is the system deadlock free?
 - Whenever a packet is sent will it eventually be received?
- So it is like testing? No, major difference:
 - Look at all possible behaviors of a system
- Automatic, if the system is finite-state
 - Potential for being a push-button technology
 - Almost no expert knowledge required
- How do we describe the system?
- How do we express the properties?

Kripke Structures are Labeled State Graphs plus Predicates

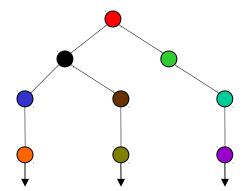
 $K = (\{p, p\}, \{x, y, z, k, h\}, R, \{x\}, L)$

Property Specifications with Temporal Logic



Temporal Logic

- Express properties of event orderings in time
- e.g. "Always" when a packet is sent it will "Eventually" be received


Linear Time

- Every moment has a unique successor
- Infinite sequences (words)
- Linear Time Temporal Logic (LTL)

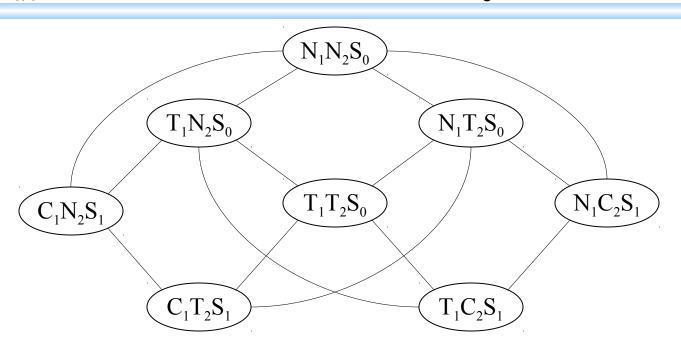
Branching Time

- Every moment has several successors
- Infinite tree
- Computation Tree Logic (CTL)

Safety and Liveness

- Safety properties
 - Invariants, deadlocks, reachability, etc.
 - Can be checked on finite traces
 - "something bad never happens"
- Liveness Properties
 - Fairness, response, etc.
 - Infinite traces
 - "something good will eventually happen"

Direction


- Model checking can be done
- Forward:
 - Searching from the initial state to reachable states, checking the condition
- Backward
 - Searching from the states in which a condition should hold backward to the initial state
 - In particular possible for reachability questions

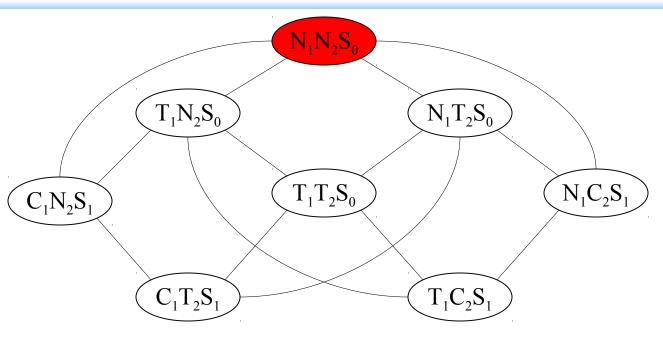
- Two process mutual exclusion with shared semaphore
- Each process has three states
 - Non-critical (N)
 - Trying (T)
 - Critical (C)
- Semaphore can be available (S_0) or taken (S_1)
- •Model checkers construct a global system state space from the process
- Initially both processes are in the Non-critical state and the semaphore is available --- $(N_1 N_2 S_0)$

System State Space (Backward Reachability Question)

 $K \models AG EF (N_1 \text{ and } N_2 \text{ and } S_0)$

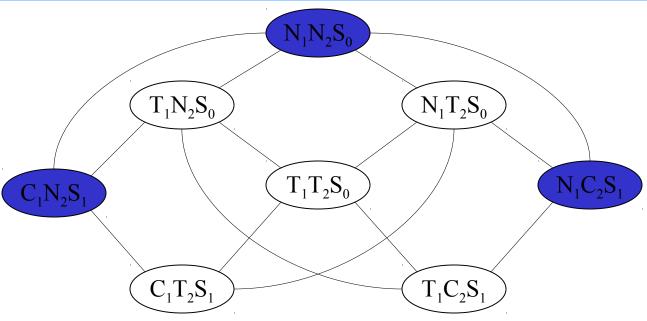
All Globally

Exist Finally


24 September 2002

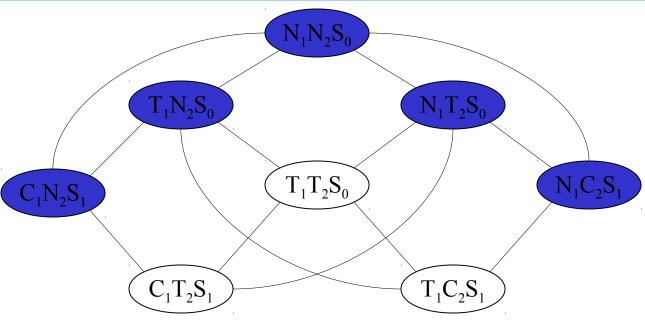
No matter where you are there is always a way to get to the initial state

Mutual Exclusion Example: Backward Analysis

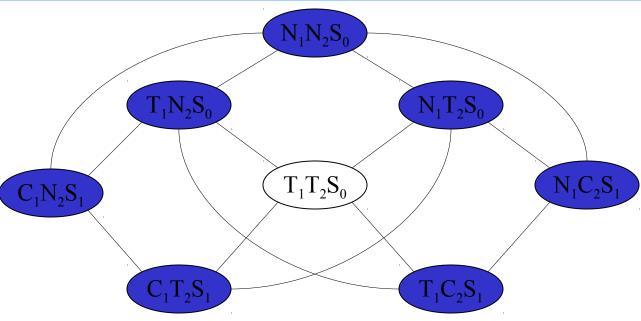

$$K \models AG EF (N_1 \text{ and } N_2 \text{ and } S_0)$$

Model checkers do reachability of states: here, backward Search for paths.

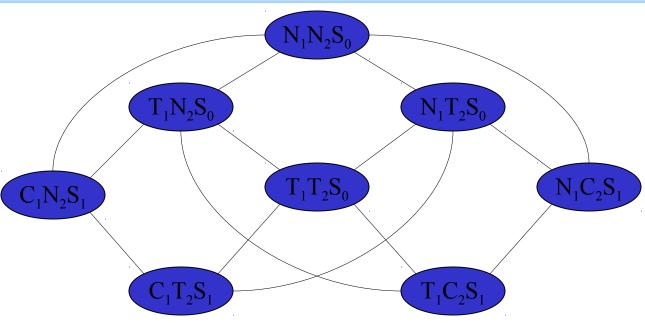
24 September 2002



$$K \models AG EF (N_1 \text{ and } N_2 \text{ and } S_0)$$



$$K \models AG EF (N_1 \text{ and } N_2 \text{ and } S_0)$$



$$K \models AG EF (N_1 \text{ and } N_2 \text{ and } S_0)$$

$$K \models AG EF (N_1 \text{ and } N_2 \text{ and } S_0)$$

Proven.

Model Checking

• Given a Kripke structure M = (S, R, L) that represents a finite-state concurrent system and a temporal logic formula f expressing some desired specification, find the set of states in S that satisfy f:

$$\{ s \text{ in } S \mid M, s \models f \}$$

• Normally, some states of the concurrent system are designated as initial states. The system satisfies the specification provided all the initial states are in the set. We often write: M | f

Explicit vs. Symbolic Model Checking

Explicit State

- states are enumerated on-the-fly
- Forwards analysis
- Stores visited states in a hashtable

Characteristics

- Memory intensive
- Good for finding concurrency errors
- Short execution paths are better, but long execution paths can also be handled
- Can handle dynamic creation of objects/threads
- Mostly used in software

Symbolic

- Sets of states are manipulated at a time
- Typically a backwards analysis in the automaton
- Transition relation encoded by Binary Decision Diagrams (BDDs) or as a satisfiability problem

Characteristics

- Can handle very large state spaces
- Not as good for asynchronous systems
- Cannot deal well with long execution traces
- Works best with a static transition relation, hence doesn't deal well with dynamic creation of objects/threads
- Mostly used in hardware

Overview

- Introduction to Model Checking
 - Hardware Model Checking
 - Software Model Checking
- Program Model Checking
- Case Studies
- Future of Software Model Checking

Hardware Model Checking

- BDD-based model checking was the enabling technology
 - Hardware is typically synchronous and regular, hence the transition relation can be encoded efficiently
 - Execution paths are typically very short
- The Intel Pentium bug
 - got model checking on the map in the hardware industry
 - Intel, IBM, Motorola, etc. now employ hundreds of model checking experts

Software Model Checking

- Until 1997 most work was on software designs
 - Since catching bugs early is more cost-effective
 - Problem is that everybody use a different design notation, and although bugs were found the field never really moved beyond some compelling case-studies
 - Reality is that people write code first, rather than design
- The field took off when the seemingly harder problem of analyzing actual source code was first attempted

Program Model Checking

- Why is program analysis with a model checker so much more interesting?
 - Designs are hard to come by, but buggy programs are everywhere!
 - Testing is inadequate for complex software (concurrency, pointers, objects, etc.)
 - Static program analysis was already an established field, mostly in compiler optimization, but also in verification.

The Trends in **Program Model Checking**

Most model checkers cannot deal with the features of modern programming languages

- Bringing programs to model checking
 - By abstraction (including translation)
- Bringing model checking to programs
 - Improve model checking to directly deal with programs as input

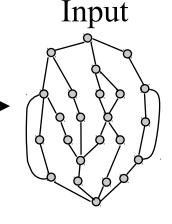
Overview

23

- Introduction to Model Checking
- Program Model Checking
 - Major Trends
 - Abstraction
 - Improved model checking technology
 - A Brief History
 - Current Trends
- Case Studies
- Future of Software Model Checking

Program Model Checking Enabling Technology

Abstraction


Program

void add(Object o) {
 buffer[head] = o;
 head = (head+1)%size;
}

Object take() {
 ...
 tail=(tail+1)%size;
 return buffer[tail];
}

Infinite state

Model Checker

Finite state

Abstraction

- Model checkers don't take real "programs" as input
- Model checkers typically work on finite state systems
- Abstraction therefore solves two problems
 - It allows model checkers to analyze a notation they couldn't deal with before, and,
 - Cuts the state space size to something manageable
- Abstraction comes in three flavors
 - Over-approximations, i.e. *more behaviors* are added to the abstracted system than are present in the original
 - Under-approximations, i.e. less behaviors are present in the abstracted system than are present in the original
 - Precise abstractions, i.e. the same behaviors are present in the abstracted and original program

Under-Approximation

NASA

"Meat-Axe" Abstraction

- Remove parts of the program deemed "irrelevant" to the property being checked
 - Limit input values to 0..10 rather than all integer values
 - Queue size 3 instead of unbounded, etc.
- Typically manual, with no guarantee that the right behaviors are removed
- Precise abstraction, w.r.t. the property being checked, may be obtained if the behaviors being removed are indeed not influencing the property
 - Program *slicing* is an example of an automated under-approximation that will lead to a precise abstraction w.r.t. the property being checked
 - However, can be incorrect

Over-Approximations Abstract Interpretation

- Maps sets of states in the concrete program to one state in the abstract program
 - Reduces the number of states, but increases the number of possible transitions, and hence the number of behaviors
- Type-based abstractions
 - Replace int by Signs abstraction {neg,pos,zero}
- Predicate abstraction
 - Replace predicates in the program by boolean variables, and replace each instruction that modifies the predicate with a corresponding instruction that modifies the boolean.
- Automated (conservative) abstraction: correct
- Eliminating spurious errors is the big problem
 - Abstract program has more behaviors, therefore when an error is found in the abstract program, is that also an error in the original program?
 - Most research focuses on this problem, and its counter-part the elimination of spurious errors, often called abstraction refinement

Bringing Model Checking to Programs

- Allow model checkers to take modern programming languages as input
 - Major hurdle is how to encode the state of the system efficiently
 - Alternatively state-less model checking
 - No state encoding or storing
- Almost exclusively explicit-state model checking
- Abstraction can still be used as well
 - Source to source abstractions

Overview

- Introduction to Model Checking
- Program Model Checking
 - Major Trends
 - A Brief History
 - SPIN
 - Hand-translations
 - State-less model checking
 - Partial-order reductions
 - VeriSoft
 - Semi-automated translations
 - Fully automated translations
 - Current Trends
- Case Studies
- Future of Software Model Checking

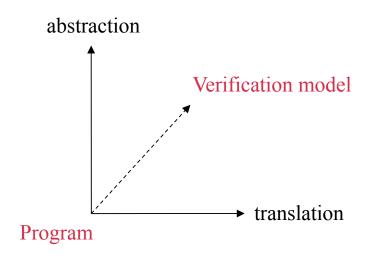
The Early Years

- Hand-translation with ad-hoc abstractions
 - 1980 through mid 1990s
- Semi-automated, table-driven translations
 - -1998
- Automated translations still with ad-hoc abstractions
 - -1997-1999
- State-less model checking for C
 - VeriSoft 1997

Overview

- Introduction to Model Checking
- Program Model Checking
 - Major Trends
 - A Brief History
 - SPIN
 - Hand-translations
 - State-less model checking
 - Partial-order reductions
 - VeriSoft
 - Semi-automated translations
 - Fully automated translations
 - Current Trends
- Case Studies
- Future of Software Model Checking

SPIN Model Checker



- Kripke structures are described as "programs" in the PROMELA language
 - Kripke structure is generated on-the-fly during model checking
- Automata based model checker
 - Translates LTL formula to Büchi automaton
- By far the most popular model checker
 - SPIN workshop
- Relevant theoretical papers can be found here
 - http://netlib.bell-labs.com/netlib/spin/whatispin.html
- Ideal for software model checking due to expressiveness of the PROMELA language
 - Close to a real programming language
- Gerard Holzmann won the ACM software award for SPIN

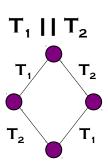
Hand-Translation

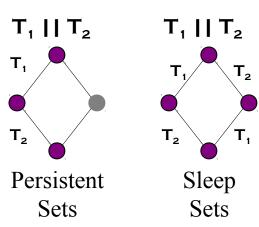
- Hand translation of program to model checker's input notation
- "Meat-axe" approach to abstraction (under-approximation)
- Labor intensive and error-prone

Hand-Translation Examples

- Remote Agent Havelund, Penix, Lowry 1997
 - http://ase.arc.nasa.gov/havelund
 - Translation from Lisp to Promela (most effort)
 - Heavy abstraction
 - 3 man months
- DEOS operating system Penix, Visser, *et al.* 1998/1999
 - http://ase.arc.nasa.gov/visser
 - C++ to Promela (most effort in environment generation)
 - Limited abstraction programmers produced sliced system

Overview


- Introduction to Model Checking
- Program Model Checking
 - Major Trends
 - A Brief History
 - SPIN
 - Hand-translations
 - State-less model checking
 - Partial-order reductions
 - VeriSoft
 - Semi-automated translations
 - Fully automated translations
 - Current Trends
- Case Studies
- Future of Software Model Checking



VeriSoft

- The first model checker that could handle programs directly
 - C programs running on Unix
- Relies on partial-order reductions to limit the number of times a state is revisited
 - Persistent sets
 - Reduce states visited
 - Sleep sets
 - Reduce transitions executed
- Paths must be replayed from the initial state to try new branches
 - No check-pointing

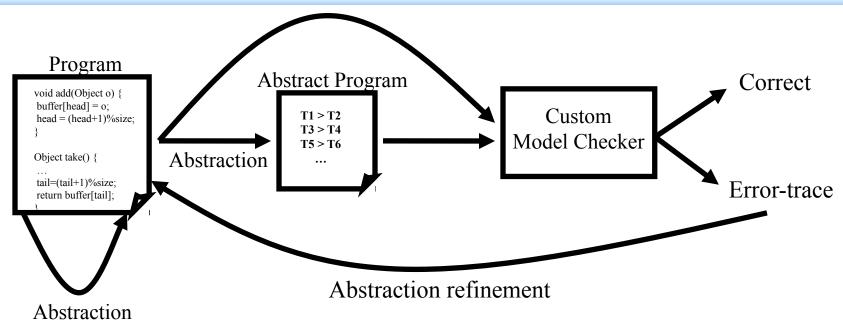
- Introduction to Model Checking
- Program Model Checking
 - Major Trends
 - A Brief History
 - SPIN
 - Hand-translations
 - State-less model checking
 - Partial-order reductions
 - VeriSoft
 - Semi-automated translations
 - Fully automated translations
 - Current Trends
- Case Studies
- Future of Software Model Checking

Semi-Automatic Translation

- Table-driven translation and abstraction
 - Feaver system by Gerard Holzmann
 - User specifies code fragments in C and how to translate them to Promela (SPIN)
 - Translation is then automatic
 - Found 75 errors in Lucent's PathStar system
 - http://cm.bell-labs.com/cm/cs/who/gerard/
- Advantages
 - Can be reused when program changes
 - Works well for programs with long development and only local changes

Fully Automatic Translation

- Advantage
 - No human intervention required
- Disadvantage
 - Limited by capabilities of target system
- Examples
 - Java PathFinder 1- http://ase.arc.nasa.gov/havelund/jpf.html
 - Translates from Java to Promela (Spin)
 - JCAT http://www.dai-arc.polito.it/dai-arc/auto/tools/tool6.shtml
 - Translates from Java to Promela (or dSpin)
 - Bandera http://www.cis.ksu.edu/santos/bandera/
 - Translates from Java bytecode to Promela, SMV or dSpin



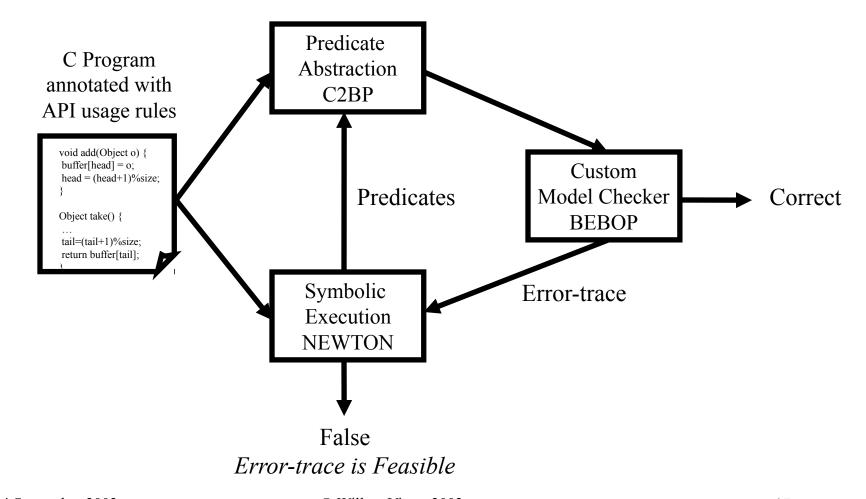
- Introduction to Model Checking
- Program Model Checking
 - Major Trends
 - A Brief History
 - Current Trends
 - Custom-made model checkers for programs
 - Abstraction
 - SLAM
 - JPF
 - Summary
 - Examples of other software analyses
- Case Studies
- Future of Software Model Checking

Program Model Checking Current Trends

- Custom-made model checkers for programming languages with automatic abstraction at the source code level
- Automatic abstraction & translation based transformation to new "abstract" formalism for model checker
- Abstraction refinement mostly automated

- Translation based
 - dSpin
 - Spin extended with dynamic constructs
 - Essentially a C model checker
 - Source-2-source abstractions can be supported
 - http://www.dai-arc.polito.it/dai-arc/auto/tools/tool7.shtml
 - SPIN Version 4
 - PROMELA language augmented with C code
 - Table-driven abstractions
 - Bandera
 - Translated Bandera Intermediate Language (BIR) to a number of backend model checkers, but, a new BIR custom-made model checker is under development
 - Supports source-2-source abstractions as well as property-specific slicing
 - http://www.cis.ksu.edu/santos/bandera/

- Abstraction based
 - SLAM
 - C programs are abstracted via predicate abstraction to boolean programs for model checking
 - http://research.microsoft.com/slam/
 - BLAST
 - Similar basic idea to SLAM, but using *lazy* abstraction, i.e. during abstraction refinement don't abstract the whole program only certain parts
 - http://www-cad.eecs.berkeley.edu/~tah/blast/
 - 3-Valued Model Checker (3VMC) extension of TVLA for Java programs
 - http://www.cs.tau.ac.il/~yahave/3vmc.htm
 - http://www.math.tau.ac.il/~rumster/TVLA/



- Introduction to Model Checking
- Program Model Checking
 - Major Trends
 - A Brief History
 - Current Trends
 - Custom-made model checkers for programs
 - Abstraction
 - SLAM
 - Abstraction Refinement
 - JPF
 - Summary
 - Examples of other software analyses
- Case Studies
- Future of Software Model Checking

SLAM Simplified View

SLAM

46

- Check API usage rules for sequential C programs
 - Mostly applied to device driver code
- C2BP
 - Inputs: C program and predicates
 - Output: boolean program over the predicates
- BEBOP
 - Symbolic interprocedural data flow analysis
 - Concrete CFG and BDD encoding of states
- NEWTON
 - Symbolic execution of C programs
 - Using Simplify theorem prover for checking feasibility of conditionals

Abstraction Refinement Example

Adapted from Ball & Rajamani POPL02

Property: if a lock is held it must be released before reacquiring

```
do {
     //get the write lock
  KeAcquireSpinLock(&devExt->writeListLock);
  nPacketsOld = nPackets;
  request = devExt->WLHeadVa;
  if (request) {
         KeReleaseSpinLock(&devExt->writeListLock);
         nPackets++;
} while (nPackets != nPacketsOld);
KeReleaseSpinLock(&devExt->writeListLock);
```


Initial Abstraction and Model Checking

Boolean Program (simpler, abstracted)

```
[1] do
    //get the write lock
[2] AcquireLock();
[3] if (*) then
[4] ReleaseLock();
    fi
[5] while (*);
[6] ReleaseLock();
```

Error-trace: 1,2,3,5,1,2

Symbolic Execution

Symbolic execution of 1,2,3,5,1,2 shows that when 5 is executed nPackets == nPacketsOld hence the path is infeasible.

The predicate nPackets == nPacketsold is then added and used during predicate abstraction

Next Abstraction and Model Checking

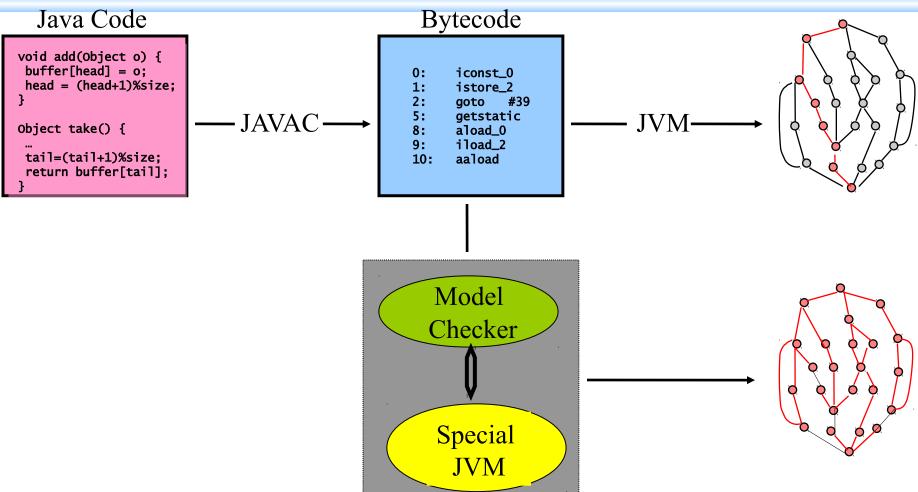
New Predicate b : (nPacketsOld == nPackets)

```
[1] do
[2] AcquireLock();
[3] b = true; // nPacketsOld = nPackets
[4] if (*) then
[5] ReleaseLock();
[6] b = b ? false : *; // nPackets++
    fi
[7] while (!b); //(nPacketsOld != nPackets)
[8] ReleaseLock();
```

Now property holds

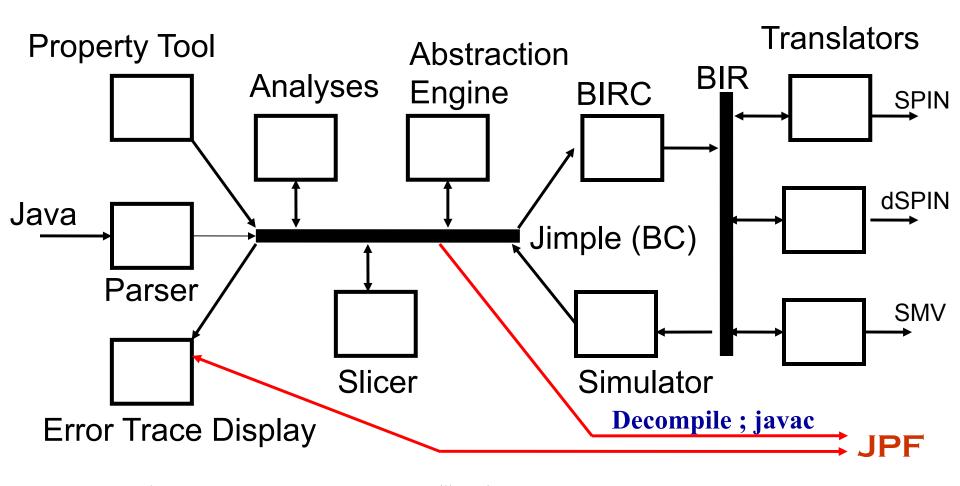
- Introduction to Model Checking
- Program Model Checking
 - Major Trends
 - A Brief History
 - Current Trends
 - Custom-made model checkers for programs
 - SLAM
 - JPF
 - Abstractions
 - Partial-order and symmetry reductions
 - Heuristics
 - New Stuff
 - Summary
 - Examples of other software analyses
- Case Studies
- Future of Software Model Checking

Java PathFinder (2) Direct Approach



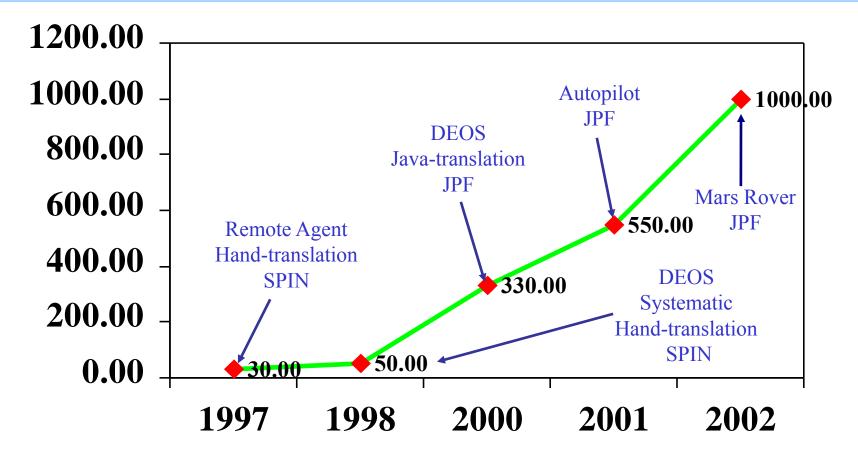
- Based on custom-made Java Virtual Machine
 - Handle all of Java, since it works with bytecodes
 - Written in Java
- Efficient encoding of states
- Modular design for easy extensions
- Supports LTL checking with properties expressed in Bandera's BSL notation
- Incorporates a number of search strategies
 - DFS, BFS, A*, Best-first, etc.
- Supports source-2-source abstractions
- http://ase.arc.nasa.gov/jpf

Java PathFinder (JPF)



Bandera & JPF Architecture

Key Points


55

- Models can be infinite state
 - Unbounded objects, threads,...
 - Depth-first state generation (explicit-state)
 - Verification requires abstraction
- Handle full Java language
 - but only for closed systems
 - Cannot handle native code
 - no Input/output through GUIs, files, Networks, ...
 - Must be modeled by java code instead
- Allows Nondeterministic Environments
 - JPF traps special nondeterministic methods
- Checks for User-defined assertions, deadlock and LTL properties

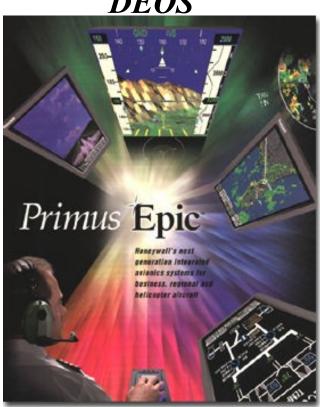
Scaling Program Model Checking Error-Detection

- Introduction to Model Checking
- Program Model Checking
 - Major Trends
 - A Brief History
 - Current Trends
 - Custom-made model checkers for programs
 - SLAM
 - JPF
 - Summary
 - Examples of other software analyses
- Case Studies
- Future of Software Model Checking

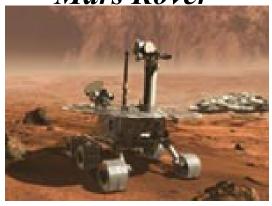
Software Model Checking Executive summary

- Model checking by itself cannot deal with the complexity of software
- Techniques from static analysis are required
 - Abstract interpretation, slicing, alias&shape analysis, symbolic execution
- Even then, we need to borrow some more!
 - Heuristic search, constraint solving, etc.
- Abandon soundness
 - Aggressive heuristics
 - Runtime analysis and runtime monitoring

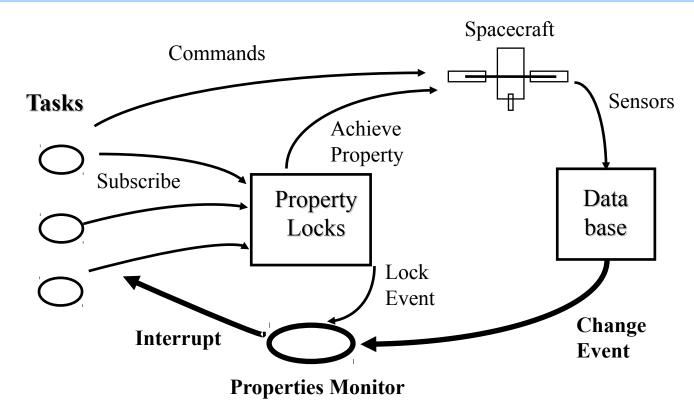
- Program Verification
 - For example, ESC/Java from Compaq
 - http://research.compaq.com/SRC/esc/
- Static analysis for runtime errors
 - For example, PolySpace for C, Ada and Java
 - http://www.polyspace.com/
- Requirements and Design Analysis
 - Analysis for SCR, RSML, Statecharts, etc.
- Runtime analysis
 - See Runtime Verification Workshops
 - http://ase.arc.nasa.gov/rv2002/
- Analysis Toolsets
 - IF (Verimag), SAL (SRI), etc.


- Introduction to Model Checking
- Program Model Checking
- Case Studies
 - Remote Agent
 - DEOS
 - Mars Rover
- Future of Software Model Checking

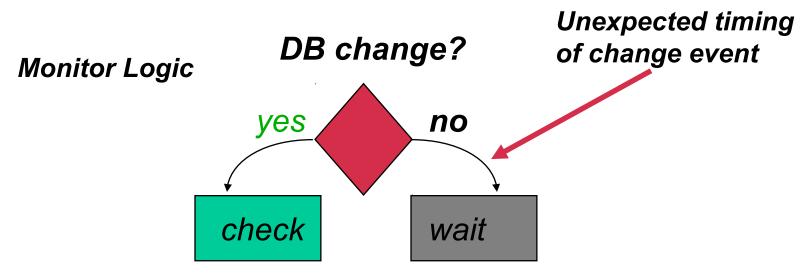

Case Studies of JPF


DEOS

Remote Agent


Mars Rover

Case Study: DS-1 Remote Agent



- Several person-months to create verification model.
- One person-week to run verification studies.

Case Study: DS-1 Remote Agent

- Five difficult to find concurrency errors detected
- "[Model Checking] has had a substantial impact, helping the RA team improve the quality of the Executive well beyond what would otherwise have been produced." RA team
- During flight RA deadlocked (in code we didn't analyze)
 - Found this deadlock with JPF

DEOS Operating System

- Integrated Modular Avionics (IMA)
 - DEOS Guarantee Space and Time partitioning
- FAA Certification Process
 - Requires Structural Testing Coverage (MC/DC)
 - Inadequate for finding Time Partitioning Errors
 - Timing Error not found by Testing occurred
- Behavioral Analysis of Time Partitioning
 - NASA Ames and Honeywell HTC collaboration
 - Model Check slice of DEOS containing timing error

DEOS Analysis

- Translated C++ 1-to-1 to PROMELA/SPIN (1500 lines of C++ code)
 - Found the time-partitioning error without any prior knowledge, what the error was, where it was or what made it show up.
 - Required very limited abstraction
- DEOS Team Reaction
 - Surprised that error was found by directly checking code
 - They expected NASA team to ask for smaller "slice"
 - They now have their own model checking group building on our work
- Then translated DEOS to Java and applied JPF
 - Backwards dependency analysis from the time partitioning assertion being checked revealed candidate variables to abstract
 - Applied "range" abstraction {0,1,many} to a specific integer variable
 - Too much of an over-approximation that led to many spurious errors
 - However with the choose-free heuristic *the* non-spurious error was found

Analysis of the K9 Mars Rover

"The Experiment"

- Rover is 8000 lines of code with 6 threads
 - heavy use of synchronization between the threads
 - Complex queue manipulation

Purpose

- Benchmark current state of the art in model checking, static analysis for runtime error detection and runtime analysis
- Use traditional testing as baseline
- Original code was in C++ that was translated to Java
 - About half the code was translated to C for the static analysis that used PolySpace

Method

- Controlled experiment: 4 groups of 2 people, each group uses one technology on the Mars rover code to find seeded bugs
- 3 versions created and each group gets 2 days/version
- Some bugs are removed/introduced between versions
- Any new bugs discovered are not fixed, only known ones

Analysis of the K9 Mars Rover Nas 2002 How did Model Checking do?

- Methodology for model checking
 - Asked never to "run" the code, only model check it
 - Keep the results clean from any testing influence
 - Code is heavily dependent on time
 - Given a gross over-approximation of time, where all time-related decisions became nondeterministic
- Found all, but one, of the known concurrency errors and some new ones
 - Better than any of the other teams
 - Only team that could always produce not just the error but how to get to it!
 - Also found all the non-concurrency errors
- Interesting observations
 - Abandoned the time abstraction within the first hour for one that is closer to real-time, but might miss errors
 - It was too hard for them to determine if errors were spurious not knowing the code well enough
 - Found a number of bugs in the first version, had a slow 2nd version, and then found all the remaining bugs in the 1st hour of the 3rd version
 - Took them some time to get their framework setup, but once done, they were flying

- Introduction to Model Checking
- Program Model Checking
- Case Studies
- Future of Software Model Checking

The Future of Software Model Checking

- Abstraction based approaches
 - Combine object abstractions (e.g. shape analysis) with predicate abstraction
 - Automation is crucial
- Symbolic Execution
 - Solving structural (object) and numerical constraints
 - Acceleration techniques (e.g. widening)
- Model checking as a companion to testing
 - Test-case generation by model checking
 - Runtime monitoring and model checking
- Modular model checking for software
 - Exploiting the interface between components
 - Interface automata (de Alfaro & Henzinger)
- Environment generation
 - How to derive a "test-harness" for a system to be model checked
- Result representation
 - Much overlooked, but without this we are nowhere!
 - "Analysis is necessary, but not sufficient" Jon Pincus