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33.1 Using GRS for Analysis and 
Transformation of Models and 
Code
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Problem and Goal

► We need analyzers, transformers, and optimizers
■ For models: For model refactoring, adaptation and specialization, weaving and 

composition
■ For code: Portability to new processor types and memory hierarchies
■ For optimization (time, memory, energy consumption)

► However, transformers and optimizers are big beasts
■ Current implementation techniques are hard to understand and to a large 

extent unsystematic

► We need a uniform specification methodolody
■ covering many phases of optimizations
■ short specifications
■ effective code improvements
■ efficient optimizer components

► Idea: Use graph-logic isomorphism
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An Old Citation

There clearly remains more work to be done in the following areas:

► discovery of other properties of transformations that appear to have 
relevance to code optimization,

► development of simple tests of these properties, and

► the use of these properties to construct efficient and effective 
optimization algorithms that apply the transformations involved.

Aho, Sethi, Ullmann in Code Optimization and Finite Church-Rosser Systems, 
1972
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Model Transformation and 
Optimization with Graph Rewriting

► Represent everything as directed graphs
■ Program code (control flow, statements, procedures, classes)
■ Model elements (states, transitions, ...)
■ Analysis information (abstract domains, flow info ...)

► Directed graphs with node and edge types, node attributes
■ one-edge condition (no multi-graphs)

► Use edge addition rewrite systems (EARS) to
■ Query the graphs 
■ Analyze the graphs

► Use graph rewrite systems (GRS) to
■ Construct and augment the graphs
■ Transform the graphs

► Preferably, the GRS should terminate (XGRS, exhaustive GRS)
► Use the graph-logic isomorphism to encode 

■ Facts in graphs
■ Logic queries in graph rewrite systems
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Terminology for Automated Graph 
Rewriting

► Graph rewrite rule: rule (left, right hand side) to match left-hand side in the 
graph and to transform it to the right-hand side

► Graph rewrite system: set of graph rewrite rules
► Start graph (axiom):  input graph to rewriting 
► Graph rewrite problem: a graph rewrite system applied to a start graph
► Manipulated graph (host graph):  graph which is rewritten in graph rewrite 

problem
► Redex: (reducible expression) application place of a rule in the manipulated 

graph
► Derivation: a sequence of rewrite steps on the manipulated graph, starting 

from the start graph and ending in the normal form
► Normal form:  result graph of rewriting; manipulated graphs without further 

redex
► Unique normal form:  unique result of a rewrite system, applied to one start 

graph
► Terminating GRS:  rewrite system that stops after finite number of rewrites
► Confluent GRS:  two derivations always can be commuted, resp. joined 

together to one result
► Convergent GRS:  rewrite system that always yields unique results 

(terminating and confluent)
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Specification Process

1) Specification of the data model (graph schema)
■ Specification of the graph schema with a graph-like DDL (ERD, MOF, GXL,  

UML or similar):
. Schema of the program representation: program code as objects and 

basic relationships. This data, i.e., the start graph, is provided as result of 
the parser

. Schema of analysis information (the infered predicates over the 
program objects) as objects or relationships

2) Program analysis (preparing the abstract interpretation)
■ Querying graphs, enlarging graphs
■ Materializing implicit knowledge to explicit knowledge

3) Abstract Interpretation (program analysis as interpretation)
■ Specifying the transfer functions of an abstract interpretation of the program 

with graph rewrite rules on the analysis information

4) Program transformation (optimization)
■ Transforming the program representation
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A Simple Program (Code) Model (Schema) 
in UML

Proc

Block

ExprEqClass

Stmt

Assign AssReg

Register

Plus IntConst

Expr

UseReg

ExprsOfStmt

Exprs

AsgdReg

InRegister

AllExprs

UsedReg

Left

INSERT_OUT

LATEST_IN

Program representation
Analysis information

INSERT_IN
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33.2 Examples
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33.2.1. Local Rewritings
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Constant Folding 

Const

Plus

Const

1 2

Const

3

► A local rewriting (context-free rewriting) matches a weakly 
connected left-hand side graph with a redex. 

■ Matching of one redex can be done in constant time

► Subtractive because redexes are destroyed
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Context-Free Local Rewritings: Operator 
Strength reduction

// if-then rules:

if  leftOp(p:Plus,v),

    rightOp(p,c:1),

then

   Delete p,

   Delete c,

   Add incr:Incr,

   op(incr,v);

p:Plus

v c:1

incr:Incr

v

rightOpleftOp

op



Prof. U. Aßmann, SEW 15

Context-Free Local Rewritings: Constant Folding

// if-then rules (logic):

if  leftOp(p:Plus,d:100),

    rightOp(p,c:1),

then

   Delete p,

   Delete c,

   d.value=100,

   op(incr,v);

p:Plus

d:100 c:1

incr:Incr

d:100

rightOpleftOp

op
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Peephole Optimization 

Const

Plus Incr

1

X

IncrIncr

Var

X

Var

X

next

► Peephole optimization is done on statement lists or trees
► Subtractive problem, because redexes are destroyed
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33.2.2. Path Abbreviations in 
Graph Analysis

 With edge addition rewrite systems



Prof. U. Aßmann, SEW 18

Path Abbreviations

Collection of Expressions for a procedure: edge addition

-- Datalog notation:

AllExprs(Proc,Expr) :-

    Blocks(Proc,Block),

    Stmts(Block,Stmt),

    Expr(Stmt,Expr).

-- if-then rules:

if  Blocks(Proc,Block),

    Stmts(Block,Stmt),

    Expr(Stmt,Expr)

then

   AllExprs(Proc,Expr);

Proc

Expr

Stmt

Block

Proc

Expr

Stmt

Block

Blocks

Expr

Stmts AllExprs
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Value Numbering 
(Expression Equivalence)

Computing equivalent expressions

baserule:

eq(IntConst1,IntConst2) :- 

   IntConst1 ~ IntConst(Value),

   IntConst2 ~ IntConst(Value).

recursive_rule:

eq(Plus1,Plus2) :- 

   Plus1 ~ Plus(Type), 

   Plus2 ~ Plus(Type),

   Left(Plus1,Expr1), 

   Right(Plus1,Expr2),

   Left(Plus2,Expr3), 

   Right(Plus2,Expr4).

   eq(Expr1,Expr3),   

   eq(Expr2,Expr4).

IntConst

Expr1

IntConst2

IntConst IntConst2
eq

Plus1 Plus2

eqExpr2

Expr3

Expr4

eq

Expr1

Plus1 Plus2

eqExpr2

Expr3

Expr4

eq

eq
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33.2.3. Program Analysis with 
Abstract Interpretations 

 with edge additions
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Abstract Interpretations: 
Data-flow Analysis

► Data-flow analysis is an abstract interpretation computing the flow of 
data through the program, from variable assignments to variable uses

■ It results in the value-flow graph (data-flow graph)

► Examples:
► Reaching Definitions Analysis: Which Definitions (Assigments) of a 

variable can reach which statement?
► Live Variable Analysis: At which statement is a variable live, i.e., will 

further be used
► Busy Expression Analysis: Which expression will be used on all 

outgoing paths?
■ Central part: 1 recursive system
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► Graph rewrite rules implement an 
abstract interpreter

► On instructions or on blocks of 
instructions

► Recursive system (via edge reach-
begin)

reach-end(B,E) :- gen(B,E).

reach-end(B,E) :- 
reach-begin(B,E), not 
killed(B,E).

reach-begin(B,E) :-
pred(B,P), reach-end(P,E).

Reaching Definition Analysis

B:Stmt

P:Stmt

E:Expr

pred
reach-end

reach-begin

B:Stmt E:Expr
gen

reach-end

B:Stmt E:Exprreach-begin

reach-end

not killed
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► Code motion is a complex transformation:
■ Moving loop-invariant expressions out of loops upward

► Busy Code Motion (BCM) moves expressions as upward (early) as possible 
► Lazy Code Motion (LCM) 

■ Moving expressions out of loops to the front of the loop, upward, but carefully:
■ Moving expressions to an optimal place so that register  lifetimes are not too 

long (optimally early)
■ Shorter register lifetimes

► Code motion needs complex data-flow analysis:
■ Lazy Code Motion Analysis (LCM analysis) computes this optimal early place of 

an expression [Knoop/Steffen]
■ Analyze an optimally early place for the placement of an expression
■ About 6 equation systems similar to reaching-definitions
■ Every equation system is an EARS

Code Motion Analysis
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Excerpt from LCM Analysis with Overlaps

Block Expr

social_out

NOT earliest_out
Block Expr

social_out

NOT earliest_out

Block Exprcomp_in Block Exprcomp_in

social_in

comp_soc_in

Block Expr

latest_in

NOT social_in
Block Expr

latest_in

NOT social_in

isolated_and_latest_in

► Compute an optimally early block for an expression (out of a loop)
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33.2.4. Complex Local 
Rewritings
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Example: Lazy Code Motion Transformation 

Block:1 Stmt:1

Stmt:2ExprEqclass:1

Block:1 Stmt:1

ExprEqclass:1

Stmt:2

Expr:1
INSERT_OUT

AssignRegister:1

Register:1

if Stmts.last(Block,Stmt),

   INSERT_OUT(Block,ExprEqclass)

then

   new Register:Register;

   new Expr:Expr;

   new AssReg:AssReg;

   InRegister(ExprEqclass,Register),

   AsgdReg(AssReg,Register),

   ExprsOfStmt(AssReg,Expr)

;

► Insert expressions at an optimally 
early place
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Lazy Code Motion Transformation

if  Stmts(Block,Stmt), 

   ExprsOfStmt(Stmt,Expr),

   REPLACE_OUT(Block,ExprEqclass),

   InRegister(ExprEqclass,Register),

   Computes(Expr,ExprEqclass)

then

   new UseReg:UseReg;

   delete Expr;

   ExprsOfStmt(Stmt,UseReg),

   UsedReg(UseReg,Register)

;Block:1 Stmt:1

Expr:1ExprEqclass:1

Block:1 Stmt:1

UseRegister:1ExprEqclass:1

Register:1

REPLACE_OUT

Register:1
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33.2.5. Context-Sensitive 
Rewritings 
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Extended Constant Folding as Subtractive 
GRS

Var

Plus

Const

Name = „id” 2

Const

7

► A context-sensitive rewriting matches a non-connected left-hand side 
graph with a redex. 

■ Matching of one redex can be done in quadratic time, because non-connected 
nodes have to be pairwise compared

VarDef

Const

Name = „id”

5

Initializer
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33.3 More on the Logic-Graph 
Isomorphism
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Covered Optimizations

► Analysis: Every analysis where a mapping of the abstract domains to 
graphs can be found.

■ Abstract interpretations
■ monotone and distributive data-flow analysis 
■ control flow analysis
■ SSA construction
■ Interprocedural IDFS framework (Reps)

► Local transformations of the program representation
■ copy propagation, constant propagation
■ loop optimizations (unrolling etc.)
■ branch optimization, strength reduction
■ idiom recognition
■ dead code elimination

► Global transformations
■ lazy and busy code motion (loop invariant code motion)
■ message optimization
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Results

► Theory:
■ If a termination graph can be identified, a graph rewrite systems 

terminates.
■ Graph rewriting, DATALOG and data-flow analysis have a common core: 

EARS

► Program optimization:
■ Spezification of program optimizations is possible with graph rewrite 

systems.  Short specifications, fewer effort.
■ Practically usable optimizer components can be generated.

► Uniform Specification of Analysis and Transformation
■ If the program analysis (including abstract interpretation) is specified with 

GRS
■ It can be unified with program transformation
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Limitations

► Currently there is no methodology on how to specify general abstract 
interpretations, beyond classical data-flow analysis, with graph rewrite 
systems.

► In interprocedural analysis, instead of chaotic iteration special evaluation 
strategies must be used [Reps95] [Knoop92].

► Currently these have to be modeled in the rewrite specifications explicitly.
► Several optimizations can be specified with GRS which are not exhaustive 

(peephole optimization, constant propagation with partial evaluation).
► As general rule embedding is not allowed, a rule only matches a fixed  

number of nodes.  
■ Thus those transformations, which refer to an arbitrary set of nodes, cannot be 

specified.
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The Common Core of Logic, Rewriting and 
Program Analysis

Datalog GRS

Program Analysis
(data-flow analysis
abstract interpretation)

EARS
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Relation DFA/DATALOG/GRS

► Abstract interpretation (Data-flow analysis), DATALOG and graph rewrite 
systems have a common kernel: EARS

■ As DATALOG, graph rewrite systems can be used to query the graph.

► Contrary to DATALOG graph rewrite systems materialize their results 
instantly.

► Graph rewriting is restricted to binary predicates and always yields all 
solutions.

► Graph rewriting can do transformation, i.e. is much more powerful than 
DATALOG.

► Graph rewriting enables a uniform view of the entire optimization  
process
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33.4 Implementation in Tools
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Process: How to Build an Optimizer or 
Model Transformer

► Specify the optimizer in steps:
■ Preprocessing steps with XGRS and EARS

. that convert the abstract syntax tree to an abstract syntax graph with 
definition-use relations

. that diminish the domains of the analyses (e.g., equivalence classing)

. that build summary information for procedures

. that build indices for faster (constant) access
■ Analyses: specify abstract interpretations with EARS

. reaching-definition information, value flow information

. SSA
■ Transformation: apply XGRS and stratifiable XGRS
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Efcient Evaluation Algorithms from Logic 
Programming

► „Order algorithm“ scheme [Aßmann00]
■ Variant of nested loop join
■ Easy to generate into code of a programming language
■ Works effectively on very sparse directed graphs
■ Sometimes fixpoint evaluations can be avoided
■ Use of index structures possible
■ Linear bitvector union operations can be used

► DATALOG optimization techniques can be employed   
■ Bottom-up evaluation is normal, as in Datalog 
■ Top-down evaluation as in Prolog possible, with resolution
■ semi-naive evaluation
■ index structures
■ magic set transformation
■ transitive closure optimizations
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Practical Features

► Short specifications 
■ expression equivalence classes 30 rules 
■ DFA reaching definitions 20-40
■ copy propagation 5 
■ lazy code motion 5 

► Velocity: 
■ Tool Optimix generates the Order algorithm for a GRS
■ Compiler with generated components is slower, but ..
■ important algorithms run as fast as hand-written algorithms (DFA)

► Flexibility: 
■ intermediate language CCMIR for C (CoSy), Modula-2, Fortran (Aßmann)
■ Model transformations (Alexander Christoph)
■ Aspect weaving (Aßmann, Heidenreich, many others)
■ Refactorings (Aßmann, Mens)

► OPTIMIX 2.5 on optimix.sourceforge.net
■ Works with CoSy, Cocktail, or plain C
■ A prototype code generator for Java exists
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Tools for Model-Driven Software 
Development

► In MDSD and MDA, horizontal and vertical model transformations should 
be specified with graph rewrite systems

► Example tools:
■ Fujaba
■ MOFLON
■ VIATRA2 on EMF http://eclipse.org/gmt/VIATRA2/



Prof. U. Aßmann, SEW 41

Related Work

► Analysis Generators
■ PAG (Alt, Martin)
■ Sharlit (Tijang)
■ MetaFrame with modal logic (Knoop, Steffen)
■ Slicing-Tools (Reps, Field/Tip, Kamkar)
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