
SEW, © Prof. Uwe Aßmann 1

33. Model Transformation and
Program Optimization
with Graph Rewrite Systems

Prof. Dr. Uwe Aßmann

Softwaretechnologie

Technische Universität
Dresden

Version 11-0.4, 29.12.11

1) Basic Setting

2) Examples

3) More on the Graph-
Logic Isomorphism

4) Implementation in
Tools

Prof. U. Aßmann, SEW 2

Obligatory Literature

► Uwe Aßmann. Graph rewrite systems for program optimization. ACM
Transactions on Programming Languages and Systems (TOPLAS),
22(4):583-637, June 2000.

■ http://portal.acm.org/citation.cfm?id=363914

► Tom Mens. On the Use of Graph Transformations for Model Refactorings.
GTTSE 2005, Springer, LNCS 4143

■ http://www.springerlink.com/content/5742246115107431/

http://portal.acm.org/citation.cfm?id=363914
http://www.springerlink.com/content/5742246115107431/

Prof. U. Aßmann, SEW 3

Other References

► Uwe Aßmann. OPTIMIX, A Tool for Rewriting and Optimizing Programs. In
Graph Grammar Handbook, Vol. II. Chapman-Hall, 1999.

► K. Lano. Catalogue of Model Transformations
■ http://www.dcs.kcl.ac.uk/staff/kcl/tcat.pdf

SEW, © Prof. Uwe Aßmann 4

33.1 Using GRS for Analysis and
Transformation of Models and
Code

Prof. U. Aßmann, SEW 5

Problem and Goal

► We need analyzers, transformers, and optimizers
■ For models: For model refactoring, adaptation and specialization, weaving and

composition
■ For code: Portability to new processor types and memory hierarchies
■ For optimization (time, memory, energy consumption)

► However, transformers and optimizers are big beasts
■ Current implementation techniques are hard to understand and to a large

extent unsystematic

► We need a uniform specification methodolody
■ covering many phases of optimizations
■ short specifications
■ effective code improvements
■ efficient optimizer components

► Idea: Use graph-logic isomorphism

Prof. U. Aßmann, SEW 6

An Old Citation

There clearly remains more work to be done in the following areas:

► discovery of other properties of transformations that appear to have
relevance to code optimization,

► development of simple tests of these properties, and

► the use of these properties to construct efficient and effective
optimization algorithms that apply the transformations involved.

Aho, Sethi, Ullmann in Code Optimization and Finite Church-Rosser Systems,
1972

Prof. U. Aßmann, SEW 7

Model Transformation and
Optimization with Graph Rewriting

► Represent everything as directed graphs
■ Program code (control flow, statements, procedures, classes)
■ Model elements (states, transitions, ...)
■ Analysis information (abstract domains, flow info ...)

► Directed graphs with node and edge types, node attributes
■ one-edge condition (no multi-graphs)

► Use edge addition rewrite systems (EARS) to
■ Query the graphs
■ Analyze the graphs

► Use graph rewrite systems (GRS) to
■ Construct and augment the graphs
■ Transform the graphs

► Preferably, the GRS should terminate (XGRS, exhaustive GRS)
► Use the graph-logic isomorphism to encode

■ Facts in graphs
■ Logic queries in graph rewrite systems

Prof. U. Aßmann, SEW 8

Terminology for Automated Graph
Rewriting

► Graph rewrite rule: rule (left, right hand side) to match left-hand side in the
graph and to transform it to the right-hand side

► Graph rewrite system: set of graph rewrite rules
► Start graph (axiom): input graph to rewriting
► Graph rewrite problem: a graph rewrite system applied to a start graph
► Manipulated graph (host graph): graph which is rewritten in graph rewrite

problem
► Redex: (reducible expression) application place of a rule in the manipulated

graph
► Derivation: a sequence of rewrite steps on the manipulated graph, starting

from the start graph and ending in the normal form
► Normal form: result graph of rewriting; manipulated graphs without further

redex
► Unique normal form: unique result of a rewrite system, applied to one start

graph
► Terminating GRS: rewrite system that stops after finite number of rewrites
► Confluent GRS: two derivations always can be commuted, resp. joined

together to one result
► Convergent GRS: rewrite system that always yields unique results

(terminating and confluent)

Prof. U. Aßmann, SEW 9

Specification Process

1) Specification of the data model (graph schema)
■ Specification of the graph schema with a graph-like DDL (ERD, MOF, GXL,

UML or similar):
. Schema of the program representation: program code as objects and

basic relationships. This data, i.e., the start graph, is provided as result of
the parser

. Schema of analysis information (the infered predicates over the
program objects) as objects or relationships

2) Program analysis (preparing the abstract interpretation)
■ Querying graphs, enlarging graphs
■ Materializing implicit knowledge to explicit knowledge

3) Abstract Interpretation (program analysis as interpretation)
■ Specifying the transfer functions of an abstract interpretation of the program

with graph rewrite rules on the analysis information

4) Program transformation (optimization)
■ Transforming the program representation

Prof. U. Aßmann, SEW 10

A Simple Program (Code) Model (Schema)
in UML

Proc

Block

ExprEqClass

Stmt

Assign AssReg

Register

Plus IntConst

Expr

UseReg

ExprsOfStmt

Exprs

AsgdReg

InRegister

AllExprs

UsedReg

Left

INSERT_OUT

LATEST_IN

Program representation
Analysis information

INSERT_IN

SEW, © Prof. Uwe Aßmann 11

33.2 Examples

SEW, © Prof. Uwe Aßmann 12

33.2.1. Local Rewritings

Prof. U. Aßmann, SEW 13

Constant Folding

Const

Plus

Const

1 2

Const

3

► A local rewriting (context-free rewriting) matches a weakly
connected left-hand side graph with a redex.

■ Matching of one redex can be done in constant time

► Subtractive because redexes are destroyed

Prof. U. Aßmann, SEW 14

Context-Free Local Rewritings: Operator
Strength reduction

// if-then rules:

if leftOp(p:Plus,v),

 rightOp(p,c:1),

then

 Delete p,

 Delete c,

 Add incr:Incr,

 op(incr,v);

p:Plus

v c:1

incr:Incr

v

rightOpleftOp

op

Prof. U. Aßmann, SEW 15

Context-Free Local Rewritings: Constant Folding

// if-then rules (logic):

if leftOp(p:Plus,d:100),

 rightOp(p,c:1),

then

 Delete p,

 Delete c,

 d.value=100,

 op(incr,v);

p:Plus

d:100 c:1

incr:Incr

d:100

rightOpleftOp

op

Prof. U. Aßmann, SEW 16

Peephole Optimization

Const

Plus Incr

1

X

IncrIncr

Var

X

Var

X

next

► Peephole optimization is done on statement lists or trees
► Subtractive problem, because redexes are destroyed

SEW, © Prof. Uwe Aßmann 17

33.2.2. Path Abbreviations in
Graph Analysis

 With edge addition rewrite systems

Prof. U. Aßmann, SEW 18

Path Abbreviations

Collection of Expressions for a procedure: edge addition

-- Datalog notation:

AllExprs(Proc,Expr) :-

 Blocks(Proc,Block),

 Stmts(Block,Stmt),

 Expr(Stmt,Expr).

-- if-then rules:

if Blocks(Proc,Block),

 Stmts(Block,Stmt),

 Expr(Stmt,Expr)

then

 AllExprs(Proc,Expr);

Proc

Expr

Stmt

Block

Proc

Expr

Stmt

Block

Blocks

Expr

Stmts AllExprs

Prof. U. Aßmann, SEW 19

Value Numbering
(Expression Equivalence)

Computing equivalent expressions

baserule:

eq(IntConst1,IntConst2) :-

 IntConst1 ~ IntConst(Value),

 IntConst2 ~ IntConst(Value).

recursive_rule:

eq(Plus1,Plus2) :-

 Plus1 ~ Plus(Type),

 Plus2 ~ Plus(Type),

 Left(Plus1,Expr1),

 Right(Plus1,Expr2),

 Left(Plus2,Expr3),

 Right(Plus2,Expr4).

 eq(Expr1,Expr3),

 eq(Expr2,Expr4).

IntConst

Expr1

IntConst2

IntConst IntConst2
eq

Plus1 Plus2

eqExpr2

Expr3

Expr4

eq

Expr1

Plus1 Plus2

eqExpr2

Expr3

Expr4

eq

eq

SEW, © Prof. Uwe Aßmann 20

33.2.3. Program Analysis with
Abstract Interpretations

 with edge additions

Prof. U. Aßmann, SEW 21

Abstract Interpretations:
Data-flow Analysis

► Data-flow analysis is an abstract interpretation computing the flow of
data through the program, from variable assignments to variable uses

■ It results in the value-flow graph (data-flow graph)

► Examples:
► Reaching Definitions Analysis: Which Definitions (Assigments) of a

variable can reach which statement?
► Live Variable Analysis: At which statement is a variable live, i.e., will

further be used
► Busy Expression Analysis: Which expression will be used on all

outgoing paths?
■ Central part: 1 recursive system

Prof. U. Aßmann, SEW 22

► Graph rewrite rules implement an
abstract interpreter

► On instructions or on blocks of
instructions

► Recursive system (via edge reach-
begin)

reach-end(B,E) :- gen(B,E).

reach-end(B,E) :-
reach-begin(B,E), not
killed(B,E).

reach-begin(B,E) :-
pred(B,P), reach-end(P,E).

Reaching Definition Analysis

B:Stmt

P:Stmt

E:Expr

pred
reach-end

reach-begin

B:Stmt E:Expr
gen

reach-end

B:Stmt E:Exprreach-begin

reach-end

not killed

Prof. U. Aßmann, SEW 23

► Code motion is a complex transformation:
■ Moving loop-invariant expressions out of loops upward

► Busy Code Motion (BCM) moves expressions as upward (early) as possible
► Lazy Code Motion (LCM)

■ Moving expressions out of loops to the front of the loop, upward, but carefully:
■ Moving expressions to an optimal place so that register lifetimes are not too

long (optimally early)
■ Shorter register lifetimes

► Code motion needs complex data-flow analysis:
■ Lazy Code Motion Analysis (LCM analysis) computes this optimal early place of

an expression [Knoop/Steffen]
■ Analyze an optimally early place for the placement of an expression
■ About 6 equation systems similar to reaching-definitions
■ Every equation system is an EARS

Code Motion Analysis

Prof. U. Aßmann, SEW 24

Excerpt from LCM Analysis with Overlaps

Block Expr

social_out

NOT earliest_out
Block Expr

social_out

NOT earliest_out

Block Exprcomp_in Block Exprcomp_in

social_in

comp_soc_in

Block Expr

latest_in

NOT social_in
Block Expr

latest_in

NOT social_in

isolated_and_latest_in

► Compute an optimally early block for an expression (out of a loop)

SEW, © Prof. Uwe Aßmann 25

33.2.4. Complex Local
Rewritings

Prof. U. Aßmann, SEW 26

Example: Lazy Code Motion Transformation

Block:1 Stmt:1

Stmt:2ExprEqclass:1

Block:1 Stmt:1

ExprEqclass:1

Stmt:2

Expr:1
INSERT_OUT

AssignRegister:1

Register:1

if Stmts.last(Block,Stmt),

 INSERT_OUT(Block,ExprEqclass)

then

 new Register:Register;

 new Expr:Expr;

 new AssReg:AssReg;

 InRegister(ExprEqclass,Register),

 AsgdReg(AssReg,Register),

 ExprsOfStmt(AssReg,Expr)

;

► Insert expressions at an optimally
early place

Prof. U. Aßmann, SEW 27

Lazy Code Motion Transformation

if Stmts(Block,Stmt),

 ExprsOfStmt(Stmt,Expr),

 REPLACE_OUT(Block,ExprEqclass),

 InRegister(ExprEqclass,Register),

 Computes(Expr,ExprEqclass)

then

 new UseReg:UseReg;

 delete Expr;

 ExprsOfStmt(Stmt,UseReg),

 UsedReg(UseReg,Register)

;Block:1 Stmt:1

Expr:1ExprEqclass:1

Block:1 Stmt:1

UseRegister:1ExprEqclass:1

Register:1

REPLACE_OUT

Register:1

SEW, © Prof. Uwe Aßmann 28

33.2.5. Context-Sensitive
Rewritings

Prof. U. Aßmann, SEW 29

Extended Constant Folding as Subtractive
GRS

Var

Plus

Const

Name = „id” 2

Const

7

► A context-sensitive rewriting matches a non-connected left-hand side
graph with a redex.

■ Matching of one redex can be done in quadratic time, because non-connected
nodes have to be pairwise compared

VarDef

Const

Name = „id”

5

Initializer

SEW, © Prof. Uwe Aßmann 30

33.3 More on the Logic-Graph
Isomorphism

Prof. U. Aßmann, SEW 31

Covered Optimizations

► Analysis: Every analysis where a mapping of the abstract domains to
graphs can be found.

■ Abstract interpretations
■ monotone and distributive data-flow analysis
■ control flow analysis
■ SSA construction
■ Interprocedural IDFS framework (Reps)

► Local transformations of the program representation
■ copy propagation, constant propagation
■ loop optimizations (unrolling etc.)
■ branch optimization, strength reduction
■ idiom recognition
■ dead code elimination

► Global transformations
■ lazy and busy code motion (loop invariant code motion)
■ message optimization

Prof. U. Aßmann, SEW 32

Results

► Theory:
■ If a termination graph can be identified, a graph rewrite systems

terminates.
■ Graph rewriting, DATALOG and data-flow analysis have a common core:

EARS

► Program optimization:
■ Spezification of program optimizations is possible with graph rewrite

systems. Short specifications, fewer effort.
■ Practically usable optimizer components can be generated.

► Uniform Specification of Analysis and Transformation
■ If the program analysis (including abstract interpretation) is specified with

GRS
■ It can be unified with program transformation

Prof. U. Aßmann, SEW 33

Limitations

► Currently there is no methodology on how to specify general abstract
interpretations, beyond classical data-flow analysis, with graph rewrite
systems.

► In interprocedural analysis, instead of chaotic iteration special evaluation
strategies must be used [Reps95] [Knoop92].

► Currently these have to be modeled in the rewrite specifications explicitly.
► Several optimizations can be specified with GRS which are not exhaustive

(peephole optimization, constant propagation with partial evaluation).
► As general rule embedding is not allowed, a rule only matches a fixed

number of nodes.
■ Thus those transformations, which refer to an arbitrary set of nodes, cannot be

specified.

Prof. U. Aßmann, SEW 34

The Common Core of Logic, Rewriting and
Program Analysis

Datalog GRS

Program Analysis
(data-flow analysis
abstract interpretation)

EARS

Prof. U. Aßmann, SEW 35

Relation DFA/DATALOG/GRS

► Abstract interpretation (Data-flow analysis), DATALOG and graph rewrite
systems have a common kernel: EARS

■ As DATALOG, graph rewrite systems can be used to query the graph.

► Contrary to DATALOG graph rewrite systems materialize their results
instantly.

► Graph rewriting is restricted to binary predicates and always yields all
solutions.

► Graph rewriting can do transformation, i.e. is much more powerful than
DATALOG.

► Graph rewriting enables a uniform view of the entire optimization
process

SEW, © Prof. Uwe Aßmann 36

33.4 Implementation in Tools

Prof. U. Aßmann, SEW 37

Process: How to Build an Optimizer or
Model Transformer

► Specify the optimizer in steps:
■ Preprocessing steps with XGRS and EARS

. that convert the abstract syntax tree to an abstract syntax graph with
definition-use relations

. that diminish the domains of the analyses (e.g., equivalence classing)

. that build summary information for procedures

. that build indices for faster (constant) access
■ Analyses: specify abstract interpretations with EARS

. reaching-definition information, value flow information

. SSA
■ Transformation: apply XGRS and stratifiable XGRS

Prof. U. Aßmann, SEW 38

Efcient Evaluation Algorithms from Logic
Programming

► „Order algorithm“ scheme [Aßmann00]
■ Variant of nested loop join
■ Easy to generate into code of a programming language
■ Works effectively on very sparse directed graphs
■ Sometimes fixpoint evaluations can be avoided
■ Use of index structures possible
■ Linear bitvector union operations can be used

► DATALOG optimization techniques can be employed
■ Bottom-up evaluation is normal, as in Datalog
■ Top-down evaluation as in Prolog possible, with resolution
■ semi-naive evaluation
■ index structures
■ magic set transformation
■ transitive closure optimizations

Prof. U. Aßmann, SEW 39

Practical Features

► Short specifications
■ expression equivalence classes 30 rules
■ DFA reaching definitions 20-40
■ copy propagation 5
■ lazy code motion 5

► Velocity:
■ Tool Optimix generates the Order algorithm for a GRS
■ Compiler with generated components is slower, but ..
■ important algorithms run as fast as hand-written algorithms (DFA)

► Flexibility:
■ intermediate language CCMIR for C (CoSy), Modula-2, Fortran (Aßmann)
■ Model transformations (Alexander Christoph)
■ Aspect weaving (Aßmann, Heidenreich, many others)
■ Refactorings (Aßmann, Mens)

► OPTIMIX 2.5 on optimix.sourceforge.net
■ Works with CoSy, Cocktail, or plain C
■ A prototype code generator for Java exists

Prof. U. Aßmann, SEW 40

Tools for Model-Driven Software
Development

► In MDSD and MDA, horizontal and vertical model transformations should
be specified with graph rewrite systems

► Example tools:
■ Fujaba
■ MOFLON
■ VIATRA2 on EMF http://eclipse.org/gmt/VIATRA2/

Prof. U. Aßmann, SEW 41

Related Work

► Analysis Generators
■ PAG (Alt, Martin)
■ Sharlit (Tijang)
■ MetaFrame with modal logic (Knoop, Steffen)
■ Slicing-Tools (Reps, Field/Tip, Kamkar)

	Program Optimization with Graph Rewrite Systems
	Slide 2
	Slide 3
	Slide 4
	Problem and Goal
	Kein Folientitel
	Idea Optimization = Graph Rewriting
	Terms
	Method
	A Program Model
	Examples
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Collection of Expressions
	Value Numbering (Expression Equivalence)
	Slide 20
	Data-flow Analysis
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Covered Optimizations
	Results
	Limitations
	Slide 34
	Relation DFA/DATALOG/GRS
	Slide 36
	Slide 37
	Efficient Evaluation Algorithms
	Practical Features
	Slide 40
	Related Work

