
Softwaretechnologie II, © Prof. Uwe Aßmann 1

11b. The Ariane 5 Failure

Prof. Dr. rer. nat. Uwe Aßmann

Lehrstuhl Softwaretechnologie

Fakultät Informatik

TU Dresden

WS 11, 0.1 11/8/11

Prof. U. Aßmann, Softwaretechnologie II 2

Readings

► Computer-related RISKs. P. G. Neumann, Addison Wesley 
1995. A compendium of information about system failures that 
have compromised safety, security and reliability

► U. Aßmann, B. Demuth, F. Hartmann. Risiken in der 
Softwareentwicklung. Zeitschrift der TU Dresden.

► R. Glass. Software Runaways.
► D. Rombach, A.Endres: A Handbook of Software and Systems 

Engineering. Pearson

Softwaretechnologie II, © Prof. Uwe Aßmann 3

Greatest Software Desasters

Prof. U. Aßmann, Softwaretechnologie II 4

Greatest Software Desasters

► Tchernobyl 1986
■ Human desaster, but the software could be stopped, and tricked out
■ The reactor nucleus was “poisoned”
■ The operators removed the moderating elements, to get more power
■ The reaction of the reactor came so fast (within 2 minutes) that no 

human reaction was possible
► Mariner (in the 60s)

■ A comma instead of a dot spoiled the software, Mariner got lost in 
space

► Hamburg goods railway station ~1995
■ Software control system should be replaced
■ Could not be tested in vivo
■ Switching failed – several days of delays in German railway traffic

► Denver International Airport ~1993
■ Bagage system was delivered several years later
■ Project managment problem: the software for Continental Airlines was 

extended for the whole airport



Prof. U. Aßmann, Softwaretechnologie II 5

Greatest Software Desasters

► TollCollect
■ German toll collection system for lorries, based on tracing
■ Promised end of August 2003 [Daimler, Telekom]
■ Delivered more than a year later

► EBay down for a day in 2002

Prof. U. Aßmann, Softwaretechnologie II 6

The Ariane 5 Launcher Failure

June 4th 1996

Total failure of the 
Ariane 5 launcher on its 

maiden flight

The following slides are from 

Ian Summerville, Software 
Engineering

Prof. U. Aßmann, Softwaretechnologie II 7

Ariane 5 Launcher Failure

► Designed to launch commercial payloads (e.g.communications 
satellites, etc.) into orbit

■ Ariane 5 can carry a heavier payload than Ariane 4
■ Ariane 5 has more thrust (Schub), launches steeper

► 37 seconds after a lift-off, the Ariane 5 launcher lost control
■ Incorrect control signals were sent to the engines 
■ These swivelled so that unsustainable stresses were imposed on 

the rocket
■ It started to break up and self-destructed

► The system failure was a software failure

 Ian Summerville, Software Engineering

Prof. U. Aßmann, Softwaretechnologie II 8

The Problem

► The attitude and trajectory of the rocket are measured by a 
computer-based inertial reference system 

■ This transmits commands to the engines to maintain attitude and 
direction

■ The software failed and this system and the backup system shut 
down

► Diagnostic commands were transmitted to the engines 
■ ..which interpreted them as real data and which swivelled to an 

extreme position

► Integer overflow failure occurred during converting a 64-bit 
floating point number to a signed 16-bit integer

► There was no exception handler 
■ So the system exception management facilities shut down the 

software

► The backup software was a copy and behaved in exactly the 
same way.

 Ian Summerville, Software Engineering



Prof. U. Aßmann, Softwaretechnologie II 9

Software Reuse Error

► The software that failed was reused from the Ariane 4 launch 
vehicle. 

► The computation that resulted in overflow was not used by 
Ariane 5.

► Decisions were made
■ Not to remove the facility as this could introduce new faults
■ Not to test for overflow exceptions because the processor was 

heavily loaded. 
■ For dependability reasons, it was thought desirable to have some 

spare processor capacity

 Ian Summerville, Software Engineering

Prof. U. Aßmann, Softwaretechnologie II 10

Why not in Ariane 4?

► Ariane 4 has a lower initial acceleration and build up of 
horizontal velocity than Ariane 5

■ The value of the variable on Ariane 4 could never reach a level that 
caused overflow during the launch period. 

■ That had been proved (for Ariane 4)!
► As the facility that failed was not required for Ariane 5, 

■ there was no requirement associated with it.

► As there was no associated requirement, 
■ there were no tests of that part of the software and hence no 

possibility of discovering the problem.
► During system testing, simulators of the inertial reference 

system computers were used. 
■ These did not generate the error as there was no requirement!

 Ian Summerville, Software Engineering

Prof. U. Aßmann, Softwaretechnologie II 11

Review Failure

► The design and code of all software should be reviewed for 
problems during the development process

► Either
■ The inertial reference system software was not reviewed because it 

had been used in a previous version
■ The review failed to expose the problem or that the test coverage 

would not reveal the problem
■ The review failed to appreciate the consequences of system 

shutdown during a launch

 Ian Summerville, Software Engineering

Prof. U. Aßmann, Softwaretechnologie II 12

Lessons Learned

► In critical systems
■ Don’t run software unless it is actually needed
■ Return best effort values if the absolutely correct values cannot be 

computed
■ Do not have system shut-down as default exception handler in 

systems that have no fail-safe state

► Test for what the system should do, 
■ and what the system should not do

► Wherever possible, use real equipment and not simulations
► Improve the review process to include external participants and 

review all assumptions made in the code

 Ian Summerville, Software Engineering



Prof. U. Aßmann, Softwaretechnologie II 13

The End


