
Softwaretechnologie II, © Prof. Uwe Aßmann 1

11b. The Ariane 5 Failure

Prof. Dr. rer. nat. Uwe Aßmann

Lehrstuhl Softwaretechnologie

Fakultät Informatik

TU Dresden

WS 11, 0.1 11/8/11



Prof. U. Aßmann, Softwaretechnologie II 2

Readings

► Computer-related RISKs. P. G. Neumann, Addison Wesley 
1995. A compendium of information about system failures that 
have compromised safety, security and reliability

► U. Aßmann, B. Demuth, F. Hartmann. Risiken in der 
Softwareentwicklung. Zeitschrift der TU Dresden.

► R. Glass. Software Runaways.
► D. Rombach, A.Endres: A Handbook of Software and Systems 

Engineering. Pearson



Softwaretechnologie II, © Prof. Uwe Aßmann 3

Greatest Software Desasters



Prof. U. Aßmann, Softwaretechnologie II 4

Greatest Software Desasters

► Tchernobyl 1986
■ Human desaster, but the software could be stopped, and tricked out
■ The reactor nucleus was “poisoned”
■ The operators removed the moderating elements, to get more power
■ The reaction of the reactor came so fast (within 2 minutes) that no 

human reaction was possible
► Mariner (in the 60s)

■ A comma instead of a dot spoiled the software, Mariner got lost in 
space

► Hamburg goods railway station ~1995
■ Software control system should be replaced
■ Could not be tested in vivo
■ Switching failed – several days of delays in German railway traffic

► Denver International Airport ~1993
■ Bagage system was delivered several years later
■ Project managment problem: the software for Continental Airlines was 

extended for the whole airport



Prof. U. Aßmann, Softwaretechnologie II 5

Greatest Software Desasters

► TollCollect
■ German toll collection system for lorries, based on tracing
■ Promised end of August 2003 [Daimler, Telekom]
■ Delivered more than a year later

► EBay down for a day in 2002



Prof. U. Aßmann, Softwaretechnologie II 6

The Ariane 5 Launcher Failure

June 4th 1996

Total failure of the 
Ariane 5 launcher on its 

maiden flight

The following slides are from 

Ian Summerville, Software 
Engineering



Prof. U. Aßmann, Softwaretechnologie II 7

Ariane 5 Launcher Failure

► Designed to launch commercial payloads (e.g.communications 
satellites, etc.) into orbit

■ Ariane 5 can carry a heavier payload than Ariane 4
■ Ariane 5 has more thrust (Schub), launches steeper

► 37 seconds after a lift-off, the Ariane 5 launcher lost control
■ Incorrect control signals were sent to the engines 
■ These swivelled so that unsustainable stresses were imposed on 

the rocket
■ It started to break up and self-destructed

► The system failure was a software failure

 Ian Summerville, Software Engineering



Prof. U. Aßmann, Softwaretechnologie II 8

The Problem

► The attitude and trajectory of the rocket are measured by a 
computer-based inertial reference system 

■ This transmits commands to the engines to maintain attitude and 
direction

■ The software failed and this system and the backup system shut 
down

► Diagnostic commands were transmitted to the engines 
■ ..which interpreted them as real data and which swivelled to an 

extreme position

► Integer overflow failure occurred during converting a 64-bit 
floating point number to a signed 16-bit integer

► There was no exception handler 
■ So the system exception management facilities shut down the 

software

► The backup software was a copy and behaved in exactly the 
same way.

 Ian Summerville, Software Engineering



Prof. U. Aßmann, Softwaretechnologie II 9

Software Reuse Error

► The software that failed was reused from the Ariane 4 launch 
vehicle. 

► The computation that resulted in overflow was not used by 
Ariane 5.

► Decisions were made
■ Not to remove the facility as this could introduce new faults
■ Not to test for overflow exceptions because the processor was 

heavily loaded. 
■ For dependability reasons, it was thought desirable to have some 

spare processor capacity

 Ian Summerville, Software Engineering



Prof. U. Aßmann, Softwaretechnologie II 10

Why not in Ariane 4?

► Ariane 4 has a lower initial acceleration and build up of 
horizontal velocity than Ariane 5

■ The value of the variable on Ariane 4 could never reach a level that 
caused overflow during the launch period. 

■ That had been proved (for Ariane 4)!
► As the facility that failed was not required for Ariane 5, 

■ there was no requirement associated with it.

► As there was no associated requirement, 
■ there were no tests of that part of the software and hence no 

possibility of discovering the problem.
► During system testing, simulators of the inertial reference 

system computers were used. 
■ These did not generate the error as there was no requirement!

 Ian Summerville, Software Engineering



Prof. U. Aßmann, Softwaretechnologie II 11

Review Failure

► The design and code of all software should be reviewed for 
problems during the development process

► Either
■ The inertial reference system software was not reviewed because it 

had been used in a previous version
■ The review failed to expose the problem or that the test coverage 

would not reveal the problem
■ The review failed to appreciate the consequences of system 

shutdown during a launch

 Ian Summerville, Software Engineering



Prof. U. Aßmann, Softwaretechnologie II 12

Lessons Learned

► In critical systems
■ Don’t run software unless it is actually needed
■ Return best effort values if the absolutely correct values cannot be 

computed
■ Do not have system shut-down as default exception handler in 

systems that have no fail-safe state

► Test for what the system should do, 
■ and what the system should not do

► Wherever possible, use real equipment and not simulations
► Improve the review process to include external participants and 

review all assumptions made in the code

 Ian Summerville, Software Engineering



Prof. U. Aßmann, Softwaretechnologie II 13

The End


	Greatest Software Desasters
	Finding out more
	Slide 3
	Slide 4
	Slide 5
	The Ariane 5 Launcher Failure
	Launcher failure
	The Problem
	Avoidable failure?
	Why not Ariane 4?
	Review failure
	Lessons learned
	Slide 13

