14b-ST2, 37-SEW

Exhaustive Graph Rewrite
Systems (XGRS) for Model and
Program Transformations

Prof. Dr. Uwe ABmann 1) EARS
Softwaretechnologie 2) AGRS
Technische Universitat 3) SGRS

Dresden 4) XGRS

Version 11-0.4, 10.12.11

SEW, © Prof. Uwe ABRmann

36.1 EARS

SEW, © Prof. Uwe ABmann

Obligatory Literature

@ Prof. U. ABmann, SEW

» Uwe ABmann. Graph rewrite systems for program optimization. ACM
Transactions on Programming Languages and Systems (TOPLAS),
22(4):583-637, June 2000.

http://portal.acm.org/citation.cfm?id=363914

» Alexander Christoph. Graph rewrite systems for software design
transformations. In M. Aksit, editor, Proceedings of Net Object Days
2002, Erfurt, Germany, October 2002.

» Alexander Christoph. GREAT - a graph rewriting transformation
framework for designs. Electronic Notes in Theoretical Computer
Science (ENTCS), 82 (4), April 2003.

» Alexander Christoph. Describing horizontal model transformations
with graph rewriting rules. In Uwe ABmann, Mehmet Aksit, and
Arend Rensink, editors, MDAFA, volume 3599 of Lecture Notes in
Computer Science, pages 93-107. Springer, 2004.

» Tom Mens. On the Use of Graph Transformations for Model
Refactorings. GTTSE 2005, Springer, LNCS 4143

http://www.springerlink.com/content/5742246115107431/

- Problems with GRS

With graph rewriting for model and program transformation,
there are some problems:
» Termination: The rules of a GRS G are applied in chaotic
order to the manipulated graph. When does G terminate for
a start graph?
= Idea: identify a termination graph which stops the
rewriting when completed
» Non-convergence (indeterminism): when does a GRS
deliver a deterministic solution (unique normal form)?
= Idea: unique normal forms by rule stratification

@ Prof. U. ARmann, SEW I 4

Additive Termination

Transitivising the Inheritance Hierarchy

» A termination subgraph is a subgraph of the
manipulated graph, which is step by step completed
» Conditions in the additive case:

= nodes of termination (sub-)graph are not added (remain

unchanged)
= its edges are only added

» If the termination graph is complete, the system
terminates

Prof. U. ABmann, SEW

Example: Collect Subexpressions

TR

<<create>>

e

[Christoph04] I

Prof. U. ABmann, SEW | 6

EARS CollectExpressions

» "Find all subexpressions which are reachable from a
statement"

ExprsOfStmt(Stmt,Expr) :- Child[Stmt,Expr).

ExprsOfStmt(Stmt,Expr) - Child(Stmt,Expr2), Descendant(Expr2,Expr).

// Descendant is transitive closure of Child

Descendant(Expr1,Expr2] - Child(Expr1,Expr2).

Descendant(Expr1,Expre] - Descendant(Expr1,Expr3],
Child(Expr3,Expra).

» Features:
= terminating, strong confluent
= convergent (unique normal form)
= recursive

» Why do such graph rewrite systems terminate?

» Two transitive closures

Prof. U. ABmann, SEW

I 7

<<create>>
ExprsOfStmt
Stmt:Statement > :
Q Child ExprExpr
<<create>>
ExprsOfStmt
Stmt:Statement D—— @
Child Descendant
<<create>>
Descendant
Expr1:Expr %
@ Child @
<<create>>
Descendant
Expr1:Expr . »(Expr2:E
Descendant Expr3:Expr Child ® *

r
Prof. U. ABmann, SEW I 8

Execution of ,,Reachable

Execution of ,,Reachable

Subexpressions” W|| Subexpressions”
» Answer: ExprsOfStmt and Descendants are termination
subgraphs, completed step by step
Prof. U. ABmann, SEW H‘I 9 @ ‘ | 10
Execution of ,,Reachable Execution of ,,Reachable
Subexpressions* W|| Subexpressions*

Prof. U. ABmann, SEW

111

1

|
Prof. U. ABmann, SEW | 12

EARS - Simple Edge-Additive GRS

Data-flow Analysis with EARS

v

EARS (Edge addition rewrite systems) only add edges
to graphs
= They can be used for the construction of graphs

= For the building up analysis information about a program
or a model

= For abstract interpretation on an abstract domain
represented by a graph

» terminating: noetherian on the finite lattice of subgraphs
of the manipulated graph

= Added edges form the termination subgraph

» strongly confluent: direct derivations can always be
interchanged.

» congruent: unigue normal form (result)
» EARS are equivalent to binary F-Datalog

Prof. U. ABmann, SEW

36.2 Additive GRS (AGRS)

SEW, © Prof. Uwe ABmann 15

=

» Every distributive data flow problem (abstract
interpretation problem) on finite-height powerset lattices
can be represented by an EARS

= defined/used-data-flow analysis
= partial redundancies
= local analysis and preprocessing:
» EARS work for other problems which can be expressed with
DATALOG-queries
= equivalence classes on objects
= alias analysis
= program flow analysis

Prof. U. ABmann, SEW | 14
Example: Allocation of Register
Objects

"Allocate a register object for every subexpression of a
statement which has a result and link the expression to
the statement"

if ExprsOfStmt([Stmt,Expr], HasResult(Expr]
then

ObjectExprs(Stmt,Expr),

RegisterObject := new Register;

UsedReg(Expr,RegisterObject)
_ ExprsOfStmt Xprs
HasResult UsedReg
=true

» Features: terminating

J

Prof. U. ABmann, SEW | 16

L |
» ObjectExprs is the termination subgraph
Assign
Object
Exprs
Expr
P Plus Register
UsedReg

Register UsedReg
UsedReg

Register Const Var Register

UsedReg
A 4
1 X
@ Prof. U. ABmann, SEW 17 @ Prof. U. ARmann, SEW 18
Derivation with the Termination
W|| Subgraph [
|
|
@ [ABmann00] Prof. U. ABmann, SEW 19 @ " Prof. U. ARmann, SEW 20

Edge-accumulative Rules and AGRS

The Termination Subgraph of the
Examples

» A GRS is called edge-accumulative (an AGRS) if

= all rules are edge-accumulative and

= no rule adds nodes to the termination-subgraph nodes of

another rule.

» Edge-accumulative rules are defined on label sets of nodes

and edges in rules
» This criterion statically decidable

Prof. U. ABmann, SEW

36.3 Subtractive GRS (SGRS)

21@

Collection of subexpressions:
T = ({Stmt,Expr}, {ExprsOfStmt, Descendant})

Allocation of register objects:
T = ({Proc,Expr}, {ObjectExprs})

Prof. U. ABmann, SEW

Subtractive Termination

22

SEW, © Prof. Uwe ABmann

23

» Conditions in the subtractive case:

= the nodes of the termination subgraph are not added
(remain unchanged)

= its edges are only deleted
» If the termination subgraph is empty, the system
terminates
» Results in:
= edge-subtractive GRS (ESGRS)
= subtractive GRS (SGRS)

Prof. U. ABmann, SEW

24

Peephole Optimization as Subtractive

Constant Folding as Subtractive GRS nl|| XGRS

¢ Incrincr

D

A,

-'> @ar
x>

—

Const Const

“‘ I

\I '
@ Prof. U. ABmann, SEW “I 25 @ Prof. U. ABmann, SEW | 26
The Nature of Exhaustive Graph

m|| Rewriting (XGRS)

36.4 Exhaustive GRS (XGRS)

AGRS, SGRS make up XGRS (eXhaustive Graph Rewrite
. Systems)

All redex parts in the termination-subgraph of the host graph
are reduced step by step.
» The termination-subgraph is either completed or consumed

= Edge-accumulative systems may create new redex parts in
the termination-subgraph, but

- there will be at most as many of them as the number of
edges in the termination-subgraph.

= Subtractive systems do not create sub-redexes in the
termination-subgraph but destroy them.
» XGRS can only be used to specify algorithms which

= perform a finite number of actions depending on the size
of the host graph.

.

M_ | I
@ SEW, © Prof. Uwe ABmann 27 @ Prof. U ARmann, SEW | 28

All Together Now: Flattening the
W|| Inheritance Hierarchy

All Together Now:
W|| Pull-Up-Method Refactoring

» This rule terminates, due to path contraction

! [
1
@ Prof. U. ABmann, SEW I 29

» Additive Step 1: Create a new base class for common
features; mark this as “base-type”

NewSuper.Name := “<A.name>_<B.name>_Base”

NewSuper:Class

<<crea
base-ty

contains

C:FeatureClass

[Christoph04] 1

1
Prof. U. ABmann, SEW | 30

» Edge-Additive Step 2: alternate case: a class A has features
that should be moved up anyway

contains

C:FeatureClass

| |
Prof. U. ABmann, SEW I 31

» Subtractive Step 3: do the real “pull-up” into the superclass

B:Class

<<delete>
contains

C:FeatureClass

{forall fin C: move fto B }

S

|
Prof. U. ABmann, SEW | 32

The End

» Many model and program transformations can be specified
by XGRS

» Termination criteria build on a termination subgraph that is
completed or deleted during the transformation

Prof. U. ABmann, SEW I 33

