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36.1 EARS
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- Problems with GRS

With graph rewriting for model and program transformation,
there are some problems:

» Termination: The rules of a GRS G are applied in chaotic
order to the manipulated graph. When does G terminate for
a start graph?

= |dea: identify a termination graph which stops the
rewriting when completed

» Non-convergence (indeterminism): when does a GRS
deliver a deterministic solution (unigue normal form)?

= |dea: uniqgue normal forms by rule stratification
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- Additive Termination

» A termination subgraph is a subgraph of the
manipulated graph, which is step by step completed
» Conditions in the additive case:

nodes of termination (sub-)graph are not added (remain
unchanged)

its edges are only added

» |If the termination graph is complete, the system
terminates
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Transitivising the Inheritance Hierarchy
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ml| Example: Collect Subexpressions

» "Find all subexpressions which are reachable from a
statement”

ExprsOfStmt(Stmt,Expr] - Child[Stmt,Expr).

ExprsOfStmt(Stmt,Expr] - Child[Stmt,Expre), Descendant(Expr2,Expr).

/ / Descendant is transitive closure of Child

Descendant(Expr1,Expr2] :- Child(Expr1,Expr2).

Descendant(Expr1,Expr2] - Descendant(Expr1,Expr3),
Child[Expr3,Expr2).

» Features:
= terminating, strong confluent
= convergent (unigue normal form)
= recursive

» Why do such graph rewrite systems terminate?
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EARS CollectExpressions

» Two transitive closures

<<create>>

ExprsOfStmt
Child

<<create>>
ExprsOfStmt

Child pre. Descendant

<<create>>

Descendant
Expr1:Expr
P P Child

<<create>>
Descendant

Expr1 :Exr\~ ,
Qp/ Descendant Expr3:Expr Child @
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Execution of ,,Reachable
W|| Subexpressions*

» Answer: ExprsOfStmt and Descendants are termination
subgraphs, completed step by step
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Execution of ,,Reachable
W|| Subexpressions

Child \ c
! \ rrf‘)escendants
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Execution of ,,Reachable
W|| Subexpressions




Execution of ,,Reachable
W|| Subexpressions




mll EARS - Simple Edge-Additive GRS

» EARS (Edge addition rewrite systems) only add edges
to graphs
= They can be used for the construction of graphs

= For the building up analysis information about a program
or a model

= For abstract interpretation on an abstract domain
represented by a graph

» terminating: noetherian on the finite lattice of subgraphs
of the manipulated graph

= Added edges form the termination subgraph

» strongly confluent: direct derivations can always be
interchanged.

» congruent: unique normal form (result)
» EARS are equivalent to binary F-Datalog
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n || Data-flow Analysis with EARS

» Every distributive data flow problem (abstract
interpretation problem) on finite-height powerset lattices
can be represented by an EARS

= defined/used-data-flow analysis
= partial redundancies
= |ocal analysis and preprocessing:

» EARS work for other problems which can be expressed with
DATALOG-queries

= equivalence classes on objects
= alias analysis
= program flow analysis
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36.2 Additive GRS (AGRS)
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Example: Allocation of Register
Objects

"Allocate a register object for every subexpression of a

statement which has a result and link the expression to
the statement"

If ExprsOfStmt(Stmt,Expr]), HasResult[Expr]
then

ObjectExprs(Stmt,Expr),

RegisterObject := new Register; @

UsedReg(Expr,RegisterObject) ExprsOfStmt

Xprs
CPERACTD
HasResult UsedReg
=true

» Features: terminating

Register
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» ObjectExprs is the termination subgraph
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Assign

Object

\ Exprs
"

A\ P D
\ / UsedReg
UsedReg

UsedReg ‘A
A const o N var

‘ UsedReg
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Derivation with the Termination
W|| Subgraph
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ml|| Edge-accumulative Rules and AGRS

» A GRS is called edge-accumulative (an AGRS) if
= all rules are edge-accumulative and

= no rule adds nodes to the termination-subgraph nodes of
another rule.

» Edge-accumulative rules are defined on label sets of nodes
and edges in rules

» This criterion statically decidable
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The Termination Subgraph of the
Examples

Collection of subexpressions:
T = ({Stmt,Expr}, {ExprsOfStmt, Descendant} )

Allocation of register objects:
T = ({Proc,Expr}, {ObjectExprs} )
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36.3 Subtractive GRS (SGRS)
a
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- Subtractive Termination

» Conditions in the subtractive case:

= the nodes of the termination subgraph are not added
(remain unchanged)

= its edges are only deleted

» |f the termination subgraph is empty, the system
terminates

» Results in:
= edge-subtractive GRS (ESGRS)
= subtractive GRS (SGRS)
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Constant Folding as Subtractive GRS

Const Const




Peephole Optimization as Subtractive

next
Plus > Incr Incrincr

f

o

Var Const @ - C\;a

64
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36.4 Exhaustive GRS (XGRS)
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The Nature of Exhaustive Graph
W|| Rewriting (XGRS)

AGRS, SGRS make up XGRS (eXhaustive Graph Rewrite
Systems)

All redex parts in the termination-subgraph of the host graph
are reduced step by step.

» The termination-subgraph is either completed or consumed

= Edge-accumulative systems may create new redex parts in
the termination-subgraph, but

. there will be at most as many of them as the number of
edges in the termination-subgraph.

= Subtractive systems do not create sub-redexes in the
termination-subgraph but destroy them.

» XGRS can only be used to specify algorithms which

= perform a finite number of actions depending on the size
of the host graph.

.
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All Together Now: Flattening the
W|| Inheritance Hierarchy

» This rule terminates, due to path contraction

\X

AZate»
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All Together Now:
|| Pull-Up-Method Refactoring

» Additive Step 1: Create a new base class for common
features; mark this as “base-type”

NewSuper.Name := “<A.name>_<B.name>_Base”

NewSuper:Class

<<create>>

contains

C:FeatureClass

[Christoph04] I
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» Edge-Additive Step 2: alternate case: a class A has features
that should be moved up anyway

<<create>>

contains

C:FeatureClass

N
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» Subtractive Step 3: do the real “pull-up” into the superclass

<<delete>
contains

C:FeatureClass

{ forall fin C: move fto B }
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» Many model and program transformations can be specified
by XGRS

» Termination criteria build on a termination subgraph that is
completed or deleted during the transformation

|
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