# 14b-ST2, 37-SEW Exhaustive Graph Rewrite Systems (XGRS) for Model and Program Transformations

Prof. Dr. Uwe Aßmann

Softwaretechnologie

Technische Universität Dresden

Version 11-0.4, 10.12.11

- 1) EARS
- 2) AGRS
- 3) SGRS
- 4) XGRS



#### **Obligatory Literature**

- ► Uwe Aßmann. Graph rewrite systems for program optimization. ACM Transactions on Programming Languages and Systems (TOPLAS), 22(4):583-637, June 2000.
  - http://portal.acm.org/citation.cfm?id=363914
- Alexander Christoph. Graph rewrite systems for software design transformations. In M. Aksit, editor, Proceedings of Net Object Days 2002, Erfurt, Germany, October 2002.
- Alexander Christoph. GREAT a graph rewriting transformation framework for designs. Electronic Notes in Theoretical Computer Science (ENTCS), 82 (4), April 2003.
- Alexander Christoph. Describing horizontal model transformations with graph rewriting rules. In Uwe Aßmann, Mehmet Aksit, and Arend Rensink, editors, MDAFA, volume 3599 of Lecture Notes in Computer Science, pages 93-107. Springer, 2004.
- Tom Mens. On the Use of Graph Transformations for Model Refactorings. GTTSE 2005, Springer, LNCS 4143
  - http://www.springerlink.com/content/5742246115107431/



### **36.1 EARS**



#### **Problems with GRS**

With graph rewriting for model and program transformation, there are some problems:

- Termination: The rules of a GRS G are applied in chaotic order to the manipulated graph. When does G terminate for a start graph?
  - Idea: identify a termination graph which stops the rewriting when completed
- Non-convergence (indeterminism): when does a GRS deliver a deterministic solution (unique normal form)?
  - Idea: unique normal forms by rule stratification





#### **Additive Termination**

- A termination subgraph is a subgraph of the manipulated graph, which is step by step completed
- Conditions in the additive case:
  - nodes of termination (sub-)graph are not added (remain unchanged)
  - its edges are only added
- If the termination graph is complete, the system terminates





### Transitivising the Inheritance Hierarchy







#### Example: Collect Subexpressions

"Find all subexpressions which are reachable from a statement"

```
ExprsOfStmt(Stmt,Expr):- Child(Stmt,Expr).

ExprsOfStmt(Stmt,Expr):- Child(Stmt,Expr2), Descendant(Expr2,Expr).

// Descendant is transitive closure of Child

Descendant(Expr1,Expr2):- Child(Expr1,Expr2).

Descendant(Expr1,Expr2):- Descendant(Expr1,Expr3),

Child(Expr3,Expr2).
```

- Features:
  - terminating, strong confluent
  - convergent (unique normal form)
  - recursive
- Why do such graph rewrite systems terminate?



#### EARS CollectExpressions

Two transitive closures







 Answer: ExprsOfStmt and Descendants are termination subgraphs, completed step by step

















#### EARS - Simple Edge-Additive GRS

- EARS (Edge addition rewrite systems) only add edges to graphs
  - They can be used for the construction of graphs
  - For the building up analysis information about a program or a model
  - For abstract interpretation on an abstract domain represented by a graph
- terminating: noetherian on the finite lattice of subgraphs of the manipulated graph
  - Added edges form the termination subgraph
- strongly confluent: direct derivations can always be interchanged.
- congruent: unique normal form (result)
- EARS are equivalent to binary F-Datalog





#### Data-flow Analysis with EARS

- Every distributive data flow problem (abstract interpretation problem) on finite-height powerset lattices can be represented by an EARS
  - defined/used-data-flow analysis
  - partial redundancies
  - local analysis and preprocessing:
- EARS work for other problems which can be expressed with DATALOG-queries
  - equivalence classes on objects
  - alias analysis
  - program flow analysis





### 36.2 Additive GRS (AGRS)



## Example: Allocation of Register Objects

"Allocate a register object for every subexpression of a statement which has a result and link the expression to the statement"

```
if ExprsOfStmt(Stmt,Expr), HasResult(Expr)
then
   ObjectExprs(Stmt,Expr),
   RegisterObject := new Register;
   UsedReg(Expr,RegisterObject)
.
```

Features: terminating





ObjectExprs is the termination subgraph







# Derivation with the Termination Subgraph





[Aßmann00]



#### Edge-accumulative Rules and AGRS

- A GRS is called edge-accumulative (an AGRS) if
  - all rules are edge-accumulative and
  - no rule adds nodes to the termination-subgraph nodes of another rule.
- Edge-accumulative rules are defined on label sets of nodes and edges in rules
- This criterion statically decidable





#### The Termination Subgraph of the Examples

Collection of subexpressions:

```
T = ({Stmt,Expr}, {ExprsOfStmt, Descendant})
```

Allocation of register objects:

```
T = ({Proc,Expr}, {ObjectExprs})
```





### 36.3 Subtractive GRS (SGRS)





### **Subtractive Termination**

- Conditions in the subtractive case:
  - the nodes of the termination subgraph are not added (remain unchanged)
  - its edges are only deleted
- If the termination subgraph is empty, the system terminates
- Results in:
  - edge-subtractive GRS (ESGRS)
  - subtractive GRS (SGRS)



### Constant Folding as Subtractive GRS





### **Peephole Optimization as Subtractive XGRS**





### 36.4 Exhaustive GRS (XGRS)





### The Nature of Exhaustive Graph Rewriting (XGRS)

### AGRS, SGRS make up XGRS (eXhaustive Graph Rewrite Systems)

All redex parts in the termination-subgraph of the host graph are reduced step by step.

- The termination-subgraph is either completed or consumed
  - Edge-accumulative systems may create new redex parts in the termination-subgraph, but
    - there will be at most as many of them as the number of edges in the termination-subgraph.
  - Subtractive systems do not create sub-redexes in the termination-subgraph but destroy them.
- XGRS can only be used to specify algorithms which
  - perform a finite number of actions depending on the size of the host graph.





# All Together Now: Flattening the Inheritance Hierarchy

This rule terminates, due to path contraction





### All Together Now: Pull-Up-Method Refactoring

 Additive Step 1: Create a new base class for common features; mark this as "base-type"

NewSuper.Name := "<A.name>\_<B.name>\_Base"







Edge-Additive Step 2: alternate case: a class A has features that should be moved up anyway







Subtractive Step 3: do the real "pull-up" into the superclass



{ forall f in C: move f to B }



#### The End

- Many model and program transformations can be specified by XGRS
- Termination criteria build on a termination subgraph that is completed or deleted during the transformation

