14b-ST2, 37-SEW

Exhaustive Graph Rewrite
Systems (XGRS) for Model and
Program Transformations

Prof. Dr. Uwe ABmann 1) EARS
Softwaretechnologie 2) AGRS

Technische Universitat 3) SGRS
Dresden 4) XGRS

Version 11-0.4, 10.12.11

SEW, © Prof. Uwe ABmann 1

Obligatory Literature

» Uwe ABmann. Graph rewrite systems for program optimization. ACM
Transactions on Programming Languages and Systems (TOPLAS),
22(4):583-637, June 2000.

http://portal.acm.org/citation.cfm?id=363914
» Alexander Christoph. Graph rewrite systems for software design

transformations. In M. Aksit, editor, Proceedings of Net Object Days
2002, Erfurt, Germany, October 2002.

» Alexander Christoph. GREAT - a graph rewriting transformation
framework for designs. Electronic Notes in Theoretical Computer
Science (ENTCS), 82 (4), April 2003.

» Alexander Christoph. Describing horizontal model transformations
with graph rewriting rules. In Uwe ABmann, Mehmet Aksit, and
Arend Rensink, editors, MDAFA, volume 3599 of Lecture Notes in
Computer Science, pages 93-107. Springer, 2004.

» Tom Mens. On the Use of Graph Transformations for Model
Refactorings. GTTSE 2005, Springer, LNCS 4143

http://www.springerlink.com/content/5742246115107431/
| 2

L
@ Prof. U. ABmann, SEW

http://portal.acm.org/citation.cfm?id=363914
http://www.springerlink.com/content/5742246115107431/

36.1 EARS

@ SEW, © Prof. Uwe ABmann 3

- Problems with GRS

With graph rewriting for model and program transformation,
there are some problems:

» Termination: The rules of a GRS G are applied in chaotic
order to the manipulated graph. When does G terminate for
a start graph?

= |dea: identify a termination graph which stops the
rewriting when completed

» Non-convergence (indeterminism): when does a GRS
deliver a deterministic solution (unigue normal form)?

= |dea: uniqgue normal forms by rule stratification

L
@ Prof. U. ABmann, SEW | 4

- Additive Termination

» A termination subgraph is a subgraph of the
manipulated graph, which is step by step completed
» Conditions in the additive case:

nodes of termination (sub-)graph are not added (remain
unchanged)

its edges are only added

» |If the termination graph is complete, the system
terminates

L
@ Prof. U. ABmann, SEW I 5

Transitivising the Inheritance Hierarchy

[Christoph04] =|:|=
@ Prof. U. ABmann, SEW 6

ml| Example: Collect Subexpressions

» "Find all subexpressions which are reachable from a
statement”

ExprsOfStmt(Stmt,Expr] - Child[Stmt,Expr).

ExprsOfStmt(Stmt,Expr] - Child[Stmt,Expre), Descendant(Expr2,Expr).

/ / Descendant is transitive closure of Child

Descendant(Expr1,Expr2] :- Child(Expr1,Expr2).

Descendant(Expr1,Expr2] - Descendant(Expr1,Expr3),
Child[Expr3,Expr2).

» Features:
= terminating, strong confluent
= convergent (unigue normal form)
= recursive

» Why do such graph rewrite systems terminate?

L
@ Prof. U. ABmann, SEW

EARS CollectExpressions

» Two transitive closures

<<create>>

ExprsOfStmt
Child

<<create>>
ExprsOfStmt

Child pre. Descendant

<<create>>

Descendant
Expr1:Expr
P P Child

<<create>>
Descendant

Expr1 :Exr\~ ,
Qp/ Descendant Expr3:Expr Child @

Prof. U. ARmann, SEW 8

Stmt:Statement

Execution of ,,Reachable
W|| Subexpressions*

» Answer: ExprsOfStmt and Descendants are termination
subgraphs, completed step by step

o L
@ Prof. U. ABmann, SEW I 9

Execution of ,,Reachable
W|| Subexpressions

Child \ c
! \ rrf‘)escendants

@ Prof. U. ABmann, SEW I 10

Execution of ,,Reachable
W|| Subexpressions

Execution of ,,Reachable
W|| Subexpressions

mll EARS - Simple Edge-Additive GRS

» EARS (Edge addition rewrite systems) only add edges
to graphs
= They can be used for the construction of graphs

= For the building up analysis information about a program
or a model

= For abstract interpretation on an abstract domain
represented by a graph

» terminating: noetherian on the finite lattice of subgraphs
of the manipulated graph

= Added edges form the termination subgraph

» strongly confluent: direct derivations can always be
interchanged.

» congruent: unique normal form (result)
» EARS are equivalent to binary F-Datalog

.
@ Prof. U. ABmann, SEW | 13

n || Data-flow Analysis with EARS

» Every distributive data flow problem (abstract
interpretation problem) on finite-height powerset lattices
can be represented by an EARS

= defined/used-data-flow analysis
= partial redundancies
= |ocal analysis and preprocessing:

» EARS work for other problems which can be expressed with
DATALOG-queries

= equivalence classes on objects
= alias analysis
= program flow analysis

L
@ Prof. U. ABmann, SEW | 14

36.2 Additive GRS (AGRS)

@ SEW, © Prof. Uwe ABmann 15

Example: Allocation of Register
Objects

"Allocate a register object for every subexpression of a

statement which has a result and link the expression to
the statement"

If ExprsOfStmt(Stmt,Expr]), HasResult[Expr]
then

ObjectExprs(Stmt,Expr),

RegisterObject := new Register; @

UsedReg(Expr,RegisterObject) ExprsOfStmt

Xprs
CPERACTD
HasResult UsedReg
=true

» Features: terminating

Register
Prof. U. ABmann, SEW | 16

» ObjectExprs is the termination subgraph

|
@ Prof. U. ARmann, SEW I 17

Assign

Object

\ Exprs
"

A\ P D
\ / UsedReg
UsedReg

UsedReg ‘A
A const o N var

‘ UsedReg

L
@ Prof. U. ABmann, SEW I 18

Derivation with the Termination
W|| Subgraph

@ [ABmannOO] Prof. U. ABmann, SEW I 19

ml|| Edge-accumulative Rules and AGRS

» A GRS is called edge-accumulative (an AGRS) if
= all rules are edge-accumulative and

= no rule adds nodes to the termination-subgraph nodes of
another rule.

» Edge-accumulative rules are defined on label sets of nodes
and edges in rules

» This criterion statically decidable

N
@ Prof. U. ABmann, SEW I 21

The Termination Subgraph of the
Examples

Collection of subexpressions:
T = ({Stmt,Expr}, {ExprsOfStmt, Descendant})

Allocation of register objects:
T = ({Proc,Expr}, {ObjectExprs})

|
@ Prof. U. ARmann, SEW I 22

36.3 Subtractive GRS (SGRS)
a

@ SEW, © Prof. Uwe ABmann 23

- Subtractive Termination

» Conditions in the subtractive case:

= the nodes of the termination subgraph are not added
(remain unchanged)

= its edges are only deleted

» |f the termination subgraph is empty, the system
terminates

» Results in:
= edge-subtractive GRS (ESGRS)
= subtractive GRS (SGRS)

L
@ Prof. U. ABmann, SEW I 24

Constant Folding as Subtractive GRS

Const Const

Peephole Optimization as Subtractive

next
Plus > Incr Incrincr

f

o

Var Const @ - C\;a

64

L
@ Prof. U. ABmann, SEW I 26

36.4 Exhaustive GRS (XGRS)

@ SEW, © Prof. Uwe ABmann 27

The Nature of Exhaustive Graph
W|| Rewriting (XGRS)

AGRS, SGRS make up XGRS (eXhaustive Graph Rewrite
Systems)

All redex parts in the termination-subgraph of the host graph
are reduced step by step.

» The termination-subgraph is either completed or consumed

= Edge-accumulative systems may create new redex parts in
the termination-subgraph, but

. there will be at most as many of them as the number of
edges in the termination-subgraph.

= Subtractive systems do not create sub-redexes in the
termination-subgraph but destroy them.

» XGRS can only be used to specify algorithms which

= perform a finite number of actions depending on the size
of the host graph.

.
@ Prof. U. ABmann, SEW | 28

All Together Now: Flattening the
W|| Inheritance Hierarchy

» This rule terminates, due to path contraction

\X

AZate»

@ Prof. U. ABmann, SEW I 29

All Together Now:
|| Pull-Up-Method Refactoring

» Additive Step 1: Create a new base class for common
features; mark this as “base-type”

NewSuper.Name := “<A.name>_<B.name>_Base”

NewSuper:Class

<<create>>

contains

C:FeatureClass

[Christoph04] I
@ Prof. U. ABmann, SEW 30

» Edge-Additive Step 2: alternate case: a class A has features
that should be moved up anyway

<<create>>

contains

C:FeatureClass

N
Prof. U. ABmann, SEW I 31

» Subtractive Step 3: do the real “pull-up” into the superclass

<<delete>
contains

C:FeatureClass

{ forall fin C: move fto B }

L
@ Prof. U. ABmann, SEW I 32

» Many model and program transformations can be specified
by XGRS

» Termination criteria build on a termination subgraph that is
completed or deleted during the transformation

|
@ Prof. U. ARmann, SEW I 33

	Program Optimization with Graph Rewrite Systems
	Slide 2
	I Termination Criteria
	Problems with GRS
	Additive Termination
	Slide 6
	Example: Subexpressions
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	EARS - Simple AGRS
	Data-flow Analysis with EARS
	Slide 15
	Example: Allocation of Register Objects
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Edge-accumulative Rules and AGRS
	The Termination Subgraph of the Examples
	Slide 23
	Subtractive Termination
	Slide 25
	Slide 26
	Slide 27
	The Nature of XGRS
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Outlook

