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Obligatory Reading 

Ø  Balzert, Kap. 14 
Ø  Ghezzi Ch. 3.3, 4.1-4, 5.5 
Ø  Pfleeger Ch. 4.1-4.4,  5 
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Secondary Literature 

Ø  Usually, action-oriented design is structured, i.e., based on 
hierarchical stepwise refinement.  

Ø  Resulting systems are  
Ø  reducible, i.e., all results of the graph-reducibility techniques apply. 
Ø  Often parallel, because processes talk with streams 

Ø  SA and SADT are important for embedded systems because 
resulting systems are parallel and hierarchic 
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23.1 ACTION-ORIENTED 
DESIGN 
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23.1 Action-oriented Design 

Ø  Action-oriented design is similar to function-oriented design, but 
admits that the system has states.  
Ø  It asks for the internals of the system 
Ø  Actions require state on which they are performed (imperative, state-

oriented style) 
 

Ø  Divide: finding subactions 
Ø  Conquer: grouping to modules and processes 

Ø  Example: all function-oriented design methods can be made to 
action-oriented ones, if state is added 
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What are the actions the system should perform? 



    

23.2 ACTION-ORIENTED 
DESIGN WITH SA/SD 

Data-flow connects processes (parallel actions) 
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Structured Analysis and Design (SA/SD) 

Ø  [DeMarco, T. Structured Analysis and System Specification, 
Englewood Cliffs: Yourdon Press, 1978] 

Ø  Representation 
Ø  Function trees (action trees, process trees):  decomposition of system 

functions 
Ø  Data flow diagrams (DFD), in which the  actions are called processes 
Ø  Data dictionary (context-free grammar) describes the structure of the 

data that flow through a DFD 
Ø  Pseudocode (minispecs) describes central algorithms 
Ø  Decision Table and Trees describes conditions (see later) 
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Structured Analysis and Design (SA/SD) – The Process 

Ø  On the highest abstraction level: 
Ø  Elaboration: Define interfaces of entire system by a top-level function 

tree 
Ø  Elaboration: Identify the input-output streams most up in the function 

hierarchy 
Ø  Elaboration: Identify the highest level processes 
Ø  Elaboration: Identify stores 

Ø  Refinement: Decompose function tree hierarchically  
Ø  Change Representation: transform function tree into process 

diagram (action/data flow) 
Ø  Elaboration: Define the structure of the flowing data in the Data 

Dictionary 
Ø  Check consistency of the diagrams 
Ø  Elaboration: Minispecs (pseudocode) 
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Function Trees (Action Trees) and DFDs 

Ø  Function trees are homomorphic to DFD 
Ø  RepresentationChange: Construct a function tree and transform it 

to the actions of a  DFD 
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Decomposition of DFDs and Actions 

Ø  Subtrees in the function tree lead to reducible subgraphs in the DFD 
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Data Flow in UML  

Ø  UML function trees can be formed from actions, and aggregation  
Ø  Activity diagrams can specify dataflow 

Ø  UML 2.0 offers reducible activity diagrams 
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Typing Edges with Types from the Data Dictionary 

Ø  In an SA model, the data dictionary describes the context free 
structure of the data flowing over the edges 
Ø  For every edge in the DFDs, it contains a context-free grammar that 

describes the flowing data items 
Ø  Notation is also called Extended Backus-Naur Form (EBNF) 
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   Notation  Meaning   Example  
    ::= or =    Consists of    A ::= B. 
Sequence   +    Concatenation   A ::= B+C. 
Sequence   <blank>    Concatenation   A ::= B C. 
Selection    [ | ]    Alternative    A ::= [ B | C ]. 
Repetition   {   }^n        A ::= { B }^n. 
Limited repetition m  {   } n    Repetition from m to n  A ::= 1{ B }10. 
Option     (  )    Optional part   A ::= B (C). 
 



    

Example Data Dictionary 
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DataInPot ::= TeaPortion WaterPortion. 
TeaAutomatonData ::= Tea | Water | TeaDrink. 
Tea ::= BlackTea | FruitTea | GreenTea. 
TeaPortion ::= { SpoonOfTea }. 
SpoonOfTea ::= Tea. 
WaterPortion ::= { Water }. 



    

Adding Types to DFDs 

Ø  Nonterminals from the data dictionary become types on flow edges 
Ø  (Alternatively, types from a UML class diagram can be annotated) 

Prof. U. Aßmann Action Oriented Design 

put tea  
in pot 

add 
 boiling  
water 

wait 

produce tea 

Pot 

Water 
GreenTea 

Cup 

TeaDrink 



    

Minispecs in Pseudo Code  

Ø  Minispecs describes the processes in the nodes of the DFD in 
pseudo code. They describe the data transformation of every 
process 

Ø  Here: specification of the minispec attachment process: 
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procedure: AddMinispecsToDFDNodes 
 target.bubble := select DFD node; 
 do while target-bubble needs refinement 
  if target.bubble is multi-functional 
   then decompose as required; 
           select new target.bubble; 

     add pseudocode to 
target.bubble; 
   else no further refinement needed 
  endif 
 enddo 

end 
 



    

Good Languages for Pseudocode 

Ø  SETL (Schwartz, New York University) 
Ø  Dynamic sets, mappings 
Ø  Iterators 

Ø  PIKE (pike.ida.liu.se) 
Ø  Dynamic arrays, sets, relations, mappings 
Ø  Iterators 

Ø  ELAN (Koster, GMD) 
Ø  Natural language as identifiers of procedures 

Ø  Smalltalk (Goldberg et.al, Parc) 
Ø  Attempto Controlled English (ACE, Prof. Fuchs, Zurich) 

Ø  A restricted form of English, easy to parse 
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Structured Analysis and Design (SA/SD) - Heuristics 

Ø  Consistency checks 
Ø  Several consistency rules between diagrams (e.g., between function trees 

and DFD) 
Ø  Corrections necessary in case of structure clash between input and output 

formats 
Ø  Advantage of SA 

Ø  Hierarchical refinement: The actions in the DFD can be refined, I.e., the DFD 
is a reducible graph 

Ø  SA leads to a hierarchical design (a component-based system) 
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Difference to Functional and Modular Design 

Ø  SA focusses on actions (activities, processes), not functions 
Ø  Describe the data-flow through a system 
Ø  Describe stream-based systems with pipe-and-filter architectures 

Ø  Actions are processes 
Ø  SA and SADT can easily describe parallel systems 

Ø  Function trees are interpreted as action trees (process trees) that 
treat streams of data 
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Result: Data-Flow-Based Architectural Style 

Ø  SA/SD design leads to dataflow-based architectural style 
Ø  Processes exchanging streams of data 
Ø  Data flow forward through the system 
Ø  Components are called filter, connections are pipes 
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Examples 

Ø  Shell pipes-and-filters 
Ø  Image processing systems 
Ø  Signal processing systems (DSP-based embedded systems) 

Ø  The satellite radio 
Ø  Video processing systems 
Ø  Car control 
Ø  Process systems (powerplants, production control, …) 

Ø  Content management systems (CMS) 
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23.3 SADT 
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Structured Analysis and Design Technique (SADT) 

Ø  SADT is a action- and data-flow-oriented method 
Ø  Reducible graphs with 2 main forms of diagrams: 

Ø  Activity diagrams: Nodes are activities, edges are data flow (like DFD) 
Ø Data flow architectures result 

Ø  Data diagrams: Nodes are data (stores) and edges are activities  
Ø  Layout constraint: edges go always from left to right, top to bottom 

Ø  Companies used to have standardized forms, marked with author, 
date, version, name, etc.. 
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Maintenance 

Example: The Waterfall Software Model with Activity Diagram of SADT 

Ø  Activity Diagrams SADT – Similar to DFD 
Ø  Read direction left to right, top to bottom 
Ø  With designation of responsible 
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Refinement of Nodes 
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Data Diagrams SADT 
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Comparison SADT vs SA/SD 

Ø  SADT, SA/SD are system-oriented methods, known in other 
disciplines  
Ø  Action-oriented methods  

Ø  they only distinguish between actions (processes) and data 
Ø  Stream-oriented, i.e., model streams of data flowing through the system 
Ø  System-oriented, know the concept of a subsystem 

Ø  SA-DFDs are more flexible as SADT actitity diagrams, since the  
layout is not constrained 
Ø  Function trees and DDs may be coupled with SADT 
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Why are SA and SADT Important? 

Ø  They lead to component-based systems (hierarchical systems) 
Ø  Component-based systems are ubiquituous for many areas 
Ø  Object-orientation is not needed everywhere 
Ø  Other engineers use SADT also 

Ø  SA and SADT can easily describe parallel systems in a structured 
way 

Ø  SA and SADT are stream-based, i.e., for stream-based applications. 
When your context model has streams in its interfaces, SA and 
SADT might be applicable 

Ø  Use case actions can be refined similarly as SA and SADT actions! 
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What Have We Learned 

Ø  Use case diagrams are an action-oriented diagram notation 
Ø  that can be coupled with several design methods (action trees, 

communication diagrams) 
Ø  Besides object-oriented design, structured, action-oriented design 

is a major design technique 
Ø  It will not vanish, but always exist for certain application areas 
Ø  If the system will be based on stream processing, system-oriented design 

methods are appropriate 
Ø  System-oriented design methods lead to reducible systems 

Ø  Don't restrict yourself to object-oriented design 
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The End 
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