
Fakultät Informatik, Institut für Software- und Multimediatechnik, Lehrstuhl für Softwaretechnologie

23 Action-Oriented Design Methods

Ø Prof. Dr. U. Aßmann
Ø Technische Universität Dresden
Ø Institut für Software- und Multimediatechnik
Ø http://st.inf.tu-dresden.de
Ø Version 11-0.1, 28.12.11

1. Use Cases
2. Structured Analysis/Design

(SA/SD)
3. Structured Analysis and Design

Technique (SADT)

Obligatory Reading

Ø  Balzert, Kap. 14
Ø  Ghezzi Ch. 3.3, 4.1-4, 5.5
Ø  Pfleeger Ch. 4.1-4.4, 5

Prof. U. Aßmann Action Oriented Design

Secondary Literature

Ø  Usually, action-oriented design is structured, i.e., based on
hierarchical stepwise refinement.

Ø  Resulting systems are
Ø  reducible, i.e., all results of the graph-reducibility techniques apply.
Ø  Often parallel, because processes talk with streams

Ø  SA and SADT are important for embedded systems because
resulting systems are parallel and hierarchic

Prof. U. Aßmann Action Oriented Design

23.1 ACTION-ORIENTED
DESIGN

Prof. U. Aßmann Action Oriented Design

23.1 Action-oriented Design

Ø  Action-oriented design is similar to function-oriented design, but
admits that the system has states.
Ø  It asks for the internals of the system
Ø  Actions require state on which they are performed (imperative, state-

oriented style)

Ø  Divide: finding subactions
Ø  Conquer: grouping to modules and processes

Ø  Example: all function-oriented design methods can be made to
action-oriented ones, if state is added

Prof. U. Aßmann Action Oriented Design

What are the actions the system should perform?

23.2 ACTION-ORIENTED
DESIGN WITH SA/SD

Data-flow connects processes (parallel actions)

Prof. U. Aßmann Action Oriented Design

Structured Analysis and Design (SA/SD)

Ø  [DeMarco, T. Structured Analysis and System Specification,
Englewood Cliffs: Yourdon Press, 1978]

Ø  Representation
Ø  Function trees (action trees, process trees): decomposition of system

functions
Ø  Data flow diagrams (DFD), in which the actions are called processes
Ø  Data dictionary (context-free grammar) describes the structure of the

data that flow through a DFD
Ø  Pseudocode (minispecs) describes central algorithms
Ø  Decision Table and Trees describes conditions (see later)

Prof. U. Aßmann Action Oriented Design

Structured Analysis and Design (SA/SD) – The Process

Ø  On the highest abstraction level:
Ø  Elaboration: Define interfaces of entire system by a top-level function

tree
Ø  Elaboration: Identify the input-output streams most up in the function

hierarchy
Ø  Elaboration: Identify the highest level processes
Ø  Elaboration: Identify stores

Ø  Refinement: Decompose function tree hierarchically
Ø  Change Representation: transform function tree into process

diagram (action/data flow)
Ø  Elaboration: Define the structure of the flowing data in the Data

Dictionary
Ø  Check consistency of the diagrams
Ø  Elaboration: Minispecs (pseudocode)

Prof. U. Aßmann Action Oriented Design

Prof. U. Aßmann Action Oriented Design

Function Trees (Action Trees) and DFDs

Ø  Function trees are homomorphic to DFD
Ø  RepresentationChange: Construct a function tree and transform it

to the actions of a DFD

Prof. U. Aßmann Action Oriented Design

produce
tea

put tea
in pot

add
 boiling
water

wait

composition put tea
in pot

add
 boiling
water

wait

produce tea

Pot
store/file

action

Cup

fetch
tea from
tea box

open
pot

close
pot

Decomposition of DFDs and Actions

Ø  Subtrees in the function tree lead to reducible subgraphs in the DFD

Prof. U. Aßmann Action Oriented Design

Fetch
tea from
tea box

Open
pot

Close
Pot

put tea
in pot

Pot

Pot

put tea
in pot

Pot

put tea
in pot

fetch
tea from
tea box

open
pot

close
pot

Data Flow in UML

Ø  UML function trees can be formed from actions, and aggregation
Ø  Activity diagrams can specify dataflow

Ø  UML 2.0 offers reducible activity diagrams

Prof. U. Aßmann Action Oriented Design

Fetch tea
from
tea box

Open
pot

Close
Pot

put tea
in pot

Pot

put tea
in pot

Pot

put tea
in pot

open
pot

Pot

close
pot

fetch
tea from
tea box

Prof. U. Aßmann Action Oriented Design

Typing Edges with Types from the Data Dictionary

Ø  In an SA model, the data dictionary describes the context free
structure of the data flowing over the edges
Ø  For every edge in the DFDs, it contains a context-free grammar that

describes the flowing data items
Ø  Notation is also called Extended Backus-Naur Form (EBNF)

Prof. U. Aßmann Action Oriented Design

 Notation Meaning Example
 ::= or = Consists of A ::= B.
Sequence + Concatenation A ::= B+C.
Sequence <blank> Concatenation A ::= B C.
Selection [|] Alternative A ::= [B | C].
Repetition { }^n A ::= { B }^n.
Limited repetition m { } n Repetition from m to n A ::= 1{ B }10.
Option () Optional part A ::= B (C).

Example Data Dictionary

Prof. U. Aßmann Action Oriented Design

DataInPot ::= TeaPortion WaterPortion.
TeaAutomatonData ::= Tea | Water | TeaDrink.
Tea ::= BlackTea | FruitTea | GreenTea.
TeaPortion ::= { SpoonOfTea }.
SpoonOfTea ::= Tea.
WaterPortion ::= { Water }.

Adding Types to DFDs

Ø  Nonterminals from the data dictionary become types on flow edges
Ø  (Alternatively, types from a UML class diagram can be annotated)

Prof. U. Aßmann Action Oriented Design

put tea
in pot

add
 boiling
water

wait

produce tea

Pot

Water
GreenTea

Cup

TeaDrink

Minispecs in Pseudo Code

Ø  Minispecs describes the processes in the nodes of the DFD in
pseudo code. They describe the data transformation of every
process

Ø  Here: specification of the minispec attachment process:

Prof. U. Aßmann Action Oriented Design

procedure: AddMinispecsToDFDNodes
 target.bubble := select DFD node;
 do while target-bubble needs refinement
 if target.bubble is multi-functional
 then decompose as required;
 select new target.bubble;

 add pseudocode to
target.bubble;
 else no further refinement needed
 endif
 enddo

end

Good Languages for Pseudocode

Ø  SETL (Schwartz, New York University)
Ø  Dynamic sets, mappings
Ø  Iterators

Ø  PIKE (pike.ida.liu.se)
Ø  Dynamic arrays, sets, relations, mappings
Ø  Iterators

Ø  ELAN (Koster, GMD)
Ø  Natural language as identifiers of procedures

Ø  Smalltalk (Goldberg et.al, Parc)
Ø  Attempto Controlled English (ACE, Prof. Fuchs, Zurich)

Ø  A restricted form of English, easy to parse

Prof. U. Aßmann Action Oriented Design

Structured Analysis and Design (SA/SD) - Heuristics

Ø  Consistency checks
Ø  Several consistency rules between diagrams (e.g., between function trees

and DFD)
Ø  Corrections necessary in case of structure clash between input and output

formats
Ø  Advantage of SA

Ø  Hierarchical refinement: The actions in the DFD can be refined, I.e., the DFD
is a reducible graph

Ø  SA leads to a hierarchical design (a component-based system)

Prof. U. Aßmann Action Oriented Design

Difference to Functional and Modular Design

Ø  SA focusses on actions (activities, processes), not functions
Ø  Describe the data-flow through a system
Ø  Describe stream-based systems with pipe-and-filter architectures

Ø  Actions are processes
Ø  SA and SADT can easily describe parallel systems

Ø  Function trees are interpreted as action trees (process trees) that
treat streams of data

Prof. U. Aßmann Action Oriented Design

Result: Data-Flow-Based Architectural Style

Ø  SA/SD design leads to dataflow-based architectural style
Ø  Processes exchanging streams of data
Ø  Data flow forward through the system
Ø  Components are called filter, connections are pipes

Prof. U. Aßmann Action Oriented Design

Filter
Filter

Filter

System pipe

pipe

Examples

Ø  Shell pipes-and-filters
Ø  Image processing systems
Ø  Signal processing systems (DSP-based embedded systems)

Ø  The satellite radio
Ø  Video processing systems
Ø  Car control
Ø  Process systems (powerplants, production control, …)

Ø  Content management systems (CMS)

Prof. U. Aßmann Action Oriented Design

23.3 SADT

Prof. U. Aßmann Action Oriented Design

Structured Analysis and Design Technique (SADT)

Ø  SADT is a action- and data-flow-oriented method
Ø  Reducible graphs with 2 main forms of diagrams:

Ø  Activity diagrams: Nodes are activities, edges are data flow (like DFD)
Ø Data flow architectures result

Ø  Data diagrams: Nodes are data (stores) and edges are activities
Ø  Layout constraint: edges go always from left to right, top to bottom

Ø  Companies used to have standardized forms, marked with author,
date, version, name, etc..

Prof. U. Aßmann Action Oriented Design

Activity
Input
Data

Output
Data

Control
Data

Mechanism/
responsible

Data
Generating
Activity

Consuming
Activity

Control
Activity

Store

Maintenance

Example: The Waterfall Software Model with Activity Diagram of SADT

Ø  Activity Diagrams SADT – Similar to DFD
Ø  Read direction left to right, top to bottom
Ø  With designation of responsible

Prof. U. Aßmann Action Oriented Design

Collect
Requirements

Design

Designer
Implementation

Requirements
Engineer

Programmer

Maintener

Waterfall
Software
Construction

SRS

SD

Program

Refinement of Nodes

Prof. U. Aßmann Action Oriented Design

Architectural
Design

Detailed
Design

Designer

Architect

Design

Detailed
Design
Document

Architectural
Design

Requirements

Data Diagrams SADT

Prof. U. Aßmann Action Oriented Design

Characters

Tokens

Syntax
Tree

Intermediate
Code

Machine code

Buffer

Pipe

Memory

File

Lex. Grammar Grammar Tree Mapping

Compiler

Prof. U. Aßmann Action Oriented Design

Comparison SADT vs SA/SD

Ø  SADT, SA/SD are system-oriented methods, known in other
disciplines
Ø  Action-oriented methods

Ø  they only distinguish between actions (processes) and data
Ø  Stream-oriented, i.e., model streams of data flowing through the system
Ø  System-oriented, know the concept of a subsystem

Ø  SA-DFDs are more flexible as SADT actitity diagrams, since the
layout is not constrained
Ø  Function trees and DDs may be coupled with SADT

Prof. U. Aßmann Action Oriented Design

Why are SA and SADT Important?

Ø  They lead to component-based systems (hierarchical systems)
Ø  Component-based systems are ubiquituous for many areas
Ø  Object-orientation is not needed everywhere
Ø  Other engineers use SADT also

Ø  SA and SADT can easily describe parallel systems in a structured
way

Ø  SA and SADT are stream-based, i.e., for stream-based applications.
When your context model has streams in its interfaces, SA and
SADT might be applicable

Ø  Use case actions can be refined similarly as SA and SADT actions!

Prof. U. Aßmann Action Oriented Design

What Have We Learned

Ø  Use case diagrams are an action-oriented diagram notation
Ø  that can be coupled with several design methods (action trees,

communication diagrams)
Ø  Besides object-oriented design, structured, action-oriented design

is a major design technique
Ø  It will not vanish, but always exist for certain application areas
Ø  If the system will be based on stream processing, system-oriented design

methods are appropriate
Ø  System-oriented design methods lead to reducible systems

Ø  Don't restrict yourself to object-oriented design

Prof. U. Aßmann Action Oriented Design

The End

Prof. U. Aßmann Action Oriented Design

