
Fakultät Informatik, Institut für Software- und Multimediatechnik, Lehrstuhl für Softwaretechnologie

30 Transformational Design with Essential
Aspect Decomposition:

Model-Driven Architecture (MDA)

Prof. Dr. U. Aßmann
Technische Universität Dresden
Institut für Software- und Multimediatechnik
Gruppe Softwaretechnologie
http://st.inf.tu-dresden.de
Version 11-0.2, 28.12.11

1.  Model-Driven Architecture
2.  Model Mappings
3.  Model Merging and Weaving
4.  MDSD with domain-specific tagging

References

Ø  Obligatory:
•  www.omg.org/mda Model driven architecture.
•  MDA Guide. OMG (ed.). Reference document for MDA applications

Ø  Optional:
•  J. Frankel. Model-driven architecture. Wiley. Excellent book on the concepts

of MDA, including the MOF, model mappings.
•  Manfred Nagl, editor. Building tightly integrated software development

environments: the IPSEN approach, volume 1170 of Lecture Notes in
Computer Science. Springer-Verlag Inc., New York, NY, USA, 1996.

•  CIP Language Group. The Munich Project CIP, volume 1 of Lecture Notes in
Computer Science. Springer-Verlag, 1984.

•  Bauer et al. The Munich project CIP. Volume 1: The wide spectrum language
CIP-L, volume 183 of Lecture Notes in Computer Science. Springer-Verlag,
Berlin, Germany, 1985.

•  F. L. Bauer, et al. The Munich Project CIP. Volume II: The Transformation
System CIP-S. Springer-Verlag, LNCS 292, 1987.

TU Dresden, Prof. U. Aßmann MDA 2

Problem - Reuse

Ø  Many products must be produced in variants for different platforms
Ø  Machines ranging from PDA over PC to host
Ø  Component models from .NET over CORBA to EJB

Ø  How to develop a product line?

Ø  How to produce common parts of models?

TU Dresden, Prof. U. Aßmann MDA 3

Problem: The Representation Schizophrenia

Ø  Problem: Design Aging
Ø  If an artifact has several representations, such as design, implementation,

documentation
Ø  Always the code is modified, and the other become inconsistent
Ø  Usually, a design specification ages faster than implementation, because the

programmers are tempted to change the implementation quickly, due to
deadlines and customer requests

Ø  They “forget” to update the design

Ø  Solution:
Ø  XP: Single-source principle

Ø  don't represent in other ways that code
Ø  “clean code that works”

Ø  MDA: do a round-trip to solve the problem
Ø One of the biggest problems in software maintenance

TU Dresden, Prof. U. Aßmann MDA 4

30.1 MODEL-DRIVEN
ARCHITECTURE

TU Dresden, Prof. U. Aßmann MDA 5

Remember: Refinement-based Modelling

Ø  (Old idea. Broadband languages, such as CIP or IPSEN did this in
the 70s already)

Ø  Start with some simple model
Ø  Apply refinement steps:

Ø  Elaborate (more details – change semantics)
Ø  Add platform-specific details

Ø  Semantics-preserving operations
Ø  Restructure (more structure, but keep requirements and delivery, i.e.,

semantics)
Ø  Split (decompose, introduce hierarchies, layers, reducibility)
Ø  Coalesce (rearrange)

Ø  TransformDomains (change representation, but keep semantics)

TU Dresden, Prof. U. Aßmann MDA 6

Model-Driven Architecture (MDA)

Ø  MDA http://www.OMG.org/mda is a refinement-based software
development method for product families (product lines)

Ø  Split the models into
Ø  Platform-independent model: The

PIM focuses on the logical architecture
Ø  Platform-specific model: The PSM adds

platform specific details and timing
constraints

Ø  Platform-specific implementation
contains the code

Ø  Platform description model:
describes the platform concepts

Ø  Advantages
Ø  Separation of concerns: Platform-

independent vs platform-dependent
issues

Ø  Portability
Ø  Automation: derive implementation

models from design models (semi-)
automatically

TU Dresden, Prof. U. Aßmann

Computationally Independent Model
(CIM)

Requirements specification

Platform Independent Model (PIM)

Platform Specific Model (PSM)

Platform-Specific Implementation
(PSI, Code)

Domain model for application domain

MDA 7

Platform Description Model
(PDM)

Code Code Code

Platform Specific Model (PSM) Platform Specific Model (PSM)

Computationally Independent Model (CIM)
Requirements specification

Platform Independent Model (PIM) Platform Independent Model (PIM)

Platform Specific Model (PSM)

Code

MDA Describes Product Lines

Ø  The platform stack is a translational framework

TU Dresden, Prof. U. Aßmann

Computationally Independent Model (CIM)
Requirements specification

Platform Independent Model (PIM)

Platform Specific Model (PSM)

Platform-Specific Implementation (PSI, Code)

The products of the product line

Domain model for application domain

MDA 8

Model Mappings and Model Weavings

Ø  Model mappings connect models horizontally (on the same level) or
vertically (crossing levels).
•  From a model mapping, a simple transformation can be infered

Ø  Model weavings weave two input models to an output model
•  Usually, some parts are still hand-written code

TU Dresden, Prof. U. Aßmann

Computationally Independent Model (CIM)
Requirements specification

Platform Independent Model (PIM)

Platform Specific Model (PSM)

Platform-Specific
Implementation (PSI, Code)

Vertical
model
mappings

Domain model for application domain

Horizontal
model
mappings

9

Platform Description Model
(PDM) +

Handwritten code
+

Example: MDA Performed by Hand

TU Dresden, Prof. U. Aßmann

Requirments Specification
(UML, formal methods, ...)

PIM (standard UML with
parallelism)

PSM (EJB middleware)

PSM (Java Code) Java

Elimination of all non-
Java constructs

Adaptation to
EJB platform

PSM (parallelism resolved)

PSM (relations refined)

Elimination of
abstract relations

Realize active/
passive objects

PSM (.NET middleware)

PSM (C# Code)

PSM (relations refined)

MDA 10

Example: Compilers Are Simple MDA Tools

Ø  Metamodels are language descriptions
Ø  Models are intermediate representations
Ø  Platform specific (abstract syntax tree)
Ø  Platform dependent (binary code)

TU Dresden, Prof. U. Aßmann

Programming Language in
Concrete Syntax

Abstract Syntax Tree (AST)

Intermediate Language (IL)

Machine Language (ML)
MDA 11

Machine Language Description
Model (PDM) +

What are Model Mappings?

Ø  Model
Ø  “A model is a representation of a part of a function of a system, its structure,

or behavior”
Ø  Model mappings are transformations from an upper to a lower

model
Ø  The mappings are automatic or semi-automatic: step-wise refinement of the

model by transformation

TU Dresden, Prof. U. Aßmann

Model Platform Metamodel

Mapping Mapping
Technique

source target

applicationOf

instanceOf describes

source target

MDA 12

What Are Platforms?

Ø  Platforms are variability levels, variants that produce a variant of
the specification

Ø  Platforms are environments on which a system runs:
Ø  Abstract machines

Ø  Libraries, such as JDK, .NET

Ø  Implementation languages
Ø  Java, Eiffel, C#

Ø  Component models
Ø  CORBA, Enterprise Java Beans (EJB), .NET-COM+, etc.

Ø  Ontology of a domain (e.g., medicine)
Ø  Constraints

Ø  Time
Ø  Memory
Ø  Energy

TU Dresden, Prof. U. Aßmann MDA 13

Benefit of MDA

Ø  MDA sees the system development process as a sequence of
transformation steps from requirements to code
Ø  MDA is an architectural style for transformational frameworks

Ø  Separation of Platform Information (separation of concerns)
reduces dependencies on platform
Ø  Middleware (.NET, Corba, DCOM, Beans)
Ø  Platform specific details (resource constraints, memory handling)
Ø  Platforms in embedded and realtime systems
Ø  Domain

Ø  Reuse of PIM for many platforms
Ø  The PIM is a generic framework for a product family
Ø  A transformational framework, not an object-oriented framework

Ø  MDA provides generic frameworks for designs and models
Ø  Parameterization with model mappings

TU Dresden, Prof. U. Aßmann MDA 14

30.2 MODEL MAPPINGS

TU Dresden, Prof. U. Aßmann MDA 15

Different Kinds of Mappings

Ø  The MDA Guide suggests several MDA patterns, i.e., mapping
patterns between PIM and PSM:

Ø  Instantiation: binding the formal parameters of a template
(instantiation of templates, framework instantiation) [see Design
Patterns and Frameworks]

Ø  Isomorphic mapping: expand a tag in a PIM to n elements of a
PSM (1:1 mapping)
Ø  Important to map a element of a PIM to several elements of a PSM
Ø  The extension information of a PSM can be expressed as one stereotype in a

PIM (marked PIM)
Ø  Homomorphic mapping: expand a tag in a PIM to n elements of a

PSM (1:n mapping)
Ø  Important to map a element of a PIM to several elements of a PSM
Ø  The extension information of a PSM can be expressed as one stereotype in a

PIM (marked PIM)
Ø  Concept transformation mapping: Change a concept of a PIM

into another concept in a PSM
Ø  For instance, a PIM method to a PSM Command object

Ø  Aspect mappings: aspects are woven into the core PIM
Ø  For instance, with a GRS

TU Dresden, Prof. U. Aßmann MDA 16

Morphic Mappings on Marked PIMs

Ø  1:1 or 1:n mappings (isomorphic mappings, marked PIMs)
are important
Ø  They introduce an exclusively-owns relationship from 1 element of the PIM to

n elements in the PSM
Ø  Supported by many UML and MDA tools

Ø  They partition the PIM and the PSM: The border of a partition is demarcated
by the PIM tag

Ø  This serve for clear responsibilities, on which level a partition is edited

TU Dresden, Prof. U. Aßmann MDA 17

What Are UML Profiles?

Ø  A (UML) profile is a metamodel describing a platforms or a
domain
Ø  Technically, a profile is a set of new stereotypes and tagged values
Ø  Stereotypes correspond to metaclasses
Ø  A profile has a metamodel that extends the UML metamodel
Ø  Stereotypes are metaclasses in this metamodel that are derived from

standard UML metaclasses
Ø  Examples platform profiles:

Ø  EDOC Enterprise Distributed Objects Computing
Ø  Middleware: Corba, .NET, EJB
Ø  Embedded and realtime systems: time, performance, schedulability

Ø  A profile can describe a domain model
Ø  or ontology, if domain is large enough
•  A profile can be the core of a domain specific language (DSL)
Ø  With own vocabulary, every entry in metamodel is a term

Ø Examples:
•  Banking, insurances, cars, airplanes, …

TU Dresden, Prof. U. Aßmann MDA 18

Marking

TU Dresden, Prof. U. Aßmann

[MDA Guide, OMG]

MDA 19

Example of a Marked PIM

Ø  Different class implementations in a PSM, refining to different
languages, using different patterns

TU Dresden, Prof. U. Aßmann

-int sum
+withdraw()

<<Java>>
Loan

// Java implementation as a decorator
class Loan extends Account {
 // decorator backlink
 Account upper;

 private int sum;
 public void withdraw(
 int amount) {
 sum -= amount;
}

public void withdraw(
 int amount) {
 sum -= amount;
}

// C# implementation: a partial class
class Loan partial Account {
 private int sum;
 public void withdraw(
 int amount) {
 sum -= amount;
}

-int sum
+withdraw()

<<C#>>
Loan

MDA 20

Pattern Transformation

TU Dresden, Prof. U. Aßmann

[MDA Guide, OMG]

MDA 21

Model Transformation

TU Dresden, Prof. U. Aßmann

[MDA Guide, OMG]

MDA 22

Meta Model Transformation

TU Dresden, Prof. U. Aßmann

[MDA Guide, OMG]

MDA 23

30.3 Model Merging and Weaving

TU Dresden, Prof. U. Aßmann

[MDA Guide, OMG]

MDA 24

Additional Information

TU Dresden, Prof. U. Aßmann

[MDA Guide, OMG]

MDA 25

Model
weaving

Platform-1 specific
model (PSM)

Platform-1 specific
extension (PSE)

Platform independent
model (PIM)

Model
weaving

Platform-(1+2) specific
model (PSM)

Platform-2 specific
extension (PSE)

Adding Platform-Specific Extensions to Platform-Independent Models

TU Dresden, Prof. U. Aßmann MDA 26

Aspect 1

Aspect 2

Essence

When Can We Semi-Automatically Enrich A PIM to a PSM?

Ø  Describe platform specific extension (PSE) as aspects or views
Ø  The PIM is the core, the PSM the weaved system
Ø  The model mapping becomes an aspect weaver

TU Dresden, Prof. U. Aßmann

PSE for Aspect 1

PSE for Aspect 3

PIM

Op

PSM

Op
Op

Op
Op

Op Op

PSE for Aspect 2

MDA 27

MDA With Several Layers for Resource-Constrained Systems

Ø  HIDOORS EU Projekt
(High Integrity Distributed
Object-Oriented
Real-Time Systems),
http://www.hidoors.org

Ø  MDA for RT-UML
Ø  Realtime sequence diagrams (MSC)
Ø  UML realtime statecharts

Ø  Transformation into timed
automata of Uppaal model
checker

TU Dresden, Prof. U. Aßmann

PSE for
Aspect 1

(time)

PIM

Op Op
Op

Op

Op

Op Op

PSE for
 Aspect 2
(memory)

PSM-1

PSM-2

Op Op
Op

Op

Op

Op Op

MDA 28

RT Sequence Diagram (UML)

TU Dresden, Prof. U. Aßmann

<<subject>>
Heart Rate
Server

<<observer>>
HR Trend
Recoder

<<observer>>
HR Sensor

GetRate()
Subscribe()

Subscribe()

GetRate()
A

B

C

D

Advice:
{D-C<=1ms}
{B-A <= 2ms}

Join Points

RT Extension Aspect

MDA 29

RT-SD und RT-Statecharts are Platform Specific Aspects

TU Dresden, Prof. U. Aßmann

RT Sequence
diagram

PIM: UML class diagram

Op Op
Op

Op

Op

Op Op

RT-Statecharts

PSM-1

PSM-2

Op Op
Op

Op

Op

Op Op

MDA 30

Problem: Full MDA Needs Roundtrip

Ø  Otherwise, the models age (design aging)
Ø  This is still an unsolved problem

TU Dresden, Prof. U. Aßmann

Model Mappings

Requirements Specification

Platform Independent Model (PIM)

Platform Specific Model (PSM)

Code

MDA 31

Problem 2: MDA Needs More Levels (Multi-Stage MDA)

TU Dresden, Prof. U. Aßmann

Requirements Specification

Platform Independent Model (PIM)

Platform Specific Model (PSM)

Code

... “platform
stack”

MDA 32

30.4 Model-Driven Software Development (MDSD)
with Domain Specific Tagging

Ø  Model-based software development (MDSD, MDD) tags UML
diagrams with domain profiles
Ø  From the profile stereotypes and tags, domain-specific code is generated
Ø  set/get, standard functions, standard attributes
Ø  compliance functions for component models

Ø  <!--In contrast, MDA profile tags are platform-specific-->

TU Dresden, Prof. U. Aßmann

withdraw()

<<Account>>
Loan

class Loan extends IAccount {
 private Person owner;
 void setOwner(Person p) {..}
 Person getOwner() {..}
 private int sum;
/*** end generated code **/
 public void withdraw(
 int amount) {
 sum -= amount;
}
/*** begin generated code **/
}

public void withdraw(
 int amount) {
 sum -= amount;
}

MDA 33

The End

Ø  MDA(R) is a trademark of OMG

TU Dresden, Prof. U. Aßmann MDA 34

