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Problem - Reuse 

Ø  Many products must be produced in variants for different platforms 
Ø  Machines ranging from PDA over PC to host 
Ø  Component models from .NET over CORBA to EJB 

Ø  How to develop a product line? 
 
 

Ø  How to produce common parts of models? 
 
 

TU Dresden, Prof. U. Aßmann  MDA 3 

 

    

Problem: The Representation Schizophrenia 

Ø  Problem: Design Aging 
Ø  If an artifact has several representations, such as design, implementation, 

documentation 
Ø  Always the code is modified, and the other become inconsistent 
Ø  Usually, a design specification ages faster than implementation, because the 

programmers are tempted to change the implementation quickly, due to 
deadlines and customer requests 

Ø  They “forget” to update the design 

Ø  Solution:  
Ø  XP: Single-source principle 

Ø  don't represent in other ways that code 
Ø  “clean code that works” 

Ø  MDA:  do a round-trip to solve the problem 
Ø One of the biggest problems in software maintenance 
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30.1 MODEL-DRIVEN 
ARCHITECTURE 
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Remember: Refinement-based Modelling 

Ø  (Old idea. Broadband languages, such as CIP or IPSEN did this in 
the 70s already) 

Ø  Start with some simple model 
Ø  Apply refinement steps: 

Ø  Elaborate (more details – change semantics) 
Ø  Add platform-specific details 

Ø  Semantics-preserving operations 
Ø  Restructure (more structure, but keep requirements and delivery, i.e., 

semantics) 
Ø  Split (decompose, introduce hierarchies, layers, reducibility) 
Ø  Coalesce (rearrange) 

Ø  TransformDomains (change representation, but keep semantics) 
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Model-Driven Architecture (MDA) 

Ø  MDA http://www.OMG.org/mda is a refinement-based software  
development method for product families (product lines) 

Ø  Split the models into   
Ø  Platform-independent model: The  

PIM focuses on the logical architecture 
Ø  Platform-specific model: The PSM adds  

platform specific details and timing  
constraints 

Ø  Platform-specific implementation 
contains the code 

Ø  Platform description model:  
describes the platform concepts  

Ø  Advantages 
Ø  Separation of concerns: Platform- 

independent vs platform-dependent 
issues 

Ø  Portability 
Ø  Automation: derive implementation  

models from design models (semi-) 
automatically 
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Computationally Independent Model 
(CIM) 

Requirements specification 

Platform Independent Model (PIM) 

Platform Specific Model (PSM) 

Platform-Specific Implementation 
(PSI, Code) 

Domain model for application domain 
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Platform Description Model 
(PDM) 

    

Code Code Code 

Platform Specific Model (PSM) Platform Specific Model (PSM) 

Computationally Independent Model (CIM) 
Requirements specification 

Platform Independent Model (PIM) Platform Independent Model (PIM) 

Platform Specific Model (PSM) 

Code 

MDA Describes Product Lines 

Ø  The platform stack is a translational framework 
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Computationally Independent Model (CIM) 
Requirements specification 

Platform Independent Model (PIM) 

Platform Specific Model (PSM) 

Platform-Specific Implementation (PSI, Code) 

The products of the product line 

Domain model for application domain 
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Model Mappings and Model Weavings 

Ø  Model mappings connect models horizontally (on the same level) or 
vertically (crossing levels).  
•  From a model mapping, a simple transformation can be infered 

Ø  Model weavings weave two input models to an output model 
•  Usually, some parts are still hand-written code 
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Computationally Independent Model (CIM) 
Requirements specification 

Platform Independent Model (PIM) 

Platform Specific Model (PSM) 

Platform-Specific 
Implementation (PSI, Code) 

Vertical 
model  
mappings 

Domain model for application domain 

Horizontal 
model  
mappings 
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Platform Description Model 
(PDM) +

Handwritten code 
+

    

Example: MDA Performed by Hand 
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Requirments Specification 
(UML, formal methods, ...) 

PIM (standard UML with 
parallelism) 

PSM (EJB middleware) 

PSM (Java Code) Java 

Elimination of all non-
Java constructs 

Adaptation to  
EJB platform 

PSM (parallelism resolved) 

PSM (relations refined) 

Elimination of  
abstract relations 

Realize active/ 
passive objects 

PSM (.NET middleware) 

PSM (C# Code) 

PSM (relations refined) 
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Example: Compilers Are Simple MDA Tools 

Ø  Metamodels are language descriptions 
Ø  Models are intermediate representations 
Ø  Platform specific (abstract syntax tree) 
Ø  Platform dependent (binary code) 
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Programming Language in  
Concrete Syntax 

Abstract Syntax Tree (AST) 

Intermediate Language (IL) 

Machine Language (ML) 
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What are Model Mappings? 

Ø  Model 
Ø  “A model is a representation of a part of a function of a system, its structure, 

or behavior” 
Ø  Model mappings are transformations from an upper to a lower 

model 
Ø  The mappings are automatic or semi-automatic: step-wise refinement of the 

model by transformation 
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Model Platform Metamodel 

Mapping Mapping 
Technique 

source target 

applicationOf 

instanceOf describes 

source target 
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What Are Platforms? 

Ø  Platforms are variability levels, variants that produce a variant of 
the specification 

Ø  Platforms are environments on which a system runs: 
Ø  Abstract machines 

Ø  Libraries, such as JDK, .NET 

Ø  Implementation languages 
Ø  Java, Eiffel, C# 

Ø  Component models 
Ø  CORBA, Enterprise Java Beans (EJB), .NET-COM+, etc. 

Ø  Ontology of a domain (e.g., medicine) 
Ø  Constraints  

Ø  Time  
Ø  Memory 
Ø  Energy 
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Benefit of MDA 

Ø  MDA sees the system development process as a sequence of 
transformation steps from requirements to code 
Ø  MDA is an architectural style for transformational frameworks 

Ø  Separation of Platform Information (separation of concerns) 
reduces dependencies on platform 
Ø  Middleware (.NET, Corba, DCOM, Beans) 
Ø  Platform specific details (resource constraints, memory handling) 
Ø  Platforms in embedded and realtime systems 
Ø  Domain 

Ø  Reuse of PIM for many platforms  
Ø  The PIM is a generic framework for a product family  
Ø  A transformational framework, not an object-oriented framework 

Ø  MDA provides generic frameworks for designs and models 
Ø  Parameterization with model mappings 
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30.2 MODEL MAPPINGS 
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Different Kinds of Mappings 

Ø  The MDA Guide suggests several MDA patterns, i.e., mapping 
patterns between PIM and PSM: 

Ø  Instantiation: binding the formal parameters of a template 
(instantiation of templates, framework instantiation) [see Design 
Patterns and Frameworks] 

Ø  Isomorphic mapping: expand a tag in a PIM to n elements of a 
PSM (1:1 mapping) 
Ø  Important to map a element of a PIM to several elements of a PSM 
Ø  The extension information of a PSM can be expressed as one stereotype in a 

PIM (marked PIM) 
Ø  Homomorphic mapping: expand a tag in a PIM to n elements of a 

PSM (1:n mapping) 
Ø  Important to map a element of a PIM to several elements of a PSM 
Ø  The extension information of a PSM can be expressed as one stereotype in a 

PIM (marked PIM) 
Ø  Concept transformation mapping: Change a concept of a PIM 

into another concept in a PSM 
Ø  For instance, a PIM method to a PSM Command object  

Ø  Aspect mappings: aspects are woven into the core PIM 
Ø  For instance, with a GRS 
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Morphic Mappings on Marked PIMs 

Ø  1:1 or 1:n mappings (isomorphic mappings, marked PIMs) 
are important  
Ø  They introduce an exclusively-owns relationship from 1 element of the PIM to 

n elements in the PSM 
Ø  Supported by many UML and MDA tools 

Ø  They partition the PIM and the PSM: The border of a partition is demarcated 
by the PIM tag 

Ø  This serve for clear responsibilities, on which level a partition is edited 
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What Are UML Profiles? 

Ø  A (UML) profile is a metamodel describing a platforms or a 
domain 
Ø  Technically, a profile is a set of new stereotypes and tagged values 
Ø  Stereotypes correspond to metaclasses 
Ø  A profile has a metamodel that extends the UML metamodel  
Ø  Stereotypes are metaclasses in this metamodel that are derived from 

standard UML metaclasses 
Ø  Examples platform profiles:  

Ø  EDOC Enterprise Distributed Objects Computing 
Ø  Middleware: Corba, .NET, EJB 
Ø  Embedded and realtime systems: time, performance, schedulability 

Ø  A profile can describe a domain model  
Ø  or ontology, if domain is large enough 
•  A profile can be the core of a domain specific language (DSL) 
Ø  With own vocabulary, every entry in metamodel is a term 

Ø Examples:  
•  Banking, insurances, cars, airplanes, … 
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Marking 
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[MDA Guide, OMG] 
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Example of a Marked PIM 

Ø  Different class implementations in a PSM, refining to different 
languages, using different patterns 
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-int sum 
+withdraw() 
 

<<Java>> 
Loan 

// Java implementation as a decorator 
class Loan extends Account { 
  // decorator backlink 
  Account upper;  
   
  private int sum; 
  public void withdraw( 
   int amount) { 
   sum -= amount; 
} 
 

public void withdraw( 
   int amount) { 
   sum -= amount; 
} 

// C# implementation: a partial class 
class Loan partial Account { 
  private int sum; 
  public void withdraw( 
   int amount) { 
   sum -= amount; 
} 
 

-int sum 
+withdraw() 
 

<<C#>> 
Loan 
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Pattern Transformation 
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[MDA Guide, OMG] 
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Model Transformation 
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Meta Model Transformation 
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[MDA Guide, OMG] 
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30.3 Model Merging and Weaving 
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[MDA Guide, OMG] 
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Additional Information 
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Model  
weaving 

Platform-1 specific 
model (PSM) 

Platform-1 specific 
extension (PSE) 

Platform independent 
model (PIM) 

Model  
weaving 

Platform-(1+2) specific 
model (PSM) 

Platform-2 specific 
extension (PSE) 

Adding Platform-Specific Extensions to Platform-Independent Models 
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When Can We Semi-Automatically Enrich A PIM to a PSM?  

Ø  Describe platform specific extension (PSE) as aspects or views 
Ø  The PIM is the core, the PSM the weaved system 
Ø  The model mapping becomes an aspect weaver 
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PSE for Aspect 1 

PSE for Aspect 3 

PIM 

Op 

PSM 

Op 
Op 

Op 
Op 

Op Op 

PSE for Aspect 2 
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MDA With Several Layers for Resource-Constrained Systems 

Ø  HIDOORS EU Projekt  
(High Integrity Distributed  
Object-Oriented  
Real-Time Systems),  
http://www.hidoors.org  

Ø  MDA for RT-UML  
Ø  Realtime sequence diagrams (MSC) 
Ø  UML realtime statecharts 

Ø  Transformation into timed  
automata of Uppaal model  
checker 
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PSE for 
Aspect 1  

(time) 
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Op 

Op 

Op 

Op Op 

MDA 28 

 



    

RT Sequence Diagram (UML) 
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<<subject>> 
Heart Rate 
Server 

<<observer>> 
HR Trend  
Recoder 

<<observer>> 
HR Sensor 
 

GetRate() 
Subscribe() 

Subscribe() 

GetRate() 
A 

B 

C 

D 

Advice: 
{D-C<=1ms} 
{B-A <= 2ms} 

Join Points 

RT Extension Aspect 
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RT-SD und RT-Statecharts are Platform Specific Aspects 
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RT Sequence 
diagram 

PIM: UML class diagram 

Op Op 
Op 

Op 

Op 

Op Op 

RT-Statecharts 

PSM-1 

PSM-2 

Op Op 
Op 

Op 

Op 

Op Op 
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Problem: Full MDA Needs Roundtrip 

Ø  Otherwise, the models age (design aging) 
Ø  This is still an unsolved problem 

TU Dresden, Prof. U. Aßmann  

Model Mappings 

Requirements Specification 

Platform Independent Model (PIM) 

Platform Specific Model (PSM) 

Code 
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Problem 2: MDA Needs More Levels (Multi-Stage MDA) 
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Requirements Specification 

Platform Independent Model (PIM) 

Platform Specific Model (PSM) 

Code 

... “platform 
stack” 
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30.4 Model-Driven Software Development (MDSD) 
with Domain Specific Tagging 

Ø  Model-based software development (MDSD, MDD) tags UML 
diagrams with domain profiles  
Ø  From the profile stereotypes and tags, domain-specific code is generated 
Ø  set/get, standard functions, standard attributes 
Ø  compliance functions for component models 

Ø  <!--In contrast, MDA profile tags are platform-specific--> 
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withdraw() 
 

<<Account>> 
Loan 

class Loan extends IAccount { 
  private Person owner; 
  void setOwner(Person p) {..} 
  Person getOwner() {..} 
  private int sum; 
/*** end generated code **/ 
  public void withdraw( 
   int amount) { 
   sum -= amount; 
} 
/*** begin generated code **/    
} 

public void withdraw( 
   int amount) { 
   sum -= amount; 
} 
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The End 

Ø  MDA(R) is a trademark of OMG 
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