
Design Patterns and Frameworks, © Prof. Uwe Aßmann 1

Design Patterns and Frameworks
1) Introduction

Prof. Dr. U. Aßmann

Chair for Software Engineering

Faculty of Informatics

Dresden University of
Technology

WS 12-0.1, 10/1/12

1) History and Introduction

2) Different classes of patterns

3) Where can patterns be used?

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

2

Literature (To Be Read)

► Start here: A. Tesanovic. What is a pattern? Paper in Design Pattern
seminar, IDA, 2001. Available at course home page.

► Alternatively: GOF: Introduction.
► Brad Appleton. Patterns and Software: Essential Concepts and

terminology. http://www.cmcrossroads.com/bradapp/docs/patterns-
intro.html Compact introduction into patterns.

► http://www.hillside.net/plop/pastconferences.html

http://www.hillside.net/plop/pastconferences.html

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

3

Secondary Reading

► D. Riehle, H. Zülinghoven, Understanding and Using Patterns in
Software Development. Theory and Practice of Object Systems 2 (1),
1996. Explains different kinds of patterns.
http://citeseer.ist.pst.edu/riehle96understanding.html

http://citeseer.ist.pst.edu/riehle96understanding.html

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

4

History

► Beginning of the 70s: the window and desktop
metaphors (conceptual patterns)

■ Smalltalk group in Xerox Parc,
Palo Alto

► 1978/79: MVC pattern for Smalltalk GUI.
Goldberg and Reenskaug at Xerox Parc

■ During porting Smalltalk-78 for Norway in
the Eureka Software Factory project
[Reenskaug]

► 1979: Alexander's “The Timeless Way of
Building”

■ Introduces the notion of a pattern and a
pattern language

► 1987: W. Cunningham, K. Beck: OOPSLA
paper “Using Pattern Languages for Object-
Oriented Programs”

■ Discovered Alexander's work for software
engineers by applying 5 patterns in
Smalltalk

► 1991: Erich Gamma. Design Patterns. PhD
Thesis

■ Working with ET++, one of the
first window frameworks of C++

■ At the same time, Vlissides
works on InterViews (part of
Athena)

■ Pattern workshop at OOPSLA
91, organized by B. Anderson

► 1993: E. Gamma, R. Helm, R. Johnson, J.
Vlissides. Design Patterns: Abstraction and
Reuse of Object-Oriented Design. ECOOP
97 LNCS 707, Springer, 1993.

► 1994: First PLOP conference (Pattern
Languages Of Programming)

► 1995: GOF book.

► 1997: Riehle on role models and design
patterns

► 2005: Collaborations (class-role models) in
UML

► 2005: First role-languages, such as Ceasar/J
and ObjectTeams

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

5

Alexander’s Laws on Beauty

► Christopher Alexander. “The timeless way of building”. Oxford Press
1977.

■ Hunting for the “Quality without a name”:
■ When are things "beautiful"?
■ When do things “live”?

► Patterns grasp centers of beauty
► You have a language for beauty, consisting of patterns (a pattern

language)
■ Dependent on culture

► Beauty cannot be invented
■ but must be combined/generated by patterns from a pattern language

► The “quality without a name” can be reached by pattern composition
in pattern languages

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

6

The Most Popular Definition

► Goal: Reuse of design information
■ A pattern must not be “new”!

■ A pattern writer must have a “aggressive disregard for originality”

► In this sense, patterns are well-known in every engineering
discipline

■ Mechanical engineering
■ Electrical engineering
■ Architecture

A Design Pattern is a description of a standard solution for
● A standard design problem
● In a certain context

A Design Pattern is a description of a standard solution for
● A standard design problem
● In a certain context

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

7

Example: Model/View/Controller
(MVC)

► MVC is a agglomeration of classes to control a user interface and a
data structure

■ Developed by Goldberg/Reenskaug 1978, for Smalltalk

► MVC is a complex design pattern and combines the simpler ones
compositum, strategy, observer.

► Ingredients:
■ Model: Data structure or object, invisible
■ View: Representation(s) on the screen
■ Controller: Encapsulates reactions on inputs of users, couples

model and views

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

8

Views as Observer

a=50%
b=30%
c=20%

Window

 a

 30

 30

 10

 20

 10

 b c

 10

 60

 50

 80

 x

 y

 z

WindowWindow

 a b c

Model

Views

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

9

Patterns

► Pattern 1: Observer. Grasps relation between model and views
■ Views may register at the model (observers).
■ They are notified if the model changes. Then, every view updates itself by accessing the

data of the model.
■ Views are independent of each other. The model does not know how views

visualize it.
■ Observer decouples strongly.

► Pattern 2: Composite: Views may be nested (represents trees)
■ For a client class, Compositum unifies the access to root, inner nodes, and leaves
■ The MVC pattern additionally requires that

. There is an abstract superclass View

. The class CompositeView is a subclass of View

. And can be used in the same way as View

► Pattern 3: Strategy: The relation between controller and view is a
Strategy.

■ There may be different control strategies, lazy or eager update of views (triggering
output), menu or keyboard input (taking input)

■ A view may select subclasses of Controller, even dynamically. Strategy allows for
this dynamic exchange (variability)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

10

What Does a Design Pattern
Contain?
► A part with a “bad smell”

■ A structure with a bad smell
■ A query that proved a bad smell
■ A graph parse that recognized a bad smell

► A part with a “good smell” (standard solution)
■ A structure with a good smell
■ A query that proves a good smell
■ A graph parse that proves a good smell

► A part with “forces”
■ The context, rationale, and pragmatics
■ The needs and constraints

“bad smell” “good smell”

forces

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

11

Structure for Design Pattern
Description (GOF Form)

► Name (incl. Synonyms) (also known as)
► Motivation (purpose)

■ also “bad smells” to be avoided

► Employment
► Solution (the “good smell”)

■ Structure (Classes, abstract classes, relations): UML class or object
diagram

■ Participants and their roles: textual details of classes
■ Interactions: interaction diagrams (MSC, statecharts, collaboration

diagrams)
■ Consequences: advantages and disadvantages (pragmatics)
■ Implementation: variants of the design pattern
■ Code examples

► Known Uses
► Related Patterns

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

12

Purpose Design Pattern

► Design patterns create an “ontology of software design”
■ Improvement of the state of the art of software engineering
■ Fix a glossary for software engineering
■ A “software engineer” without the knowledge of patterns is a programmer
■ Prevent re-invention of well-known solutions

► Design patterns improve communication in teams
■ Between clients and programmers
■ Between designers, implementers and testers
■ For designers, to understand good design concepts

► Design patterns document abstract design concepts
■ Patterns are “mini-frameworks”
■ Documentation, In particular frameworks are documented by design

patterns
■ May be used to capture information in reverse engineering
■ Improve code structure and hence, code quality

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

13

Standard Incentives For Using
Patterns
► Easy System

■ System structure
■ Easy communication
■ Easy protocols

► Easy Testability
■ Null object
■ Static preprocessing

► Easy Evolution
► Easy Reuse!!

Design Patterns and Frameworks, © Prof. Uwe Aßmann 14

1.2 Different Kinds of Patterns

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

15

What is a Pattern?

► There is no “the pattern”
► At least, research is done in the following areas:

■ Conceptual patterns
■ Design Patterns

. Different forms

■ Antipatterns
■ Implementation patterns (programming patterns, idioms, workarounds)
■ Process patterns

. Reengineering patterns

■ Organizational patterns

► General definition:
► A pattern is the abstraction from a concrete form which keeps

recurring in specific non-arbitrary contexts [Riehle/Zülinghoven,
Understanding and Using Patterns in Software Development]

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

16

Conceptual Patterns

► A conceptual pattern is a pattern whose form is described by means
of the terms and concepts from an application domain

■ Based on metaphors in the application domain

► Example: conceptual pattern “desktop”
■ Invented in Xerox Parc from A. Kay and others

. Folders, icons, TrashCan

. Drag&Drop as move actions on the screen

■ Basic pattern for all windowing systems
■ Also for many CASE tools for visual programming
■ Question: what is here the “abstraction from the concrete form”?

► We will revisit in the Tools-And-Materials (TAM) pattern language
■ It works on conceptual patterns such as “Tool”, “Material”, “Automaton”

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

17

Design Patterns, Different
Definitions
► “A Design Pattern is a description of a standard solution for

■ A standard design problem
■ In a certain context”

► “A design pattern superimposes a simple structure of a relation in
the static or dynamic semantics of a system”

■ Relations, interactions, collaborations
■ Nodes: objects, classes, packages

► “A design pattern is a named nugget of insight which conveys the
essence of a proven solution to a recurring problem within a certain
context amidst competing concerns” [Appleton]

► Question: what is here the “abstraction from the concrete form”? (in
terms of Riehle/Züllighoven)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

18

Different Types of Design Patterns

► Fundamental Design Pattern (FDP)
■ A pattern that cannot be expressed as language construct

► Programming Pattern, Idiom, Language Dependent Design
Pattern (LDDP)

■ A pattern that exists as language construct in another programming language, but
is not available in general

► Architectural style (Architectural pattern)
■ A design pattern that describes the coarse-grain structure of a (sub)system
■ A design pattern on a larger scale, for coarse-grain structure (macro structure)

► Framework Instantiation Patterns
■ Some design patterns couple framework variation points and application code

(framework instantiation patterns)
■ Design patterns are “mini-frameworks” themselves, since they contain common

structure for many applications
■ Design patterns are used in frameworks (that's how they originated)
■ Hence, this course must also say many things about frameworks

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

19

Programming Pattern (Idiom,
LDDP)
► An idiom is a pattern whose form is described by means of

programming language constructs.
► Example: The C idiom of check-and-returns for contract checking

■ The first book on idioms was Coplien's Advanced C++ Programming
Styles and Idioms (1992), Addison-Wesley

public void processIt (Document doc) {
 // check all contracts of processIt
 if (doc == null) return;
 if (doc.notReady()) return;
 if (internalDoc == doc) return;

 // now the document seems ok
 internalProcessIt(doc);
}

private void internalProcessIt (Document doc) {
 // no contract checking anymore

 // process the document immediately
 walk(doc);
 print(doc);
}

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

20

Workaround

► A workaround is an idiom that works around a language construct that
is not available in a language

► Example: Simulating polymorphism by if-cascades

public void processIt (Document doc) {
 // Analyze type of document
 if (doc->type == Text)

processText((Text)doc);
 else i f (doc->type == Figure)
 processFigure((Figure)doc);
 else
 printf(“unknown subtype of document”);
}

void processText(Text t) {..}
void process Figure(Figure f) {..}

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

21

Antipatterns (Defect Patterns)

► Software can contain bad structure
■ No modular structure, only procedure calls
■ If-cascades instead of polymorphism
■ Casts everywhere
■ Spaghetti code (no reducible control flow graphs)
■ Cohesion vs Coupling (McCabe)

► Question: what is here the “abstraction from the concrete form”?

Defect pattern
(Bad smell)

Analysis 1 Analysis 2 Analysis 3

Software with
unknown structure

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

22

Refactorings Transform Antipatterns
Into Design Patterns
► A DP can be a goal of a refactoring
► Structurally, a refactoring is an operator on the code (a

metaprogram)
■ Semi-formal: Fowler's book on refactorings uses graph rewrite rules to

indicate what the refactorings do
■ Formal: Refactorings can be realized in program transformation and

metaprogramming libraries and tools
. Recoder (recoder.sf.net) is such a tool
. Eclipse, Netbeans contain refactorings

Defect pattern
(Bad smell)

Design pattern
(good smell)

Step 1
Refactoring 1 Refactoring 2 Refactoring 3

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

23

Process Patterns

► Process patterns are solutions for the process of making something

State A State B

Step 1
Process
pattern 1

Process
pattern 2

Process
pattern 3

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

24

Process Patterns

► When process patterns are automized, they are called workflow
templates

► Workflow management systems enable us to capture and design
processes

■ ARIS on SAP
■ BPMN, BPEL

► Examples:
■ “Work-and-Let-Be-Granted”
■ “Delegate-Task-And-Resources-Together”

► Question: what is here the “abstraction from the concrete form”?

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

25

Reengineering Patterns

► Also in the software reengineering process, common (process)
patterns can be identified

► Examples
■ “Read-All-Code-In-One-Hour”
■ “Write-Tests-To-Understand”

► S. Demeyer, S. Ducasse, O. Nierstrasz. Object-oriented
Reengineering Patterns. Morgan-Kaufmann, 2003

► Question: what is here the “abstraction from the concrete form”?

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

26

Organizational Patterns

► Two well-known organizational patterns are
■ Hierarchical management

. In which all communication can be described by the organizational hierarchy

■ Matrix organization
. In which functional and organizational units talk to each other

► Question: what is here the “abstraction from the concrete form”?

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

27

In This Course

► We will mainly treat design patterns
■ Conceptual patterns
■ Architectural patterns
■ Framework instantiation patterns
■ Very few LDDP and workarounds

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

28

Pattern Languages: Patterns in
Context
► According to Alexander, patterns occur in pattern languages

■ A set of related patterns for a set of related problems in a domain
■ Similar to a natural language, the pattern language contains a vocabulary

for building artefacts

► A structured collection of patterns that build on each other to
transform forces (needs and constraints) into an architecture
[Coplien]

■ Patterns rarely stand alone. Each pattern works in a context, and
transforms the system in that context to produce a new system in a new
context.

■ New problems arise in the new system and context, and the next “layer”
of patterns can be applied.

► We will treat one larger example, the TAM pattern language

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

29

General Remarks on Structure
Diagrams

...
primitiveOperation1();
...
primitiveOperation2();
...

AbstractClass

TemplateMethod()
primitiveOperation1()
primitiveOperation2()

reconfigure(Object o)

tune()

ConcreteClass

primitiveOperation1()
primitiveOperation2()

replace self with
Object o;

Management interfaces

Functional interfaces

replace self with
Object o;

Optimization or adaptation
interfaces

Design Patterns and Frameworks, © Prof. Uwe Aßmann 30

1.3 Where do Patterns Occur in
Software Development?

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

31

Software Construction By
Forward Engineering

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

Changed
Requirements

Changed
Design

Changed
Code

Evolution

Forward Engineering

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

32

Automated Design (CASE)

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

Requirements

Automated
Design

Automated
Code

Support by CASE tools to a limited extend possible
Tools generate structure of design patterns into the code
(e.g., Together)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

33

Program Refinement

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

Same semantics, but new
non-functional requirements

Changed
Design

Changed
Code

Needs new non-functional requirements. For instance, optimization
patterns speed applications up; adapters and bridges can be used for
checking consistency

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

34

Automated Software Evolution (XP-
like)

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

In XP, many adaptations can be automized by employing
refactoring tools

Changed
Requirements

Changed
Design

Changed
Code

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

35

Reengineering

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

Changed
Requirements

Gained
Design

Automatic and semi-automatic recognition of design patterns is a hot research topic

Changed
Code

Lost
Requirements

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

36

The End

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Alexander’s Laws on Beauty
	Definition
	Example: Model/View/Controller (MVC)
	Views as Observer
	Model/View/Controller
	Slide 10
	Structure for Design Pattern
	Purpose Design Pattern
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Software Construction with Multi-level Composition
	Automated Design
	Program Refinement
	Automated Software Evolution
	Reengineering
	Slide 36

