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Design Patterns and Frameworks
1) Introduction

Prof. Dr. U. Aßmann

Chair for Software Engineering

Faculty of Informatics

Dresden University of 
Technology

WS 12-0.1, 10/1/12

1) History and Introduction

2) Different classes of patterns

3) Where can patterns be used?
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Literature (To Be Read)

► Start here: A. Tesanovic. What is a pattern? Paper in Design Pattern 
seminar, IDA, 2001. Available at course home page.

► Alternatively: GOF: Introduction.
► Brad Appleton. Patterns and Software: Essential Concepts and 

terminology. http://www.cmcrossroads.com/bradapp/docs/patterns-
intro.html Compact introduction into patterns. 

► http://www.hillside.net/plop/pastconferences.html 

http://www.hillside.net/plop/pastconferences.html
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Secondary Reading

► D. Riehle, H. Zülinghoven, Understanding and Using Patterns in 
Software Development. Theory and Practice of Object Systems 2 (1), 
1996. Explains different kinds of patterns. 
http://citeseer.ist.pst.edu/riehle96understanding.html 

http://citeseer.ist.pst.edu/riehle96understanding.html
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History

► Beginning of the 70s: the window and desktop 
metaphors (conceptual patterns) 

■ Smalltalk group in Xerox Parc, 
Palo Alto

► 1978/79: MVC pattern for Smalltalk GUI. 
Goldberg and Reenskaug at Xerox Parc

■ During porting Smalltalk-78 for Norway in 
the Eureka Software Factory project 
[Reenskaug]

► 1979: Alexander's “The Timeless Way of 
Building”

■ Introduces the notion of a pattern and a 
pattern language

► 1987: W. Cunningham, K. Beck: OOPSLA 
paper “Using Pattern Languages for Object-
Oriented Programs”

■ Discovered Alexander's work for software 
engineers by applying 5 patterns in 
Smalltalk

► 1991: Erich Gamma. Design Patterns. PhD 
Thesis 

■ Working with ET++, one of the 
first window frameworks of C++

■ At the same time, Vlissides 
works on InterViews (part of 
Athena)

■ Pattern workshop at OOPSLA 
91, organized by B. Anderson

► 1993: E. Gamma, R.  Helm, R. Johnson, J. 
Vlissides. Design Patterns: Abstraction and 
Reuse of Object-Oriented Design. ECOOP 
97 LNCS 707, Springer, 1993.

► 1994: First PLOP conference (Pattern 
Languages Of  Programming)

► 1995: GOF book.

► 1997: Riehle on role models and design 
patterns

► 2005: Collaborations (class-role models) in 
UML

► 2005: First role-languages, such as Ceasar/J 
and ObjectTeams
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Alexander’s Laws on Beauty

► Christopher Alexander. “The timeless way of building”. Oxford Press 
1977.

■ Hunting for the “Quality without a name”: 
■ When are things "beautiful"?
■ When do things “live”?

► Patterns grasp centers of beauty
► You have a language for beauty, consisting of patterns (a pattern 

language)
■ Dependent on culture

► Beauty cannot be invented 
■ but must be combined/generated by patterns from a pattern language

► The “quality without a name” can be reached by pattern composition 
in pattern languages
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The Most Popular Definition

► Goal: Reuse of design information
■ A pattern must not be “new”!

■ A pattern writer must have a “aggressive disregard for originality”

► In this sense, patterns are well-known in every engineering 
discipline

■ Mechanical engineering
■ Electrical engineering
■ Architecture 

A Design Pattern is a description of a standard solution for 
● A standard design problem 
● In a certain context

A Design Pattern is a description of a standard solution for 
● A standard design problem 
● In a certain context
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Example: Model/View/Controller  
(MVC)

► MVC is a agglomeration of classes to control a user interface and a 
data structure 

■ Developed by Goldberg/Reenskaug 1978, for Smalltalk

► MVC is a complex design pattern and combines the simpler ones 
compositum, strategy, observer.

► Ingredients:
■ Model: Data structure or object, invisible
■ View: Representation(s) on the screen
■ Controller:  Encapsulates reactions on inputs of  users, couples 

model and views
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Views as Observer

a=50%
b=30%
c=20%

Window

  a
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  b   c
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  x
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  z

WindowWindow

 a  b  c

Model

Views
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Patterns

► Pattern 1: Observer. Grasps relation between model and views
■ Views may register at the model (observers). 
■ They are notified if the model changes. Then, every view updates itself by accessing the 

data of the model.
■ Views are independent of each other. The model does not know how views 

visualize it.
■ Observer decouples strongly.

► Pattern 2: Composite: Views may be nested (represents trees)
■ For a client class, Compositum unifies the access to root, inner nodes, and leaves
■ The MVC pattern additionally requires that

. There is an abstract superclass View

. The class CompositeView is a subclass of View

. And can be used in the same way as View

► Pattern 3: Strategy: The relation between controller and view is a 
Strategy.

■ There may be different control strategies, lazy or eager update of views (triggering 
output), menu or keyboard input (taking input)

■ A view may select subclasses of Controller, even dynamically. Strategy allows for 
this dynamic exchange (variability)
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What Does a Design Pattern 
Contain?
► A part with a “bad smell”

■ A structure with a bad smell
■ A query that proved a bad smell
■ A graph parse that recognized a bad smell

► A part with a “good smell” (standard solution)
■ A structure with a good smell
■ A query that proves a good smell
■ A graph parse that proves a good smell

► A part with “forces”
■ The context, rationale, and pragmatics
■ The needs and constraints

“bad smell” “good smell”

forces
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Structure for Design Pattern 
Description (GOF Form)

► Name (incl. Synonyms) (also known as)
► Motivation (purpose)

■ also “bad smells” to be avoided

► Employment
► Solution (the “good smell”)

■ Structure (Classes, abstract classes, relations): UML class or object 
diagram 

■ Participants and their roles: textual details of classes
■ Interactions: interaction diagrams (MSC, statecharts, collaboration 

diagrams)
■ Consequences: advantages and disadvantages (pragmatics)
■ Implementation: variants of the design pattern
■ Code examples

► Known Uses
► Related Patterns
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Purpose Design Pattern

► Design patterns create an “ontology of software design”
■ Improvement of the state of the art of software engineering
■ Fix a glossary for software engineering
■ A “software engineer” without the knowledge of patterns is a programmer
■ Prevent re-invention of well-known solutions

► Design patterns improve communication in teams
■ Between clients and programmers
■ Between designers, implementers and testers
■ For designers, to understand good design concepts

► Design patterns document abstract design concepts 
■ Patterns are “mini-frameworks”
■ Documentation, In particular frameworks are documented by design 

patterns
■ May be used to capture information in reverse engineering
■ Improve code structure and hence, code quality
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Standard Incentives For Using 
Patterns
► Easy System

■ System structure
■ Easy communication
■ Easy protocols 

► Easy Testability
■ Null object
■ Static preprocessing

► Easy Evolution
► Easy Reuse!!
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1.2 Different Kinds of Patterns
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What is a Pattern?

► There is no “the pattern”
► At least, research is done in the following areas:

■ Conceptual patterns
■ Design Patterns

. Different forms

■ Antipatterns
■ Implementation patterns (programming patterns, idioms, workarounds)
■ Process patterns

. Reengineering patterns

■ Organizational patterns

► General definition:
► A pattern is the abstraction from a concrete form which keeps 

recurring in specific non-arbitrary contexts [Riehle/Zülinghoven, 
Understanding and Using Patterns in Software Development]
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Conceptual Patterns

► A conceptual pattern is a pattern whose form is described by means 
of the terms and concepts from an application domain

■ Based on metaphors in the application domain

► Example:  conceptual pattern “desktop”
■ Invented in Xerox Parc from A. Kay and others 

. Folders, icons, TrashCan 

. Drag&Drop as move actions on the screen

■ Basic pattern for all windowing systems
■ Also for many CASE tools for visual programming
■ Question: what is here the “abstraction from the concrete form”?

► We will revisit in the Tools-And-Materials (TAM) pattern language
■ It works on conceptual patterns such as “Tool”, “Material”, “Automaton”
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Design Patterns, Different 
Definitions
► “A Design Pattern is a description of a standard solution for 

■ A standard design problem 
■ In a certain context”

► “A design pattern superimposes a simple structure of a relation in 
the static or dynamic semantics of a system”

■ Relations, interactions, collaborations
■ Nodes: objects, classes, packages

► “A design pattern is a named nugget of insight which conveys the 
essence of a proven solution to a recurring problem within a certain 
context amidst competing concerns” [Appleton]

► Question: what is here the “abstraction from the concrete form”? (in 
terms of Riehle/Züllighoven)
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Different Types of Design Patterns

► Fundamental Design Pattern (FDP) 
■ A pattern that cannot be expressed as language construct

► Programming Pattern, Idiom, Language Dependent Design 
Pattern (LDDP) 

■ A pattern that exists as language construct in another programming language, but 
is not available in general

► Architectural style (Architectural pattern)
■ A design pattern that describes the coarse-grain structure of a (sub)system
■ A design pattern on a larger scale, for coarse-grain structure (macro structure)

► Framework Instantiation Patterns
■ Some design patterns couple framework variation points and application code 

(framework instantiation patterns)
■ Design patterns are “mini-frameworks” themselves, since they contain common 

structure for many applications
■ Design patterns are used in frameworks (that's how they originated)
■ Hence, this course must also say many things about frameworks
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Programming Pattern (Idiom, 
LDDP) 
► An idiom is a pattern whose form is described by means of 

programming language constructs.
► Example: The C idiom of check-and-returns for contract checking

■ The first book on idioms was Coplien's Advanced C++ Programming 
Styles and Idioms (1992), Addison-Wesley

public void processIt (Document doc) {
  // check all contracts of processIt
  if (doc == null) return;
  if (doc.notReady()) return;
  if (internalDoc == doc) return;
  
  // now the document seems ok
  internalProcessIt(doc);
}

private void internalProcessIt (Document doc) {
  // no contract checking anymore
  
  // process the document immediately
  walk(doc);
  print(doc);
}
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Workaround

► A workaround is an idiom that works around a language construct that 
is not available in a language

► Example: Simulating polymorphism by if-cascades

public void processIt (Document doc) {
  // Analyze type of document
  if (doc->type == Text)  

processText((Text)doc);
  else i f (doc->type == Figure) 
 processFigure((Figure)doc);
  else 
       printf(“unknown subtype of document”); 
}

void processText(Text t) {..}
void process Figure(Figure f) {..}
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Antipatterns (Defect Patterns)

► Software can contain bad structure
■ No modular structure, only procedure calls
■ If-cascades instead of polymorphism
■ Casts everywhere
■ Spaghetti code (no reducible control flow graphs)
■ Cohesion vs Coupling (McCabe)

► Question: what is here the “abstraction from the concrete form”?

Defect pattern
(Bad smell)

Analysis 1 Analysis 2 Analysis 3

Software with 
unknown structure
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Refactorings Transform Antipatterns 
Into Design Patterns
► A DP can be a goal of a refactoring
► Structurally, a refactoring is an operator on the code (a 

metaprogram)
■ Semi-formal: Fowler's book on refactorings uses graph rewrite rules to 

indicate what the refactorings do
■ Formal: Refactorings can be realized in program transformation and 

metaprogramming libraries and tools
. Recoder (recoder.sf.net) is such a tool
. Eclipse, Netbeans contain refactorings

Defect pattern
(Bad smell)

Design pattern
(good smell)

Step 1
Refactoring 1 Refactoring 2 Refactoring 3
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Process Patterns

► Process patterns are solutions for the process of making something 

State A State B

Step 1
Process 
pattern 1

Process
pattern 2

Process 
pattern 3
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Process Patterns

► When process patterns are automized, they are called workflow 
templates

► Workflow management systems enable us to capture and design 
processes

■ ARIS on SAP
■ BPMN, BPEL

► Examples: 
■ “Work-and-Let-Be-Granted”
■ “Delegate-Task-And-Resources-Together”

► Question: what is here the “abstraction from the concrete form”?



P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

25

Reengineering Patterns

► Also in the software reengineering process, common (process)  
patterns can be identified

► Examples
■ “Read-All-Code-In-One-Hour”
■ “Write-Tests-To-Understand”

► S. Demeyer, S. Ducasse, O. Nierstrasz. Object-oriented 
Reengineering Patterns. Morgan-Kaufmann, 2003

► Question: what is here the “abstraction from the concrete form”?
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Organizational Patterns

► Two well-known organizational patterns are 
■ Hierarchical management

. In which all communication can be described by the organizational hierarchy

■ Matrix organization
. In which functional and organizational units talk to each other

► Question: what is here the “abstraction from the concrete form”?
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In This Course

► We will mainly treat design patterns
■ Conceptual patterns
■ Architectural patterns
■ Framework instantiation patterns
■ Very few LDDP and workarounds
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Pattern Languages: Patterns in 
Context
► According to Alexander, patterns occur in pattern languages

■ A set of related patterns for a set of related problems in a domain
■ Similar to a natural language, the pattern language contains a vocabulary 

for building artefacts

► A structured collection of patterns that build on each other to 
transform forces (needs and constraints) into an architecture 
[Coplien]

■ Patterns rarely stand alone. Each pattern works in a context, and 
transforms the system in that context to produce a new system in a new 
context.

■ New problems arise in the new system and context, and the next “layer” 
of patterns can be applied.

► We will treat one larger example, the TAM pattern language
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General Remarks on Structure 
Diagrams

...
primitiveOperation1();
...
primitiveOperation2();
...

AbstractClass

TemplateMethod()
primitiveOperation1()
primitiveOperation2()

reconfigure(Object o)

tune()

ConcreteClass

primitiveOperation1()
primitiveOperation2()

replace self with 
Object o; 

Management interfaces

Functional interfaces

replace self with 
Object o; 

Optimization or adaptation 
interfaces



Design Patterns and Frameworks, © Prof. Uwe Aßmann 30

1.3 Where do Patterns Occur in 
Software Development?
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Software Construction By 
Forward Engineering

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

Changed 
Requirements

Changed 
Design

Changed
Code

Evolution

Forward Engineering
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Automated Design (CASE)

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

Requirements

Automated
Design

Automated
Code

Support by CASE tools to a limited extend possible
Tools generate structure of design patterns into the code 
(e.g., Together)
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Program Refinement

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

Same semantics, but new 
non-functional requirements

Changed
Design

Changed
Code

Needs new non-functional requirements. For instance, optimization 
patterns speed applications up; adapters and bridges can be used for 
checking consistency
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Automated Software Evolution (XP-
like)

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

In XP, many adaptations can be automized by employing 
refactoring tools

Changed
Requirements

Changed
Design

Changed
Code
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Reengineering

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

Changed
Requirements

Gained
Design

Automatic and semi-automatic recognition of design patterns is a hot research topic

Changed
Code

Lost
Requirements
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The End
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