2. Simple Patterns for
Variability

1)Basic Template-And-

Prof. Dr. U. ARmann Hook Patterns
Chair for Software Engineering 2)Faceted Objects with
Faculty of Informatics Bridges
Dresden University of 3)Layered Objects
Technology 4)Dimensional Systems

WS 13-0.1, 11/16/13 5)Layered Systems

Design Patterns and Frameworks, © Prof. Uwe ABmann

Literature (To Be Read)

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» V. Caisin. Creational Patterns. Paper in Design Pattern
seminar, IDA, 2001. Available at home page.

» GOF, Chapters on Creational and Structural Patterns
» Another good book:

» Head First Design Patterns. Eric Freeman & Elisabeth
Freeman, mit Kathy Sierra & Bert Bates.O'Rellly, 2004,
ISBN 978-0-596-00712-6

» German Translation: Entwurfsmuster von Kopf bis Ful3.

Eric Freeman & Elisabeth Freeman, mit Kathy Sierra &
Bert Bates. O'Rellly, 2005, ISBN 978-3-89721-421-7

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Secondary Literature

» D. Karlsson: Metapatterns. Seminar Design Patterns, IDA,
LinkGpings universitet, 2001.

» W. Pree. Design Patterns for Object-Oriented Software
Development. Addison-Wesley, 1995. Unfortunately out of
print.

> W. Zimmer. Relationships Between Design Patterns.
Pattern Languages of Programming (PLOP) 1995.

» Uta Priss. Faceted Information Representation. Electronic
Transactions in Artificial Intelligence (ETAI). 2000(4):21-
33.

» R. Prieto-Diaz, P. Freeman. Classifying Software for
Reusability. IEEE Software, Jan 1987. Prieto-Diaz has
Introduced facet-based classifications in software
engineering. Surf also on citeseer for facets.

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Understanding Templates and Hooks
- Template Method vs Template Class
- Dimensional Class Hierarchy

» Understanding why Bridges implement faceted objects
» Understanding layered systems

2.1) Basic Template and HooR
[Patterns

Design Patterns and Frameworks, © Prof. Uwe ABmann

The Problem

6 "I » How to produce several products from one code base?

» Design patterns often center around
- Things that are common to several applications
« Commonalities lead to frameworks or product lines

- Things that are different from application to application
 \Variabilities to products of a product line

Office_ Backbone

\

WWssor Slide Pragram Spreadsheet

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Pree’'s Template&HooR Conceptual
[Pattern

71 » Pree invented a (template-and-hook T&H) concept for the
communality/variability knowledge in design patterns
[Pree] [Karlsson]

» Templates contain skeleton code
— Common for the entire product line

» Hooks are placeholders for the instance-specific code
- Only for one product. Also called slots, hotspots

Fixed part of design pattern
(template): commonality

Flexible part of design pattern
(hook): variability

Prof. Uwe ABmann, Design Patterns and Frameworks

Context (irrelevant)

&

Design Pattern TemplateMethod

8 » Define the skeleton of an
algorithm (template
AbstractClass methOd)
TemplateMethod() -] _ - The template method Is
i primitiveOperation1() |] -p;.rimitiveOperatiom()' concrete
| primitiveOperation2) | 1 . » Delegate parts to abstract
E zl primitiveOperation2(); hook methods (SIOt
methods) that are filled by
5 subclasses
ConcreteClass - Requires inheritance
primitiveOperation1() ConcreteClass2 > Implements template and
primitiveOperation2() primitiveOperation1() hook with the same class,
i primitiveOperation2() |yt different methods

&

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Ex.: Actors and Genres

» Binding an Actor's hook to be a ShakespeareActor or a

TV actor

Actor

play()

recite() T

dance() recite();

/\ .ci;ance();

ShakespeareActor TVActor
recite() recite()
dance() dance()

Variability with TemplateMethod

10 I » Allows for varying behavior
- Separate invariant from variant parts of an algorithm

- TemplateMethod differs slighly from polymorphism: for a
polymorphic method, one needs several subclasses

» Binding the hook (slot) means to derive a concrete
subclass from the abstract superclass, providing the
Implementation of the hook method

> C extension by only allowing for bin

t overridiuﬁ template

Binding the hooks with
hook values (method
Template Hook implementationS)
method method

Aina hook

Prof. Uwe ABmann, Design Patterns and Frameworks

11

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Consequences

» The design pattern TemplateMethod realizes the
conceptual pattern T&H on the level of Methods

- TemplateMethod — HookMethod
» Basis for design patterns:

- FactoryMethod

- TemplateClass

Variability vs Extension

121 » The T&H concept occurs in two basic variants

- Binding of hooks or extension of hooks: we speak of a slot,
If a hook can be bound only once (unextensible hook, only
bindable)

- Hooks can be extensible
2glon patterns are treated later

rameworks

—

Binding a hook (slot)
with a hook value

Prof. Uwe ARmann, Design Pattery

—

Extending a hook with
another hook value

&

2.1.1 Template Method and
. Template Class

13

Design Patterns and Frameworks, © Prof. Uwe ABmann

What Happens If We Reify the HooR
Method?

» Methods can be reified, i.e., represented as objects

> In the TemplateMethod, the hook method can be split out
of the class and put into a separate object

» Reification is done by another basic pattern, the
Obijectifier [Zimmer]

Prof. Uwe ABmann, Design Patterns and Frameworks

&

The Objectifier Pattern

15 1 » The pattern talks about basic polymorphism with objects
(delegation)
- Combined with an abstract class and abstract method
— Clients call objects polymorphically

reference
> o

Obijectifier

reifiedMethod()

/\

applicationMethod()

Client <
Q

N

reference.reifiedMethod();

Prof. Uwe ABmann, Design Patterns and Frameworks

ConcreteObijectifierA ConcreteObijectifierB

reifiedMethod() reifiedMethod()

&

16

Ex. Different Students

» When preparing an exam, students may use different
learning styles

» Instead of a method learn(), an objectified method, a
LearningStyle class, can be used

Student

learningStyle

>

prepareExam()

Prof. Uwe ABmann, Design Patterns and Frameworks

&

<>
Q

learningStyle.perform();

N

LearningStyle

perform()

/\

OnDemandLearning ExhaustivelLearning

perform()

perform()

TSH on the Level of Classes

17 -1 » With the Objectifier, we can build now Template&Hook
classes

- Additional roles for some classes
 The template role
 The hook role
» Resulting patterns:
- Template Class
- Generic Template Class

- Dimensional Class Hierarchies for variability with parallel
class hierarchies
« Implementation of facets
« Bridge, Visitor

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Template Class

18 "I » |s combined from TemplateMethod and Objectifier
- We explicitly fix a template class in the Objectifier

- The template method and the hook method are found in
different classes

; Template) (

g emplate hookObject _ Hook)

{ TemplateClass [> HookClass

é templateMethod()Q hookMethod()

N

g hookObject.hookMethod()

<

2

& ConcreteHookValueA ConcreteHookValueB
hookMethod() hookMethod()

&

Template Class

19 '1 » Similar to TemplateMethod, but

- Hook objects and their hook methods can be exchanged at
run time

- Exchanging several methods (a set of methods) at the
same time

- Consistent exchange of several parts of an algorithm, not
only one method

> This pattern is basis of

- Bridge, Builder, Command, Iterator, Observer, Prototype,
State, Strategy, Visitor.

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Actors and Genres as Template Class

20 "I » Consistent exchange of recitation and dance behavior

possible

(
L Template)

&

(Hook)

g Actor [~ realization > | ActorRealization
g play() recite()
2 ! dance()
I JAN
2 | realization.recite();
‘g .réalization.dance(); |
<
% CinemaActor TVActor ShakespeareActor
> recite() recite() recite()
dance() dance() dance()

Variability with TemplateClass

21 1 » Binding the hook means to

— Derive a concrete subclass from the abstract hook
superclass, providing the implementation of the hook

Hook (S|Ot) methOd

methods

5

§ QTemplate glass

e | / Binding the hooks with

% | / hook values (method

- Template implementations)
methods

&

The GOF-Pattern Strategy

221 » The GOF-Strategy hands out the roles client and

algorithm
., l Client) (Algorithm)
% Client <> strategy. Strategy
S
% contextinterface() algorithminterface()
g
:
<
% ConcreteStrategyA ConcreteStrategyB ConcreteStrategyB
a algorithminterface() algorithminterface() algorithminterface()

&

The GOF-Strategy Is Related To
TemplateClass

23 ' » The GOF Strategy has the same structure as the
Obijectifier, but has a different incentive

- It is not for reifying methods, but for varying methods only

» TemplateClass also has a different incentive

- Hence, TemplateClass hands out other roles for the
classes

- The client class is considered as a template class
- The strategy class as the hook class

Design Patterns may have the same structure and/or behavior,
but can have a different incentive

Prof. Uwe ABmann, Design Patterns and Frameworks

&

24

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Example for Strategy

» Encapsulate formatting algorithms

(cilient)

TextApplication<

formatter

! Algorithm)

> Formatter

traverse()

repair() o

formatter.format()

format()

AN

N

SimpleFormatter

TeXFormatter

ArrayFormatter

format()

format()

format()

GenericTemplateClass

o5 » In languages with generic classes (C++, Ada95, Java 1.5, C#, Sather, Cecll,
Eiffel), TemplateClass can be realized with GenericTemplateClass

» The subclassing of the hook hierarchy is replaced by static generic expansion
- Hence, more type safety, less runtime dispatch

E | T |

£ o

T TemplateClass HookClass

g T hookObject; hookMethod()

@ templateMethod()O t--- N

g hookObject.hookMethod() Zi

F 7

£<instantiates>> : .

% / ~ <<\|nstantlates>>

5 / ~

ConcreteStrategyA ConcreteStrategyB HookA HookB

g HookA hookObject; HookB hookObject; hookMethod() hookMethod()

G

Generic Text Formatter

TextApplication | - '
—Ug) T formatter; """_"_I'__'__'__"__'i i..._...._.-'_.__.__;
= . | Qi !
| [faversel: om SimpleFormatter | . TeXPormatter |
LL ’ I . |
2 : N~ : format() ! format() :
5 : N l_ R B S
§ : N <<instantiates>>
z N T~
2 ~
3 formatter.format(); N <<inst}nt@es>> -
3 traverse(); N I
S
< N =~ o
:§>_ TextFormattingAppl TexFormattingAppl
- SimpleFormatter formatter; TexFormatter formatter;
traverse() traverse()
@ repair() repair()

27

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Further Work on
Generic Template Parameterization

» See course CBSE
» GenVoca [Batory]

Generic template instantiation method for nested generics
Parameterization on many levels

Layered systems result

Realizable with nested C++ templates

See later

» Template Metaprogramming (www.boost.org)

Using template parameter for other purposes than hook
classes

2.1.2 Dimensional Class
Hierarchies and Bridge

28

Design Patterns and Frameworks, © Prof. Uwe ABmann

Variability Pattern
DimensionalClassHierarchies

(Template) (Hook)

hookObject A\
TemplateClass < >| HookClass

templateMethod() Cf. hookMethod()

/\ < /\
hookObject.hookMethod()

atterns and Frameworks

MoreConcrete MoreConcrete Concrete Concrete
TemplateA TemplateB HookClassA HookClassB
templateMethod()? templateMethod()? hookMethod() hookMethod()
Z | i
%) /I Implementation A !
5| .. hookMethod(); !

// Implementation B AN
.. hookMethod();

&

DimensionalClassHierarchies

30 "1 » Vary also the template class in a class hierarchy
- The sub-template classes can adapt the template algorithm

- Still, the template method calls the hook methods and
reuses its results

- Important: the sub-template classes must fulfil the contract
of the superclass

« Although the implementation can be changed, the interface
and visible behavior must be the same

» Upper and lower layer (dimension)
- Template method (upper layer) calls hook methods (lower
layer)
» Both hierarchies can be varied independently
- Factoring (orthogonalization)
- Reuse is increased

Prof. Uwe ABmann, Design Patterns and Frameworks

&

GOF Pattern “Bridge”

31 | » The Bridge pattern is a variant of
DimensionalClassHierarchies, with different incentive

» The left hierarchy is called abstraction hierarchy, the right
Implementation
- Also handle vs body

» However, most important is the separation of two
hierarchies

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Remember Dimensional Class Hierarchy
(Bridge with Template/HooR Constraint)

! Template) (Hook)
hookObject -

TemplateClass <> HookClass

templateMethod() O« hookMethod()

AN oo, IR

hookObject.hookMethod()

rns and Frameworks

MoreConcrete MoreConcrete Concrete Concrete
TemplateA TemplateB HookClassA HookClassB
templateMethod()? templateMethod()? hookMethod() hookMethod()
s i
S| Implementation A ';
3| ... hookObject.hookMethod(); |
Implementation B N

... hookObject.hookMethod();

&

331 » Different incentive (Abstraction/Implementation)

! Abstraction)

> Implementation

ﬁ mplementatiorD
N

operationimpl()

&

) im
Abstraction <> P
operation() Of.__

/\ <

g imp.operationimpl()
g

MoreConcrete MoreConcrete

AbstractionA AbstractionB

operation() ? operation() Q

< i i
Z| Some actions for A: ':
8| imp.operationimpl() !
o 1

Some actions for B;
imp.operationimpl()

[\

ConcretelmplA

ConcretelmplB

operationlmpl()

operationimpl()

Example: DataGenerator as Bridge

34 _
! Abstraction) | QmplementatiorD

im
DataGenerator < P, Generatorimpl
Data data;
) O_\\
generate() generateData(Data)
< /\
g imp.generateData(data)
S
g
TestDataGenerator | | ReportGenerator ExhaustiveGenerator| | RandomGenerator
generate() Q generate() ? generateData(Data) generateData(Data)
s i
<| data = ':
3| parseTestDataGrammar(); !
‘5;5 imp.generateData(data); |
data = I AN
readFromForm();
@ imp.generateData(data);

35

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Both hierarchies can be varied independently
- Factoring (orthogonalization)
- Reuse is increased

» An abstraction can have several Bridges
- Bridges can be replicated
- Basis for implementation of facets

Multiple Bridges
DataGenerator as 2-Bridge

IMP__>| Generatorimpl

generateData(Data)

/\

36
DataGenerator
N
generate() Of.__
g /\ N
g imp.generateData(data)
g
5
TestDataGenerator | | ReportGenerator
generate() Q
T ;
E 1
data = N

parseTestDataGrammar();

imp.generateData(data);

&

generate() ?

ExhaustiveGenerator

RandomGenerator

generateData(Data)

generateData(Data)

Data

data =
data.cleanData();

imp.generateData(data);

data

Data cleanData()

/\

StringData

GraphData

TestData cleanData()

ReportData cleanData()

Basic Variability Patterns - Overview

Strategy J
[Objectifier j‘/' [

Generic
TemplateMethod] —»[TemplateClass] " [TemplateClass]

N) \
N : :
N / [Dlmensmnal]
S

ClassHierarchie
o \
T&H Metapatternsl
\
[Bridge]

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Relations of Basic Patterns

38 I » Pree book vs Gamma book

- Pree and the GOF worked together for some time, but then
they published two different books

- Pree's focus was on templates and hooks (framework
patterns)

- GOF on arbitrary patterns in arbitrary context
» One can take any GOF pattern and make it a framework
pattern by introducing the template-and-hook constraint

- Or if you take away the template-hook constraint from a
framework pattern, you get an unconstrained general
pattern

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Relation TemplateMethod,
TemplateClass, Strategy, Observer

39
Unconstrained Patterns

Objectifier] ‘leferentl l Strategy]H[Bridge
incentives
const\n\mng uncow unw]g

Dlmen3|onal
TemplateMethod | —»{ TemplateClass | — > Class

Hierarchies

~ //
- / =

~ -
A K -
- — N

— —

Prof. Uwe ABmann, Design Patterns and Frameworks

lraH Metapatternsl|
\ _ __ _

@ Template/Hook Patterns

2.1.3 Parallel Class Hierarchies

40

Design Patterns and Frameworks, © Prof. Uwe ABmann

Prof. Uwe ABmann, Design Patterns and Frameworks

&

When the Dimensions cannot be

Independently Varied

» Sometimes, the dimensions of a
DimensionalClassHierarchies are not independent

> Instead, If it is varied on the left, also on the right must be
varied

» Dimensions have equal size and structure, i.e., are
Isomorphic
» Typically are container classes and their elements
- UML diagrams and their node and edge types
- Figures and their figure elements
- Record lists and their record types

[P’arallel Hierarchies with Parallelism
Constraint

» Both hierarchies, collection and element, must be varied
consistently

elements
>

Diagram <> . BoxElement
© draw()
2 drag()
% | ClassDiagram StateChart ClassBox StateBox
:
<
2

. 2.1.4 Visitor

43

Design Patterns and Frameworks, © Prof. Uwe ABmann

Visitor - Purpose

44
» The Visitor Is a variant of the

DimensionalClassHierarchies pattern

- Template class hierarchy models a polymorphic data
structure

— |n most cases a tree

» Hook hierarchy models a polymorphic algorithm

- Encapsulate an operation on a collection (tree) of objects
as an object

- Hook is an objectifier pattern (reified method)
» Separate tree inheritance hierarchy from command
hierarchy
- Simple extensibility of both hierarchies
- Factoring (orthogonalization): simpler inheritance

ctriicrtiirae nthananea miilfinlicatinn Af Alacenac

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Visitor

45 "1 » |mplementation of a 2-dimensional structure
- First dispatch on dimension

DataStructure | 2 (alg OLiIhJII)

acceptVisitor(Visitor,

[\

~—

Patterns and Frameworks

Concrete Concrete
DataStructureA DataStructureB

acceptVisitor(Visitor)® | | templateMethod(Visitdy?)

Prof. Uwe A

v.runWithDataA(this); 1

@ v.runWithDataB(this); 1

Visitor

runWithDataA(DataStructure)
runWithDataB(DataStructure)

ConcreteVisitorA

runWithDataA(DataStructure
runWithDataB(DataStructure

ConcreteVisitorB

runWithDataA(DataStructure)
runWithDataB(DataStructure)

Structure for Visitor in Layers

461 Client \ > ObjectStructure— >¢ Element N
First dispatch| — accept(Visitor) b.visit...B

n data | . | (this)
ConcreteElementA ConcreteElementB :

accept(Visitor b) Of---- } accept(Visitor) Of---

operationA() N | operationB()
b.visitConcreteElementA all 2" dispatch
(thiSy En algorithm

Monomorphic methods
on ObjectStructure

econd dispatch

Visitor

visitConcreteElemA(ConcreteElementA
visitConcreteElemB(ConcreteElementB

A

Prof. Uwe ABmann, Design Patterni and Frameworks

ConcreteVisitor1 ConcreteVisitor2

visitConcreteEIemA(ConcreteEIementA)
visitConcreteElemB(ConcreteElementB)

visitConcreteElemA(ConcreteElementA)
visitConcreteElemB(ConcreteElementB)

Sequence Diagram Visitor

4771 » First dispatch on data, then on visitor

Dispatch 1
aConcreteClient aConcreteDataObject aConcreteVisitor :
| Dispatch 2
accept(aConcreteVisitor)
>
[acceptDataObject
(aConcreteVisitor) N

Prof. Uwe ARBmann, Design Patterns and Frameworks

&

Visitor

48 "1 » |Implementation of a dimensional structure, in which one
dimension is an algorithm
- First dispatch on dimension 1 (data structure), then on
dimension 2 (algorithm)

- The dimensions, however, are not independent (no
facets): the chosen implementation of the algorithm
depends on the chosen implementation of the data

» Abbreviation for multimethods

— Dispatch/polymorphism on two arguments, not only the
first (double dispatch)

— First dispatch on tree object (method accept), then
operation (method visit) objects

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Remember:
DimensionalClassHierarchies

TemplateClass

templateMethod() CF--

/\

> HookClass

hookMethod()

N

[\

&

Implementation B

% hookObject.hookMethod()
g
5
MoreConcrete MoreConcrete ConcreteHookClassA| ConcreteHookClassB
TemplateA TemplateB

templateMethod() @ templateMethod() @ hookMethod() hookMethod()
a z
<<1E.) 1
3| Implementation A |
g |

N

Visitor

Usually is missing, replaced
by Visitor argument

DataStructure Q—V'Sﬂorl

templateMethod()

/\

rns and Frameworks

MoreConcrete
DataStructureA

MoreConcrete
DataStructureB

— — >| Visitor

hookMethodA(DataStructure)
hookMethodB(DataStructure)

/\

ConcreteVisitorA

templateMethod(Visitor), | templateMethod(Visitor

templateMethodA(Visitor) templateMethodB(Visitor)
= . .

v.hookMethodA(this);

Prof. Uwe ARmM

&

hookMethodA(DataStructure
hookMethodB(DataStructure

v.hookMethodB(this);

ConcreteVisitorB

hookMethodA(DataStructure)
hookMethodB(DataStructure)

Visitor As Multimethod

method(DataStructure d, Visitor v)

~

~ Visitor v.

DataStructure

templateMethod()

/\

atterns and Frameworks

oreConcrete

oreConcrete

emplateMethod(Visitor,
emplateMethodA(Visitor)

emplateMethod(Visitor,

emplateMethodB(Visitor)

v.hookMethodA(this);

Prof. Uwe AR

v.hookMethodB(this);

&

N

— — >| Visitor

hookMethodA(DataStructure)
hookMethodB(DataStructure)

/\

ConcreteVisitorA

hookMethodA(DataStructure
hookMethodB(DataStructure

ConcreteVisitorB

hookMethodA(DataStructure)
hookMethodB(DataStructure)

Example: Data Structures (Syntax Trees) in
a Compiler or Software Tool

» Bad smell:

» The compiler operations
are distributed over the

N data structure classes.
ode

typeCheck() > In case of extensions, all
generateCode() classes must be
prettyPrint() extended.

/\ » Good smell:

> Visitor can add more
VariableRefNode AssignmentNode|cCOmMpiler operations; data

Prof. Uwe ABmann, Design Patterns and Frameworks

typeCheck() typeCheck() |Structure remains
generateCode() generateCode() |; i
prettyPrint() prettyPrint() Invariant

&

WorRing on Syntax Trees of Programs
with Visitors

Program <>——>| Node Syntax Tree
accept(Node Visitor)
[|
AssignmentNode VariableRefNode
£ | accept(NodeVisitor b) o accept(NodeVisitor) o
=]]
N N
T b.visitAssignment (this) b.visitVariableRef (this) y, -
o e e e e e e e e D D D T - -
% Y, NodeVisitor
g 7/ visitAssignment(AssignmentNode)
3 4 visitVariableRef(VariableRefNode)
S
<
2
‘g TypeCheckingVisitor CodeGenerationVisitor

&

visitAssignment(AssignmentNode)
visitVariableRef(VariableRefNode)

visitAssignment(AssignmentNode)
visitVariableRef(VariableRefNode)

2) Dimensional Class
Hierarchies (Bridges) as an
Implementation of Facet

H I WE——— O . - - E O S 2 OEE N S N EE E

... In the following, we use the patterns
Bridge and
DimensionalClassHierarchies
iInterchangeably

@ Design Patterns and Frameworks, © Prof. Uwe ABmann

Facet Classifications

551 » Afacet is an orthogonal dimension of a model
- Every facet has its separate model
- All facet classes are abstract

» Facets factorize inheritance hierarchies
- Hence, facets simplify inheritance hierarchies
» Final, concrete classes in the (combined) model inherit
from every dimension (every facet)

— All classes in facets are independent, i.e., don't know of
each other

— Afinal class offers the union of all features

Prof. Uwe ABmann, Design Patterns and Frameworks

55

&

56

%]
=<
S
=
[}
S
o
L
e
e
®
[2]
£
o)
=
T
o
c
2
0
[
(@]
c
c
&
S
<
<
o
=
)
y—
<
a

&

for all intelligent thinking. It is, that one is willing to study in
depth an aspect of one's subject matter in isolation for the sake
of its own consistency, all the time knowing that one is
occupying oneself only with one of the aspects. We know that
a program must be correct and we can study it from that
viewpoint only; we also know that it should be efficient and
we can study its efficiency on another day, so to speak. In
another mood we may ask ourselves whether, and if so: why,
the program is desirable. But nothing is gained --on the
contrary!-- by tackling these various aspects simultaneously.”

E. W. Dijkstra “On the Role of Scientific Thought”, EWD
447 Selected Writings on Computing: A Personal
Perspective, pages 60-66, 1982.

> "Let me try to explain to you, what to my taste is characteristic

Separation of Concerns (SOC)

57 > It is what I sometimes have called "the separation of
concerns", which, even if not perfectly possible, is yet the only
available technique for effective ordering of one's thoughts,
that I know of. This is what I mean by "focussing one's
attention upon some aspect": it does not mean ignoring the
other aspects, it is just doing justice to the fact that from this
aspect's point of view, the other is irrelevant. It is being one-
and multiple-track minded simultaneously.

Intelligent thinking and scientific thought:

> Scientific thought comprises "intelligent thinking" as described
above. A scientific discipline emerges with the --usually rather
slow!-- discovery of which aspects can be meaningfully
"studied in isolation for the sake of their own consistency", in
other words: with the discovery of useful and helpful concepts.
Scientific thouight comnrices in addition the conscionts search

Prof. Uwe ABmann, Design Patterns and Frameworks
v

&

Facets of the Data Generator

58

DataGenerator

Facet 1 - TypeOfData

_| TypeOfData

/ \

TestData ReportData

> D T\

/ \
\ Nothing

4/\\\

Facet 2-Completeness

>

Completeness

/ ™~

Exhaustive Random

L~

v

Don't

%]
=<
S
=
[}
S
o
L
e
e
®
[2]
£
o)
=
T
o
c
2
0
[
(@]
c
c
&
S
<
<
o
=
)
y—
<
a

ExhaustiveTestDataGenerator \

&

RandomTestDataGenerator

AN
N >/ Know

RandomReportDataGenerator

ExhaustiveReporttDataGenerator

Facets In Living Beings

59 >

>

>

e |

The following model of Living Beings has 3 facets
- Domain (where does an animal live?); Age; Group of Animal
— All other classes are abstract

Final, concrete classes inherit from all facets.
Facets Factorize Models: A full model would multiply all classes (3")

Facet 3-Group|

&

% Facet 1 - Domain Facet 2-Ag
g ~| Everywhere | Born Group
g / | \ / I \ / I \
o
S || Land Sea Air Young Middle | Old Mammal | Insect Repl‘ile
8_ v A A R A -
: \ | / \ | \ | /
< Nowhere > Don't Don't
g Know Know
= N 7 v
&

Animal

Facets Can Be Implemented by Multi-
Bridges

» One central facet (abstraction), others are delegatees in
bridges (implementation, group, nature, etc.)
» Advantage
- All facets can be varied independently
- Simple models
» Restriction: facets model only one logical object
- With several physical objects

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Multi-Bridge with Core Facet

61 I » Animal as core facet, all others are hook classes

&

Animal
3 <{
=
(O] .
g Facet 1 - Domalnl Facet 2-Age\ I Facet 3-Group|
i 7 -
g <<abstract}>
2 Domain
[
& |
o
g Everywherp Born Group
:] SN | TN
= / \ \ | |
<
0 Land Sea Air Young Middle | Old Mammal | Insect| |Reptilg
; = A X A N A
a \ | \ | \ |
Nowhefe ~ Don't Don’t
Know Know

Multiple Bridge Without Core

62 | » Select a primary facet, relate others by bridges (n-Bridge)
> Problem: primary facet knows the others

Facet 1 - Domainl Facet 2-Age I Facet 3-Group|
<<abstract>> -
Domain \\
I ‘\
/ Everywhere | Born Group
7 A
/ \ \ / \ / | \
I |
Land Sea Air Young Middle Ooid Mamma Insect | |Reptile
V2 A W A 2 A
\ | / \ -/ \ |
Nowhere ~ Don't Don't
Know Know

|
@ Animal

How Can | Recognize Facets in
Modelling?

63 | » If a class has several different partitions, this indicates a
facet model

» A model is not a facet model, if some class exists, whose
heirs do not partition the class (non-partitioned

¢ Inheritance)
=
i:
TypeOfEater
AllEater
Gourmet Gourmand / TypeOftater \
Vegetarian
QualityOfEater SortOfEater
%). /\/A / \
@ Gourmet Gourmand Vegetarian AllEater

Resolve with
DimensionalClassHierarchies (Bridge)

» Simple Bridge

TypeOfEater (- SortOfEater
§ Gourmet Gourmand Vegetarian AllEater
%Double Bridge with Core/.{ of
5 Type Eater)‘\
é QualityOfEater SortOfEater
g
Gourmet Gourmand Vegetarian AllEater

&

Comparison Facet Bridges with Facet
Inheritance

65 | » Advantages:
- Dynamic variations possible
- Fewer classes

» Disadvantages:
- No type check on product classes

- No control over which combinations are created (illegal
ones or undefined ones)

- Object schizophrenia

- Memory consumption with allocations
- Speed

- -->not for embedded systems!

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Example: Classification of Research
Papers after Shaw

66 I » How to classify a research paper?
» When is it bad, when is it good?

» Mary Shaw proposed a facet-based classification with
the facets

- Research question
- Result
- Evaluation

Prof. Uwe ARBmann, Design Patterns and Frameworks

&

Classification of Research Papers

67
» 5+7+5 facet classes — 175 product classes (types of

research papers)

. Question Result Validation
; Development Process Analysis
¢ method
= Analysis method | Descriptive model | Experience
C; Evaluate instance |Analytic model Example
: Generalization Empirical model Evaluation
: Feasibility Tool - | Persuasion
g Specific solution

Report

&

68

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Grouping: List j Regroup

= Classification _
Classify document 1
Question Result Walidation
|Deue|npment method j |F'rnc:ess j |.ﬂ.nalysis j
Comment | | |
Classify | Close | i
— Result < |]
Classified documents
Document Question Result Validation
1 Development method Process Analysis
2 &nalysis method Process &nalysis
3 Evaluate instance Descriptive madel Experience
4 Evaluate instance Analytic model Example
a Evaluate instance Empirical madel Example
B Generalization Tool Ewaluation
i Generalization Specific solution Evaluation
g Feasibility Report Fersuasion
g Development method Specific solution Example
10 Evaluate instance Empirical model Example

Close | i

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Result

Cuestion Validation

Classified documents

Analysiz Experience Example Evaluation Persuasion

Development method 1 3
analysis method Z
Evaluate instance 3 43210
Generalization b7
Feasibility
Grouping: GQuestion/Validation i
Close

Regroup

When to Use Facet-based Models

01 » When the model consists of independent dimensions
» When the model is very complicated

» Realizations:

- Use multiple inheritance, when good type checking is
advantageous (e.g., in frameworks)

- Use Bridge if language does not support multiple
Inheritance

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Several Nested Facet Groups are
[Possible

— — — — |
<<Facet>> <<Facet>> <<Facet>>
NetworkAccessLayer InternetLayen HostToHostLayen
Ethernet IP TCP||UDP

<<Facet>> <<Facet>> <<Faceft>>
CPU Memory Network
CPU1l CPU2 Meml| | Mem2 UDP/IP TCP/IP

JaN JaN JaN

Prof. Uwe ABmann, Design Patterns and Frameworks

Computer

&

. 2.3) Layered Objects

72

Design Patterns and Frameworks, © Prof. Uwe ABmann

Be Aware

7371 » |f you meet a Bridge, you may have a facet classification
» Only guestion: are the dimensions independent?

» Sometimes, dependencies exist, e.g., one "dimension”
calls another
- This requires an interface (contract) between the
dimensions

» Then, we have layers

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Layered Objects with Chain-Bridge

74 "1 » Chain Bridge with Core

TypeOfEater

QualityOfEater

]

Gourmet Gourmand

SortOfEater

N

Vegetarian AllEater

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Chain-Bridge for Layered Object
Implementation

751 » Select a primary facet, relate others by chain-Bridges
» Here without core

Facet 1 - Domain

Facet 2-Age Facet 3-Group|
<<abstract>>
Don}\ain '0\,
: \
ST Born : Group
v A / \ / \
/ \ \ | |
Land Sea Air Young Middle oid Mamma Insect Reptile
pVZ A pVZ A VA A
\ | / \ | / \ | /
Nowhere ~ Don't Don't
Know Know
\

|
@ Animal

Layered Objects

76 -1 » Upper layers depend on information of lower layers

Layer 3-Age

Layer 1-Group| Born
£ Group / | \
I
g / | sfoung Middle Oold
i : _ .
; Mamma Insect Reptile 2 - Domain \ | /
:2 W A ~ Don't
b \ | / Know
cL)i Don't / | \ .
: Know
& Land Sea Air
> R |
: . \ /

Nowhere
Animal

&

Compare to Facets

7771 » Dimensions do not depend on information of others

Layer 3-Age

Layer 1-Group| /% Born \

f Group |

/ | Young Middle| | oOlId
in

1§ . W A

p| Mamma Insect Reptile 2 - Domain \ | /

:2 S 7 \ Don't

o

\ | / verywhere Know
Don't / | \

3 Know
& Land Sea Air
(]
3 =)
< \ | /
o \v g
Nowhere

Animal

&

DataGenerator as
) i Generatorimpl
2-Chain-Bridge SonoratoDatal

8 Conjfol Flow data
DataGenerator |
generate() of._. ExhaustiveGenerator|| RandomGenerator
A generateData() Q generateData()
imp.generateData() N

Data data = /
data.cleanE%la();

Control F|O\\l Data Flow

Data *

rns and Frameworks

TestDataGenerator | | ReportGenerator

m generate() Q generate() Data cleanData()
£ :
3| imp.generateData();
g | |
TestData ReportData
TestData cleanData() ReportData cleanData()

&

Compare to DataGenerator as 2-
Bridge (Facets)

7 >| Generatorimpl
im
generate() of.. =~ data Conjrol Flow JA
g /\ N
% imp.generateData(data)
2 ExhaustiveGenerator|| RandomGenerator
2 generateData(Data) generateData(Data)
TestDataGenerator | | ReportGenepdtor .| Data
generate() Q . _Dajg-cleanData()
£ 5 : Control Flow A
<| data = |
3| data.cleanData(); i Data Flow
‘&j imp.generateData(data); |
data = ' TestData ReportData
data.cleanData();
@ imp.generateDe(l?[a(data); TestData cleanData() ReportData cleanData()

Layered Object Spaces

go | » Alayered object space is an object modeled in layers.

» |t Is similar to a facet space, however, layers exchange
Information in a directed way
- Upper layers call lower layers, which deliver information to
upper layers

- This requires that the abstract topmost classes in a layer
provide abstract methods that can be called from other
layers

- The dependencies are directed and acyclic (form a DAG)

» Still, all classes in a layer can be exchanged freely for
another

» Layered object spaces are much broader applicable than
facet spaces

Prof. Uwe ABmann, Design Patterns and Frameworks

&

81

nd Frameworks

n, Design Patterns a

Prof. Uwe ABRman

&

[|
~Tad- 1™ E{dlalal- A MW

and Dimensional Systems

P

Multiple Bridges for Facet-Based
Systems

g2 "I » So far, we looked at implementations of faceted or layered
objects, i.e., models of complex objects

» Facet classifications and layered objects can be
generalized to facet-based or dimensional frameworks
and systems

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Facet-Bridge Dimensional Systems

83| » Bridge patterns can be divided upon different dimensions

» Here: a triple Bridge with core and 3 dimensions, all
Independent

Core Facet: Abstraction (e.g, AnimalDomain)

<& <& <&

Facet of Implementation (e.g., Grolp)

Other facet (e.g., Age)

Prof. Uwe ABmann, Design Patterns and Frameworks

Other facet (e.g., Domain)

&

Facet-Bridge Frameworks for Facet-
Based Systems

84 "1 » |f one or several layers are fixed, and the rest is variable,
facet frameworks result

Reuse
/\ /\ /\ /\ /\ 0
:’(7 T .
euse
Core Facet: Abstraction Framework 0&1
First facet layer (first concretizatiory) | Rgflzse
Reuse

0-3

Second facet (second
concretization)

Prof. Uwe ABmann, Design Patterns and Frameworks

Third facet (third concretization)

&

Facet-Bridge Frameworks for Facet-
Based Systems

85 | » Products can be instantiated on every level
> Every dimension provides additional reu8g-andvammalMeateater

|

Core Facet: Animal Domain
< O O

First facet (e.g., Group)

Produc{ Product
1 2

Second facet (e.g., Age)

Prof. Uwe ABmann, Design Patterns and Frameworks

Third facet (e.g., Nurture)

&

Facet-Bridge FrameworRs for Business

Software | |
A A A —Eengmsh— |
gs | » SAP, Peoplesoft, Intentia, IFS

BillForCompanyOflindustry in
Swedish l

Core Facet: Business objects

<& < <&

Domain (public sector, company, private)

Produc{ Product
1 2

Production facet (Industry, Service, Administration))

Prof. Uwe ABmann, Design Patterns and Frameworks

Language (English,

@ Swedish)

Prof. Uwe ABmann, Design Patterns and Frameworks

Facet-Bridge FrameworRs for
Component Composition

» COMPOST (www.the-compost-system.org) is a

framework for constructing component systems (a

framework for frameworks)

RuntimeValueComponentModel

Core Facet: Components

N\

SO O

Structure of com;|>onents angd applications

Fragment or runtime model

Language (Java, XHTML, —

runtime values)

Component
System
1

Component
System
2

Bridge and Visitor FrameworRs for
Dimensional Systems

» Some layers of a dimensional frameworks can be visitors

Core Facet: Abstraction Framework Reuse

<> <> <> Reuse

1&2

First dimension (first concretization)

Reuse
1-4

Second dimension (algorithmn, is

realized by a visitor) -

Third dimension

Prof. Uwe ARBmann, Design Patterns and Frameworks

&

Facet-based Design and FrameworRs

8o "I » Best practice: whenever you have a huge class hierarchy,
that is not completely based on partitioning

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Find out the facets
Factor the inheritance hierarchy into the facets
Choose a core facet

And implement the facets with a facet framework with
Bridges.

For an n-dimensional facet problem you need at least n-1
Bridges

> If the “facets” are not independent, introduce layers

And implement them with Chain-Bridges

2.5) Layered FrameworRks and
. Systems with Chain Bridges

90

Design Patterns and Frameworks, © Prof. Uwe ABmann

Layered FrameworRs for Layered
Systems

91 | » Whenever a system is a layered architecture (stack
architecture), a layered (object) framework can be used

- And Chain-Bridges can implement them if the layers are
Independent of each other (layered chain-bridge
framework)

- The layering is an abstraction layering: more detailed
things appear as lower layer

» Modelling criterion: every class must contribute to every
layer of a layered object system
- Classes crosscut the layers
- In general, layered system do not meet this criterion

> Different products can be configured easily by varying the
dimensions of the bridge

Prof. Uwe ABmann, Design Patterns and Frameworks

&

NetworR StacRks as Layered Bridge
System

92 "1 » |SO/OSI has 7 layers (leads to a 7-Bridge)
» Every layer knows the next underlying
» All partial objects call partial objects in lower layers

ore Facet: Abstraction <> <> <>

e.g, Message)

nteyorks

ign %te-hl and+ra

cacet of transport (e.g., TCP

X) > > >

aket protocol(e.g., UDP)

Prof. Uwe ARMANN, Des

Basic protocol (e.g., Ethernet,

@ token ring)

93

Prof. Uwe ABmann, Design Patterns and Franworks

&

Databases and Layered Bridge

Frameworks

» An object-oriented database, which should be integratec
Into an application, should be a layered bridge framework

Database Appl B \

\

ore Facet: datab@se application <O <O

Transaction layef

>

Product

> > !

Relation layer

Product

Record layer

The Role of Layered FrameworRs

94 "I » Layered frameworks are a very important structuring method
for large systems that must be parameterized, varied and
extended

» On every layer, reuse is possible
- Enourmous variability
» Every layer corresponds to an aspect of the application

- All layers form stacked aspects

> Alarge system must be reducible or layered

- Hence, layered frameworks provide a wonderful, very general
methods for product lines of very large products

- And additionally, for extensible systems

Prof. Uwe ABmann, Design Patterns and Frameworks

&

The Role of Layered FrameworRs

95 "I » At the moment, there are three competing implementation
technologies for them:
- Aspect-oriented weaving

- View-based weaving (hyperslice programming) [see Component-
Based Software Engineering, summer semester)

- Hand programming
« Chain-Bridges
* Role Object Pattern (see later)
» To me, it looks like layered frameworks are one of the most
important software engineering concepts of the future

Prof. Uwe ABmann, Design Patterns and Frameworks

&

The End

96

SyJIOMaWeIH pue suiaied ubisaq ‘uuewsy amn ‘Joid

=

	Coaster in Space
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Template Method
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Strategy
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Example Strategy
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Visitor
	Slide 49
	Slide 50
	Slide 51
	Example Compiler Abstract Syntax Trees
	Slide 53
	Slide 54
	Facet Classifications
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Med utökat bro mönster
	Klassificering av forskningsrapporter
	Slide 67
	Slide 68
	Slide 69
	Sammanfattning
	Flera facettgrupper
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96

