Chapter 3
Variability Patterns for Object

Creation
1 Prof. Dr. U. ABmann 1)FaCtOryMethOd
Chair for Software
Engineering 2)AbstractFactory

Faculty of Informatics

3)Builder

Dresden University of
Technology

Version 13-1.1, 11/16/13

Design Patterns and Frameworks, © Prof. Uwe ABmann

)

A Restriction of Polymorphism

3.1 Factory Method (Polymorphic
Constructor)

_

D

Design Patterns and Frameworks, © Prof. Uwe ARBmann

Factory Method (Polymorphic
Constructor)

3 'l » Some polymorphic languages (such as Java) do not allow for
exchange of the constructor

» Problem: constructors are concrete, cannot be varied polymorphically

/I Creator class abstract
public abstract class Creator {
public void collect() {
Set mySet = new Set(10);
/I which set should be allocated? }
}
} public class ListBasedSet extends Set {
public ListBasedSet(int initialLength) {

/I Product class
public class Set extends Collection {
public Set(int initialLength) {

/I Creator class concrete
public class CreatorB extends Creator { }
public void collect() { }
mySet = new ListBasedSet(10); So, creator methods, which employ
} constructors, must be overridden
carefully by hand

Prof. Uwe ABmann, Design Patterns and Frameworks

&

%)
X
=

9]
H

4 » Abstract creator classes offer abstract constructors (polymorphic constructors)

- Concrete subclasses can specialize the constructor

- Constructor implementation is changed with allocation of concrete Creator
/ Abstract creator class
public abstract class Creator {
// factory method
public abstract Set createSet(int n);

}

Prof. Uwe ABm:

&

public class Client {

. Creator cr = [.. subclass]..
public void collect() {
Set mySet = cr.createSet(10);

// Concrete creator class
public class ConcreteCreator extends Creator ({
public Set createSet(int n) {

return new ListBasedSet(n);

}

Structure for FactoryMethod

Example FactoryMethod for Buildings

5 "1 » FactoryMethod is a variant of TemplateMethod

» It hides the allocation of a product

Client

Product

/\

e ABmann, Design Pg eworks

ConcreteProductB

)

ConcreteProductA |<-

\

BN Creator
Factory M?thOd() i;roduct = FactoryMethod()
anOperation() O------ .
ConcreteCreatorA
ConcreteCreatorB
FactoryMethod()Q
_______________________________ \] FactoryMethod()Q

T

return new ConcreteProductA

'
'
\

return new ConcreteProductB

Solution with FactoryMethod

Prof. Uwe ABmann, Design Patterns and Frameworks

O

» Consider a framework for
planning of buildings
- Class Building with
template method
construct to plan a
building interactively

» Users can create new
subclasses of buildings
- All abstract methods
createWall, createRoom,
createDoor,
createWindow must be
implemented

» Problem: How can the
framework treat new

Building | -
house = createBuilding(});
construct(),____ | ______|
createBuilding() house.createWall();
createWall()
createDoor() house.createDoor();
createWindow()
createRoom() house.createWindow();
LA

Framework
Skyscraper Bungalow | Extensions
createBuilding() createBuilding()
createWall() createWall()
createDoor() createDoor()
createWindow() createWindow()
createRoom() createRoom()

Flexible Construction with Reflection

7'l » Solution: a

FactoryMethod
» Subclasses can

specialize the

and Frameworks

behavior, e.

constructor and
enrich with more

/ abstract creator class
public abstract class Building {
public abstract

Building createBuilding();

1%}
// concrete creator class

Jublic class Skyscraper extends Building {

Skyscraper() {

public Building createBuilding() {
. fill in more info ...
return new Skyscraper();

/ concrete creator class
ublic class Bungalow extends Building {

Bungalow() {

public Building createBuilding() {

. fill in more info ...
return new Bungalow();

Prof. Uwe ABmann, Design Patterns and Frameworks

&

classes
» Reflection:

» Constructor can allocate objects of statically unknown

= Find the class's name and get the class object
= Then clone the class object

in Java: Class. forName (String name)
» Attention: reflection is usually slow. It has to lookup

creat r . .
“bytetbte information and mu

st Iohad class gode on-the-fly

in subclass

String className = getClassNameFromSomeWhere(};
// get the class object and allocate from there

house = (Building] Class.ForName([className).newInstance();

Factory Methods in Parallel Class
Hierarchies

/AnNAalysis O racioryivietnog -
Information Hiding of Abstract

rlﬂﬂﬂnﬂ

LW o e e 1| el |

Prof. Uwe ABmann, Design Patterns and Frameworks

_

» One class hierarchy offers uses a factory method to create objects of a second hierarchy
> On every level, the factory method is implemented in a parallel class on exactly the same
level and abstraction level
- E.g, ReadableObject and WritableObject in ReadableFigures and FigureManipulators
» Here, the parallelism constraint is that every readable object must allocate a parallel
manipulator.
- This is a constraint on the polymorphic allocator of the manipulators

ReadableFigure [~ >| ManipulatorOfFigure
manipulator
createManipulator() draw()
drag()

Concrete Concrete

ReadableFigureA | | ReadableFigureB

ManipulatorOfFigurel ManipulatorOfFigure
createManipulatpr()| |createManipulatory)

ConcreteManipulator. ConcreteManipulatorB

draw()
drag()

draw()
drag()

3.2 Factory Class (Abstract
Factory)

1"

Design Patterns and Frameworks, © Prof. Uwe ABmann

10

Prof. Uwe ABmann, Design Patterns and Frameworks

=)

» Abstract classes know when an object should be
allocated, but do not know which of the subclasses will be
filled in at runtime

- The knowledge which subclass should be used is
encapsulated into the client subclasses

» For frameworks this means:

- The abstract classes of the framework do not know which
application class they will work on, but they know when to
create an application object

- The knowledge which application class should be used is
encapsulated into the application

» Relatives of FactoryMethod

- A FactoryMethod is a HookMethod, used by a

TemplateMethod, which returns a product, i.e.,
Fartnn/Methnde ara rallad in TemnlateMethndc

Forces of the Factory Class Pattern

12

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Given a package with a family of classes (a product
family). Examples
- Widgets in a window system
- Stones in a Tetris game
- Products of a company
» How can the product family be switched in one go to a
variant?
- Swing widgets to Windows widgets?
- 2D-stones to 3D-stones in the Tetris game?

- Cheap variants of the products of the company to
expensive variants?

Factory Class Pattern Structure for Factory Class

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» A Factory (FactoryClass) groups factory methods to a 14! » By creating the concrete factory, the client determines the

Prof. Uwe ABmann, Design Patterns and Frameworks

&

class entire family of products (here: family 1 or 2)
- AFactory is a class that groups a family of polymorphic Client
. factory .
constructors of a family of classes (products) AbstractFactory | init() - .
- The products can be classes of a layer or a package 2
P y P . g % createProductA() | AbstractProductA I‘— IF(.){
- The products have a strong parallelism constraint g createProductB() factory = new
(isomorphic hierarchies) E | | ooreteFacton/1()
> An AbstractFactory contains the interfaces of the : > Productaz] [Productat [~ || GoncreleFactory20)
constructors & | Fl
) . . ConcreteFactory1 - |ConcreteFactory2 | --: E
» A ConcreteFactory contains the implementation of the | | |
createProductA() ! | createProductA() ! !
constructors createProductB() | | createProductB() ! | AbstractProductB |(:
- The Concrete Factories can be exchanged E !
- A Concrete Factory represents one concrete family of 5
. ')I ProductBZ| | ProductB1 I‘".
objects @
Example for Factory Class in
Example for Factory Class .
Compilers
16
WidgetFactory |~ | Client ElementFactory | Client

createScrollbar() createAssign() I
createWindow() createPlus() Assign
r">| JavaAssign| | EiffeIAssignI"':

il

ConcreteFactory1-- | ConcreteFactory2:---

ConcreteFactory1-- | ConcreteFactory2:-

createAssign() createAssign()
createPlus() i | createPlus()

createScrollbar() createScrollbar()
createWindow() 1 | createWindow()

[P —

Prof. Uwe ABmann, Design Patterns and Frameworks

!

i

“-> XScrollbar | | SWTScrollbar [<! “->JavaPlus | |EiffelPlus |<

Employment of Factory Class

Pragmatics of Factory Class

)

1771 » For window styles 18 °1 » Afactory deals with 3+x inheritance hierarchies (factory,
- All widgets are used by the framework abstractly product 1, ..., product n)
- The concrete style is determined by a concrete factory » The n product hierarchies must be maintained in parallel,

class i.e., they form ParallelHierarchies

£ - Swing, AWT, ... € » The factory pattern ensures that all objects are created

£ » Inoffice systems £ with the parallelism constraint

U - For families of similar documents ﬂ idgetFactory | L Clent

5] s createScrollbar()

£ » Inbusiness systems g crosteWindow(@

: - For families of similar products : % o - R s T

§ » Fortools on several languages S [concrsteractoryt |1 [[GoneretoFactoryz } - E

? » Factory Class is related to Tools-and-Materials (TAM), §

&

because products are materials (see later)

Variant: The
Prototyping Factory

1
1 1
CreateScrollbar() | CreateScrollbar() | |
createWindow() E createWindow() \ m —
5 i AN | Same height of products
i i :
E ">‘ XScrollbar w -E

__

Structure for Prototyping Factory

19

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Concrete factories need not be created; one instance is
enough, if prototypes of the products exist

» To produce new products, the ConcreteFactory clones the
set of available products

» The variability of products is handled by the cloning of the
prototypes

Prof. Uwe ABmann, Design Patterns and Frameworks

&

AbstractFactory Client
createProductA() B
createProductB() | AbstractProductA |

| ProductA2| | ProductA1|
A

ConcreteFactory v
/ -
createProductA() / e
createProductB() Y _ -
/ - |AbstractProductB I‘—
e
7
/- '
:Prototype /. -
copyProductA()é I »Ero_d_ucLBZ’ ProductB1
copyProductB()—| — — — —

Variant: Factory with Interpretive
FactoryMethod

Structure for |

nterpretive Factory

21

Prof. Uwe ABmann, Design Patterns and Frameworks

&

iu]

» If more factory methods should be added, this becomes
tedious, since the AbstractFactory and all concrete
factories must be editied

» Instead: one factory method with parameter string

public class abstractFactory {
abstract Product createProduct(String what);

}

public class concreteFactory extends abstractFactory {
Product createProduct(String what) {
if (what.eq(“p1”)) {
return new P1();
else

—

Factory Class - Employment

N
w

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Make a system independent of the way how its objects
are created

» Hide constructors to make the way of creation
exchangable with types
» For product families

- In which families of objects need to be created together;
but the way how is varied

» Related Patterns

- An abstract factory is a special form of hook class, to be

called by some template classes.

- Often, a factory is a Singleton (a Singleton is a class with

only one instance)

- Concrete factories can be created by parameterizing the

factory with Prototype objects

22

pmeworks

-

AbstractFactory

Eent

createProduct(String what)

| AbstractProductA I‘—

ConcreteFactory1

createProduct(String whatyF

—

I\

Prof. Uwe ABmann, De

=)

- | ProductA2| | ProductA1|
—»

— —
—

—
—

| AbstractProductB I‘—

ConcreteFactory2

createProduct(String what)

Structure

3.3 Builder (Factory with Protocol,

d Factory)

24

)

Design Patterns and Frameworks, © Prof. Uwe ABmann

Structure for Builder

Example RTF-Document Builder

25

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» The Builder is a Factory that produces a structured
product (a whole with parts)
- e.g., a business object or product data of a PDM

Director b

construct() @

for all objects in structure
according to protocol {
builder.buildPart()

}

o————— el

AbstractBuilder

buildPart()
getResult()

/\

ConcreteBuilder

buildPart()
getResult()

Structured
Product

Builder Protocol (E.g., Specified by

26 1 » RTF grammar defines a protocol for the sequence of text

converter functions

TextConverter
builder
RTFReader > convChar(char)
£ convCharSet(CharSet)
2 | ParseRTF()0 convParagraph()
g : getText()

for all objects in text file

AN

according to RTF |

protocol {
builder.convParagraph() | ASClIConverter TeXConverter
E} convChar(char) convChar(char)
% convCharSet(CharSet) convCharSet(CharSet)
H convParagraph() convParagraph()
g‘ getText() getText()
@ t--->| ASClIText =----> TeXText

JSP)

RTF Builder Protocol (E.g., Specified by

m| EBNF)
27 28
RTFDocument

P -- Grammar in EBNF P
§ RTFDocument ::= RTFHeader RTFBody RTFFooter. §
g RTFHeader ::= RTFParagraph*. g RTFHeader RTFBody RTFFooter
5 RTFParagraph ::= Word*. | | |
g Word ::= Char*. g - - "
s RTFBody ::= RTFParagraph*. s RTFParagraph RTFParagraph RTFParagraph
a RTFFooter ::= RTFParagraph*.] | | |
3 3 Word * Word * Word *
| ' |

Char * Char * Char *

&

&

The Builder

Builder: Information Hiding

29

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Maintains an internal state that memorizes the point of
time in construction of the complex data structure

» Data structure defines a protocol for calls to the
elementary functions
» Data structure must be defined by a
- Grammar
- JSP, regular expression
- Protocol machine (statechart acceptor)
- Other mechanisms, such as Petri nets
» The other way round: as soon as we have a data
structure
- Defined by a grammar, regular expressions, or JSP
- We can build a constructor with the Builder pattern

IKnown Uses

30

Prof. Uwe ABmann, Design Patterns and Frameworks

=)

» The builder hides
- The protocol (the structure of the data)
- The current status
- The implementation of the data structure

» Similar to an Iterator, the structure is hidden

Appendix

31

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Parsers in compilers are builders that contain the
grammar of the concrete syntax of the programming
language

» Builders for intermediate representations of all kinds of
languages

- Programming languages
- Specification languages
- Graphic languages such as UML
» Builders for all complex data structures
- Databases with integrity constraints

32

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Combination of Factory Method and
Default Implementation

Creation of Product Subclasses with
Generics

33

share behavior

» FactoryMethods can contain default implementations to

» Subclass has to call super()

/ abstract class with default
/ behavior
public abstract class Building {
public abstract
Building createBuildinglnner(};
public
Building createBuilding() {
Building b = createBuildinglnner(};
Door d = new Door();
b.setDoor(d);
return b;

Prof. Uwe ABmann, Design Patterns and Frameworks

&

/ concrete class with additional

/ behavior

public class Skyscraper extends Building {

// concretization of hook

public Building createBuildinginner(] {
return new Skyscraper();

}

34

Prof. Uwe ABmann, Design Patterns and Frameworks

=)

/ Generic factory class
template<class TheProduct>
class StandardProducer<TheProduct> : public Producer {
Product* StandardProducer<TheProduct>(] {
return new <TheProduct>(};

}

/ Application of generic factory class creates concrete

/ FactoryMethod automatically

Public abstract class Building {

StandardProducer<MyProduct> myProducer;

myProducer = new myProducer.StandardProducer<MyProduct>()

}

