
Design Patterns and Frameworks, © Prof. Uwe Aßmann

1

Part II
Design Patterns and Frameworks

Prof. Dr. U. Aßmann

Chair for Software
Engineering

Faculty of Informatics

Dresden University of
Technology

13-0.2, 11/16/13

10) Role-based Design

11) Design Patterns as Role
Models

12) Framework Variability

13) Framework Extensibility

Version numbers greater 1.0 contain corrections and improvements after lecturing

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

2

Overview of the Course

Intro

Variability Patterns Extensibility Patterns Connection Patterns

Metapatterns
and Framework patterns

Role Models

Composite Patterns

Layered Frameworks

Tools & Materials

Employment and Usage

Patterns and Frameworks

Basic Patterns

Pattern Languages

Eclipse Concrete FrameworksSAPSan Francisco

Refactoring Refactoring
Variability-Based

Design
Framework

Backward Compatibility

Design Patterns and Frameworks, © Prof. Uwe Aßmann

3

10. Role-Based Design –
A Concept for Understanding
Design Patterns and Frameworks

Prof. Dr. U. Aßmann

Chair for Software
Engineering

Faculty of Informatics

Dresden University of
Technology

1) Role-based Design

2) Role-Model Composition

3) Role Mapping in the MDA

4) Implementing Abilities

5) More on Roles

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

4

Literature (To Be Read)

► D. Riehle, T. Gross. Role Model Based Framework
Design and Integration. Proc. 1998 Conf. On Object-
oriented Programing Systems, Languages, and
Applications (OOPSLA 98) ACM Press, 1998.
http://citeseer.ist.psu.edu/riehle98role.html

► Liping Zhao. Designing Application Domain Models with
Roles. In: Uwe Aßmann, Mehmet Aksit and Arend
Rensink. Model Driven Architecture European MDA
Workshops: Foundations and Applications, MDAFA 2003
and MDAFA 2004, Lecture Notes in Computer Science,
Volume 3599, 2005, DOI: 10.1007/11538097

– http://www.springerlink.com/content/f8u0vmbbt2mf/#secti
on=590861

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

5

Other Literature

► T. Reenskaug, P. Wold, O. A. Lehne. Working with
objects. Manning publishers.

– The OOram Method, introducing role-based design, role
models and many other things. A wisdom book for
design. Out of print. Preversion available on the internet
at http://heim.ifi.uio.no/~trygver/documents/book11d.pdf

– Same age as Gamma, but much farer..

► H. Allert, P. Dolog, W. Nejdl, W. Siberski, F. Steimann.
Role-Oriented Models for Hypermedia Construction –
Conceptual Modelling for the Semantic Web. citeseer.org.

http://heim.ifi.uio.no/~trygver/documents/book11d.pdf

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

6

Other Literature

► B. Woolf. The Object Recursion Pattern. In N. Harrison, B.
Foote, H. Rohnert (ed.), Pattern Languages of Program
Design 4 (PLOP), Addison-Wesley 1998.

► Walter Zimmer. Relationships Between Design Patterns.
Pattern Languages of Program Design 1 (PLOP),
Addison-Wesley 1994

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

7

Goal

► Understand the difference between roles and objects, role
types (abilities) and classes

► Understand role merging
► and role mapping to classes

– How roles can be implemented

► Understand role model composition
► Understand design patterns as role models, merged into

class models
► Understand composite design patterns

– Understand how to mine composite design patterns

► Understand role types as semantically non-rigid founded
types

► Understand layered frameworks as role models
► Understand how to optimize layered frameworks and

design patterns

Design Patterns and Frameworks, © Prof. Uwe Aßmann

8

10.1 Role-based Design With Role
Models

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

9

A Riddle..

Man Woman

Person

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

10

Another Riddle..

Mother Father

Person

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

11

Purpose of Teaching
Role-based Design
► Design patterns rely on the concept of roles

– although not described as such in [Gamma]

► A design pattern must be matched in (mapped to) an
application,

– i.e., there must be some classes in the application that
play the roles of the classes in the design pattern.

– Every class in the design pattern is a role type
– The matched class of the application plays the role of the

class in the design pattern

ObserverSubject

AnimationEngineSortingAlgorithm

Role mapping Application

Design Pattern

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

12

What are Roles?

► A role is a dynamic view onto an
object

– The view can change
dynamically

– A role of an object belongs to
a area of concern

► Roles are played by the objects
(the object is the player of the
role)

– Playing a role means entering
a state

– Active roles correspond to
states of an object

► Role playing is written by
overlapping a role to an object
or by the plays-a relation

Employee

Father

Cyclist

Professor

Conservative

Swede

:Person

<<plays-a>>

<<plays-a>>

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

13

What are Roles?

► Roles are services of an object in a context
– Roles can be connected to each other, just as services are connected to

client requests

► Roles are founded, i.e., tied to collaborations and form role models
► A role model captures an area of concern (Reenskaug)

Employee

Father

Cyclist

Professor

Pop fan

Soccer player

:Person

Employer

Child

CarDriver

:Person

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

14

What are Role Types?

► A role type (ability) is a service type of an object
– Role types are dynamic view types onto an object

– The role type can change dynamically (dynamic type)
– An object plays a role of a role type for some time
– A role type is a part of a protocol of an class

● A role is often implemented by interfaces

► A role type is founded (relative to collaboration partner)
► A role model is a set of object collaborations described by

a set of role types
– A constraint specification for classes and object

collaborations

► Problem: often, we apply the word “role” also on the class
level, i.e., for a “role type”

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

15

A Class-Role-Type Diagram
(Class-Ability Diagram)
► Also called a class-role model
► Abilities (oval boxes) are put on top of classes (rectangles)
► The set of role types of a class is called its repertoire (role type set)

■ Any number of roles can be active at a time

Employee

Father

Cyclist

Professor

Pop Fan

Soccer Player

Person

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

16

A Class-Ability Model For Figures in a
Figure Editor

► A figure can play many roles in
different role models

► Roles may be qualified by a role
model identifier in brackets

► This class-role model is composed
out of several simpler role models

Figure
(FigureHierarchy)

Subject
(FigureObserver)

Predecessor
(FigureChain)

Client
(Graphics)

Child
(FigureHierarchy)

Subject
(Int.Fig.Observer)

Server
(Graphics)

Parent
(FigureHierarchy)

Observer
(Int.Fig.Observer)

1..
*

0..*

Client
(FigureHierarchy)

Observer
(FigureObserver)

Successor
(FigureChain)

Figure

Explanation of some role types:

► FigureHierarchy.Figure: regular drawing functions

► FigureHierarchy.Child: child in a figure hierarchy

► FigureObserver.Subject: subject of a Observer
pattern, for communication among figures

► FigureHierarchy.Parent: parent in a figure hierarchy

► IntFigObserver.Subject: subject of a Observer
pattern, for communication among figures

► FigureChain.Sucessor: sucessor in a threaded list
(chain) of figures

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

17

Role Constraints in Role Models

► Arrows denote constraints between roles (role
constraints)

Figure
(Figure Hierarchy)

Root
(FigureHierarchy)

Child
(Figure Hierarchy)

Parent
(Figure Hierarchy)

1..
*

0..*

FigureClient
(Figure Hierarchy)

RootClient
(FigureHierarchy)

Role inheritance means
“role-implication: a<b
means the object that
plays role a must also
play role b

Exclusion constraint means
“role-prohibition: a-b
means the object that
plays a must not play b
and vice versa

role-use: a required role uses a
provided role

role-association: a-b means
the object that plays a knows
an object playing b and vice

versa

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

18

More Role Constraints

Bidirectional Inheritance means
“role-equivalence: a<>b
means the object that plays
a must also play b and vice
versa

Role-implication inheritance constraint: a role-
implication constraint, stressing that the
source can be mapped to a subclass of the
target

BusinessPartner
Indirect

BusinessPartner

Retailer
(Retail)

Customer
(Retail)

Figure
(FigureHierarchy)

Subject
(FigureObserver)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

19

How To Develop Role Models

► Ask the central question:
– Which role does my object play in this context?
– Which responsibility does my object have in this context?
– Which state is my object in in this context?

► If you develop with CRC cards, the questions lead to a
grouping of the responsibilities (i.e., roles) on the CRC
card

– Remember: a role model specifies roles of objects in
context, i.e., in a specific scenario

– Keep the role model slim, and start another one for a new
scenario

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

20

Role-Based Design with Role Models

► Role-based design emphasizes collaboration-based
design

– Starts with an analysis of the collaborations (e.g., with CRC
cards)

– Every partner of a collaboration is a role of an object
– The role characterizes the protocol (interaction) of the

object in a collaboration

► Benefit of role-based/collaboration-based design
– Roles split a class into smaller pieces
– Roles emphasize the context-dependent parts of classes
– Roles separate concerns (every role type is a concern)
– Role models can be reused independently of classes

► Idea: why not develop with role models?

Design Patterns and Frameworks, © Prof. Uwe Aßmann

21

10.2 Composition of Role Models

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

22

Role Models of Persons in Business
Applications

BusinessContact
(Contact)

Customer
(Customer)

ApplicationClient
(Contact)

ApplicationClient
(Customer)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

23

Role Models of Persons in Business
Applications

BusinessContact
(Contact)

Retailer
(Retail)

Customer
(Customer)

AppClient
(Contact)

Debitor
(Debitor)

Investor
(Investor)

AppClient
(Retail)

AppClient
(Debitor)

AppClient
(Investor)

AppClient
(Customer)

Customer
(Retail)

Customer
(Debitor)

Customer
(Investor)

Client of Customer role model
uses customer role of
Customer role model
implies BusinessContact

A Retailer must also
play the role of a customer
(retailers are customers
of banks)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

24

Merging Role Models of Persons in
Business Applications

BusinessContact
(Contact)

Retailer
(Retail)

Guarantor
(Guarantor)

Customer
(Customer)

AppClient
(Contact)

Employee
(Employee)

Debitor
(Debitor)

Investor
(Investor)

AppClient
(Retail)

AppClient
(Debitor)

AppClient
(Investor)

AppClient
(Customer)

AppClient
(Guarantor)

AppClient
(Employee)

Guarantor never plays the role of a customer

► Merging role Customer from role models (Customer,
Retail, Debitor, Investor)

Design Patterns and Frameworks, © Prof. Uwe Aßmann

25

10.2.1 Merging Role Models into
Class Diagrams

How role models are merged to class models

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

26

Composing Role Models To Partial Class
Diagrams
► Classes combine role types

– Classes are composed of role types
– Roles are dynamic items; classes are static items
– So, classes group roles to form objects

► Class models combine role type models
– Class models are composed of role models
– One role model expresses a certain aspect of the class

model

► Partial class models:
– Role types in a role model can be left dangling (open) for

further composition
– The sub-role-models of a composed role model are

called its dimensions
– A partial class model results
– Then not all roles are associated to classes

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

27

Partial class model for fgure
editor, with some open
client roles

Figure
(Figure Hierarchy)

Subject
(Figure Observer)

Predecessor
(Figure Chain)

Client
(Graphics)

Child
(Figure Hierarchy)

Subject
(Int. Fig. Observer)

Graphics
(Graphics)

Parent
(Figure Hierarchy)

Observer
(Int. Fig. Observer)

1..
0..

FigClient
(Figure Hierarchy)

Observer
(Figure Observer)

Successor
(Figure Chain)

Figure

CompositeFigure

Figure
(RectangleFigure)

RectangleFigure

Graphics

FigClient
(RectangleFigure)

Root
(FigureHierarchy)

RootFigure

Figure
(ClassFigure)

ClassFigure

FigClient
(ClassFigure)

Client
(RectangleFigure)

RootClient
(FigureHierarchy)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

28

Role Models in the Example

► FigureHierarchy: composite figures (with root figure and
other types, such as rectangluar or class)

► FigureChain: How objects forward client requests up the
hierarchy, until it can be handled

► FigureObserver: Observer pattern, for callback
communication among clients and figures

► IntFigObserver: Observer pattern, for communication
among figures

Design Patterns and Frameworks, © Prof. Uwe Aßmann

29

10.3 Role Mapping in the MDA

Merging role models to class
models can be seen as a step of

MDA

[Zhao]

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

30

Steps In Role-Based Design

► First, do role models
– Roles are all kept distinct

– Find out about role constraints that
constraint which objects execute which
roles

► Secondly, compose (merge) them
– And set up new constraints between

roles of different models

► Thirdly, map role models to class
diagram

– By merging the roles to classes

– Respecting the constraints

► Benefit: many different class models from
one set of role models! (Gross variability)

Role Model Mapping

Merged
Role Models

Class Model
Class Model

Role Models

Step 2
Merge

Step 1
Role modeling

Step 3
Map

Class Model

Step 2
Merge

Step 1
Role modeling

Step 3
Map

Role Model Merging

Role Modeling

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

31

The Role Mapping Process and Model-
Driven Architecture (MDA)

► The information which roles belong to which class can be
regarded as a platform information

► A role model is more platform independent than a class
model

– The decision which roles are merged into which
classes has not been taken and can be reversed

– We say: roles are logical, classes are physical

► In MDA, role models are found on a more platform
independent level than class models

– First design a set of role models
– Then find a class model by mapping roles into classes
– Respect role constraints
– Usually, several class models are legal

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

32

Role Model Mapping is a Task in MDA

Requirements model

Role Models

Class Model

Code

Role Model Mapping

Merged Role Models

Role Model Merging
Not in
standard
MDA

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

33

The Infuence of the Role Constraints
on Role Model Mapping
► Role-equivalent constraint: strong constraint: same implementation

class
► Role-implication constraint: weaker, leaves freedom, which physical

class implements the roles
– Map to same classes or subclasses
– If implemented by the same class, the class model is stricter than the

role model
– Embedding roles in a class reduces the number of runtime objects,

hence more efficient, less object schizophrenia
– Split classes allow for better exchange of a role at runtime, since only

the runtime object needs to be exchanged

► Role-implication inheritance constraint: a role-implication constraint,
stressing that the source must be mapped to a subclass of the target

► Role-use constraint: translation to delegation possible (different
classes)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

34

Computing Physical Objects by Role
Mapping
► The role mapping process determines, which physical

object inherits from which role-interface
► The role mapping computes the physical objects from

maximal splits of the logical objects

Role Model (maximally splitted responsibilities
of the logical objects)

Class Model
(partially overlayed responsibilities,

physical objects)

Code

Role model mapping

Design Patterns and Frameworks, © Prof. Uwe Aßmann

35

10.4 Implementing Abilites By
Hand

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

36

Implementation of Abilities

Abilities can be mapped into classes (role mapping) in several
ways:
► With interfaces

– Then, code for the interfaces must be written by hand

► With multiple inheritance
– Then, there are two layers of classes: role classes and standard

classes

► With mixin classes
– Some language allow for composing “mixin” classes into classes

● CLOS, Scala
● “include inheritance” (Eiffel, Sather)

– A role is like a mixin class
– No code has to be written by hand

► With multi-Bridges

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

37

With Interfaces

► Then, code for the interfaces must be written by hand

Figure
(Figure Hierarchy)

Subject
(Figure Observer)

Predecessor
(Figure Chain)

Client
(Graphics)

Child
(Figure Hierarchy)

Subject
(Int. Fig. Observer)

Figure

<<implementation class>>
Figure

<<interface>>
FigureHierarchy.Figure

<<interface>>
Graphics.Client

<<interface>>
FigureObserver.Subject

<<interface>>
FigureHierarchy.Child

<<interface>>
FigureChain.Predecessor

<<interface>>
IntFigObserver.Subject

public class Figure implements
FigureHierarchy.Figure,
FigureHiearchy.Child,
Graphics.Client,
IntFigObserver.Subject,
FigureObserver.Subject,
FigureChain.Predecessor

{ ... implementations of
role-interfaces ...

}

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

38

With Multiple Inheritance

► Then, there are
two layers of
classes: role
classes and
standard classes

► A standard class
must inherit from
several role
classes

► Disadvantage: a
standard class can
inherit from a role
class only once

Figure

<<role class>>
FigureHierarchy.Figure

<<role class>>
Graphics.Client

<<role class>>
FigureObserver.

Subject

<<role class>>
FigureHierarchy.Child

<<role class>>
FigureChain.Predecessor

<<role class>>
IntFigObserver.Subject

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

39

With Mixin Classes

► Some language allow for
composing “mixin” classes
into classes

– CLOS, Scala
– “include inheritance”

(Eiffel, Sather)

► A mixin is a superclass
parameterizing a generic
super declaration of a
base class

► A role type is like a mixin
class

► Role code can be inherited
► Features of a mixin are

renamed, if it is inherited a
second time

Figure

<<mixin class>>
FigureHierarchy.Figure

<<mixin class>>
Graphics.Client

<<mixin class>>
FigureObserverSubject

<<mixin class>>
FigureHierarchy.Child

<<mixin class>>
FigureChain.Predecessor

<<mixin class>>
IntFigObserverSubject

<<mixin>> <<mixin>> <<mixin>>

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

40

Implementation With Multi-Bridges and
Role Objects

► A role object represents
only one role

► A role class only one role
type

► There is a core object that
aggregates all role objects

► Also with “Role Object”
pattern (later)

► Bridge and Multi-Bridge
are typical role
implementations

Figure

FigureHierarchy.Figure Graphics.Client FigureObserver.Subject

FigureHierarchy.Child FigureChain.Predecessor IntFigObserver.Subject

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

41

Connecting Role Behavior with
Embedding Context

► The body of an ability must be embedded into the
control- and data-flow of the context code of the class.

► Wrapper/Decorator:
■ If an ability is implemented as Wrapper (Decorator), it

intercepts the control flow inward and outward of a
method or class

■ Then, roles can be stacked at run-time (Decorator list)

► Input Filter/Interceptor:
■ Then the role code is executed before the method or the

methods of a class

► Output Filter:
■ Then the role code is executed after the method or the

methods of a class

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

42

The Difference of Roles and Facets

► A faceted class is a class with n dimensions
► If the facet has a collaboration partner, it turns out to be a

role
– Each facet is a role type
– Role types are independent of each other
– However, the role type is static, not dynamic: facets are

lasting

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

43

Solution to the Little Riddles..

► Mother and Father are abilities of classes
► Man and Woman are facets
► Person is a natural type

Mother Woman

Person

Man

FatherPerson

Thing

Woman

┴

Mother

Grand
Father

Grand
Mother

Ancestor

┴

Man

Father

Design Patterns and Frameworks, © Prof. Uwe Aßmann

44

10.4.1. Example of Roles of
Persons in Business Applications

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

45

Role Models of Persons

BusinessContact
(Contact)

Retailer
(Retail)

Guarantor
(Guarantor)

Customer
(Customer)

Client
(Contact)

Employee
(Employee)

Debitor
(Debitor)

Investor
(Investor)

Client
(Retail)

Client
(Debitor)

Client
(Investor)

Client
(Customer)

Client
(Guarantor)

Client
(Employee)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

46

<<implementation class>>
Employee View

Implementation With Interfaces
(or Mixins)

Client
(Employee)

<<implementation class>>
Person

<<implementation class>>
CustomerView

Client
(Contact)

<<implementation class>>
GuarantorView

Client
(Contact)

BusinessContact
(Contact)

Guarantor
(Guarantor)

Customer
(Customer)

Employee
(Employee)

Client
(Contact)

Client
(Customer)

Client
(Guarantor)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

47

<<implementation class>>
Employee View

Implementation of Person With
Multi-Bridge (Role Objects)

Client
(Employee)

<<implementation class>>
Person

<<implementation class>>
CustomerView

Client
(Contact)

<<implementation class>>
Guarantor View

Client
(Contact)

<<implementation class>>
Customer

<<implementation class>>
Guarantor

<<implementation class>>
Employee

Employee
(Employee)

Guarantor
(Guarantor)

Client
(Guarantor)

BusinessContact
(Contact)

Customer
(Customer)

Client
(Contact)

Client
(Customer)

Design Patterns and Frameworks, © Prof. Uwe Aßmann

48

10.4.2 Example:
Actors, Films, and Directors

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

49

Actors, Films, and Directors

► We model actors, directors, producers, and their films
► Actors have a genre (lover, serious, comedian) and play

on a certain media (TV, cinema, Shakespeare)
► Directors and producers have similar attributes
► Films also
► Actors have an age (young, medium, old)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

50

Example Role Model for Actors

Actor
(Profession)

Director
(Profession)

Producer
(Profession)

OldAge
(Person)

MiddleAge
(Person)

YoungAge
(Person)

Person
(Person)

Lover
(Genre)

Comedian
(Genre)

Serious
(Genre)

MediaOfDirector
(Media)

MediaOfProducer
(Media)

MediaOfActor
(Media)

SkakespeareFilm
(Media)

CinemaFilm
(Media)

TVFilm
(Media)

LatinLover
(Genre)

NordicLover
(Genre)

Vamp
(Genre)

ShakespeareActor
(Media)

CinemaActor
(Media)

TVActor
(Media)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

51

There are Many Ways to Implement
This Role Model

► With a facet based model, modelling some role models
as class hierachies of a Dimensional Hierarchies model

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

52

Shakespeare
Film

Cinema
Film

Very Simple Class Model for
Actors and Films

Person

DirectorActor
Age

Producer

employs *

hasATVFilm

Middle OldYoung

► 4-dimensional model (facets)

FilmPerson

Media

Genre

hasA

Serious ComedianLover

Cinema
Actor

Shakes
peare
Actor

TV
Actor

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

53

Some roles implemented
by overlaying, inheritance,
delegation, and role
objects

Person

DirectorActor

Age

Producer

Film playsIn
directs

produces

Actor
(Profession)

Director
(Profession)

Producer
(Profession)

Person
(Person)

ShakespeareProducer
(Media)

CinemaProducer
(Media)

TVProducer
(Media)SkakespearTheatre

(Media)

CinemaFilm
(Media)

TVFilm
(Media)

MiddleOldAge Young

ShakespeareDirector
(Media)

CinemaDirector
(Media)

TVDirector
(Media)

ShakespeareActor
(Media)

CinemaActor
(Media)

TVActor
(Media)

Genre

SeriousLover Comedian

NordicLatin Vamp

Design Patterns and Frameworks, © Prof. Uwe Aßmann

54

10.5 More on Roles

10.5.1 Relation of Role Modelling to
Other Software Engineering
Technologies

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

55

Hyperslices are Named Slices Through
the Concern Matrix

Lifecycle

Application
concepts

Application
concerns

Requirements
Design

Implementation
.....

Printing
Querying

Account

Loan

Transfer

Booking
...

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

56

Hyperslice Composition and Role
Mapping
► Hyperslices (views) are essentially the same concept as

role models
– But work also on other abstractions than classes and

feature sets
– Hyperslices can be defined on statements and statement

blocks
– Role models are more unstructured since they do not

prerequisite slices, dimensions, or layers

► Hyperslice composition is similar to role mapping
– Is guided by a composition that merges views (roles)
– Hyperslices are independent (no constraints between

hyperslices)

► Role models implement aspects
– Because the roles are related by role constraints

► More in “Component-based Software Engineering”

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

57

Roles vs Facets

► A facet is concerned always with one logical object
– A facet classification is a product lattice

► Role models may crosscut many objects
– They are concerned with collaboration of at least 2 objects
– Hence, a facet is like a role of one object, but from n facet

dimensions.
– A class can have arbitrarily many roles, but only n facets

► Roles may be played for some time; facets must have a
facet value the entire lifetime of the object

Design Patterns and Frameworks, © Prof. Uwe Aßmann

58

10.5.2 Role Types Formally

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

59

Rigid Types

► Example:
– A Book is a rigid type
– A Reader is a non-rigid type
– A Reader can stop reading, but a Book stays a Book

► Semantically rigid types are tied to the identity of objects
► A semantically rigid type is tied to a class invariant (holds

for all objects at all times)

► A semantically non-rigid type is a dynamic type that is
indicating a state of the object

If an object that has a (semantically) rigid type, it cannot stop being of
the type without loosing its identity

If an object that has a (semantically) rigid type, it cannot stop being of
the type without loosing its identity

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

60

Founded Types

► A founded type is a type if an object of the type is always
in collaboration (association) with another object.

– Example: Reader is a founded type because for being a
reader, one has to have a book.

A role type (ability) is a founded and non-rigid type
Role types (abilities) are in collaboration and if the object does no

longer play the role type, it does not give up identity

Natural types are non-founded and semantically rigid.
Book is a natural type.
A natural type is independent of a relationship
The objects cannot leave it

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

61

The End: Summary

► Role-based modelling is more general and finer-grained
than class-based modelling

► Role mapping is the process of allocating roles to
concrete implementation classes

► Hence, role mapping decides how the classes of the
design pattern are allocated to implementation classes
(and this can be quite different)

► Roles are important for design patterns
■ If a design pattern occurs in an application, some class of the

application plays the role of a class in the pattern
► Roles are dynamic classes: they change over time (non-rigid) and are

context-dependent (founded)

	Coaster in Space
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

