11. Frameworks and Patterns -

J Framework Variation Patterns

N

@

©
O

1. Open Role Framework Hooks
Framework Hook Patterns

Prof. Dr. U. ABmann
Software Engineering

n

Faculty of Informatics 3. Delegation-Based Framework Hook
Dresden University of Patterns

Technol :
Versi e:2n1°;g1yz/1/12 4. Recursion-Based Framework Hook
erston 1215, Patterns

5. Unification-Based
6. Inheritance-Based
7. T&H in Frameworks

Design Patterns and Frameworks, © Prof. Uwe ABmann

Secondary Literature

Literature (To Be Read)

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» W. Pree. Framework Development and Reuse Support. In Visual
Object-Oriented Programming, Manning Publishing Co., editors M. M.
Burnett and A. Goldberg and T. G. Lewis, Pp, 253-268, 1995.
www.softwareresearch.net/publications/J003.pdf

- Or: D. Karlsson. Metapatterns. Paper in Design Pattern seminar, IDA,
2001. Available at home page.

» D. Baumer, G. Gryczan, C. Lilienthal, D. Riehle, H. Zullighoven.
Framework Development for Large Systems. Communications of the
ACM 40(10), Oct. 1997.
http://citeseer.ist.pst.edu/bumer97framework.html

Goal

Prof. Uwe ABmann, Design Patterns and Frameworks

=

» W. Pree. Design Patterns for Object-oriented Software Development.
Addison-Wesley 1995. Unfortunately out of print.

» M. Fontoura, W. Pree, B. Rumpe. The UML Profile for Framework
Architectures. Addison-Wesley, Object Technology Series. 2002.

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Studying variabilities of frameworks with the T&H concept
» Introducing different types of hooks for frameworks and components
(TH patterns)
» Understand framework hook patterns
- The box-like notation for frameworks and framework hooks patterns
» More types of dimensional frameworks

Patterns and Frameworks
11.1 Framework Instantiation and

» Historically, design patterns were discovered during framework

Merging With Open Roles

Prof. Uwe ABmann, Design Patterns and Frameworks

&

development
- Smalltalk MVC [Goldberg, Reenskaug]
- ET++[Gamma]
- Interviews [Vlissides]
» Design patterns are building blocks of frameworks
- Framework developers vary and extend classes of the framework
» Design patterns are for the making of the products of a product line
architecture
- Application developers vary and extend classes of the framework

- Variability design patterns can be used as framework variation
points (framework variation hooks)

- Extensibility design patterns can be used as framework extension
points (framework extension hooks)

Framework Instantiation with Open
Roles (Role Hot Spots)

©
D

@

Design Patterns and Frameworks, © Prof. Uwe ARBmann

Remember: The Partial Figure Model,
a Standard Class-Ability Model

Prof. Uwe ABmann, Design Patterns and Frameworks

=

» The most simple form of framework instantiation is Riehle/Gross'
open role instantiation based on association
- Here, frameworks are class models with “open” role hot spots

- Open role hooks (free, unbound abilities) are role types that have not
yet been assigned to classes

» The hot spots form an integration repertoire (integration role type set)
- the set of role types, by which the framework can be integrated into

an application
- Aka framework hooks, framework variation points
» A framework is instantiated by binding its integration repertoire to
classes
- The abilities are bound, role constraints have to be respected
» Hence, role models play the bridge between a framework and its
clients

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Graphics

Client
(Figure Hierarch

Figure Client
(Figure Hierarchy

(Graphics)

)

Graphics
(Graphics)

Y) ’
Observer o
(Figure Observer),

=
a

Subject Chil I)
(Figure Observer), (Figure Hierarchy),

Partial class model for figure editor

Predecessor ubject
(Figure Chain) Int. Fig. Observer;

]

|RectangIeFigure

| CompositeFigure |
I 1

59)

Client Figure
(RectangleFigure), (RectangleFigure),

A

RectangleFigure’

Client
()

Observer
Int. Fig. Observer,

yAN

| ClassFigure

RootFigure |

Client
(ClassFigure)

Figure
(ClassFigure)

Root
(FigureHierarchy)

Successor Parent —1
(Figure Chain) (Figure Hierarchy),

L |

RootClient
(FigureHierarchy)

The Figure Framework, Partially The Figure Framework, Fully

ml| Instantiated ml| Instantiated to an Editor

' _Framework | . Framework

— =2 =T —_ = _.__.___-__-J_________I

| |

1 ~ ﬁgure | w [Figure Client |
ol qure Hierarchy (Graphics) |

Client
T g wigure Hierarchy), (Graphics)
Cl
F

Q
Editor Graphics Editor Graphics

Graphics
(Graphics)

lient
Figure Hierarchy’

?a"\

T

N n
! Subject hild ik Client bserver N | ubject hild
(Figure Observer)) 0..* (Figure Observer) (Figure Hierarchy), I \ (ClassFigure))\(Figure Observyl 0.* | Figure Observer] Figure Hierarchy |
I T T T T T T
- Predecessor ubject | o (Client ootClient Predecessor ubject |
s -l— (Figure Chain) Int. Fig. Observer \ 5 \RectangleFigure) \(FigureHierarchy, | (Figure Chain) \nt. Fig. Observey)
- = — I R g
e L 7
Elot spots | 'T' | IFrozen spots g | JAN |
fopen role types) | (bound role o |
5 \ \ I RectangleFigure CompositeFigure }tmes | & | RectangleFigure
1% 1%}
5| (Gi - I - - £ |
2 \ Client Figure Successor Parent 2 Successor arent
& "\(RectangleFigure) (RectangleFigure) (Figure Chain) (Figure Hierarchy) I / £ - KectangIeFlgure (Figure Chain) Figure Hierarchy |
f=4 =4
[=2} {=2]
3 I A (T— 2 | A Pbserver
a \ Int. Fig. Observer I / - | Int. Fig. Observer |
c c
g | | g
g [c | |
i I | :
% \ ClassFigure RootFigure % | ClassFigure RootFigure |
3 | e :
g Root = lient
a o)
& I (FigureHierarchy | RectangleFigure, oot |
I FigureHierarchy’
Client Figure L_(Figure |
@ (ClassFigure) (ClassFigure) I @ P\ (ClassFigure)
| E—
. L e _ _— _ _

The FiguireiF@rﬁe;voirlgilggtgmﬁlgdito;niuI\/IL Editor _
[femeer) Merging of Frameworks

UMLEditor

Graphics

ﬁgure (Client
(Figure Hierarchy), (Graphics) epeye
- — 12 || » Two frameworks are merged by binding the integration abilities of A to

Subject hild &
| (Figure Observer), (Figure Hierarchy), | Classes Of B
|((Prodecessor) @bject | - Role constraints have to be respected
(Figure Chain) Int. Fig. Observer

| IT' | » Hence, role models play the bridge between different frameworks

| | - Or layers of frameworks

I Successor Parent I
| (Figure Chain) (Figure Hierarchy), |

Observer
| Int. Fig. Observer;

11

1

Client RootClient
(ClassDiagram) (FigureHierarchy)

RectangleFigure|

Figure
(RectangleFigure),

(Figure Hierarchy

RectangleTool

Client
(RectangleFigure),

RootFigure

Root
(FigureHierarchy)

ClassDiagram

ClassFigure

Figure
(ClassFigure)

e

Prof. Uwe ABmann, Design Patterns and Frameworks

Prof. Uwe ARmann, Design Patterns and Frameworks

Client
(ClassFigure)

ClassDiagram
(ClassDiagram)

3
&

A Graphics Framework

The Figure and Graphics Frameworks
all Merged T

Client
(Imaging)

(Clipping)

13

Prof. Uwe ABmann, Design Patterns and Frameworks

&

" Graphics__
I.__._@_p_.'ES_.__l

Graphics

Cllent
(Graphlcs)

Cllent
Cllpplng I

Graphics

—> ¥
(Graphics)

Graphics
(Clipping)

Polyliner

(Polylining)

Client
(Polylining)

Texter

Cllent —>
Textlng

Client
(Imaging) |

(Texting)

Imager
(Imaging)

Image

Image
(Imaging)

| Font

Font

| -
> \ (Texting) { Il

| Polygon
I - Polygon -

| ™\ (Polylining) !‘

Limitations of Open Role Instantiation

15

Prof. Uwe ABmann, Design Patterns and Frameworks

=

role binding, with role constraints

more elaborated

[Riehle/Gross] role-based framework instantiation relies on simple

Role binding for framework instantiation and merging can be even

14 _
Editor

works

5

Client
(RectangleFigure),

Client
(Figure Hierarchy),

Observer
(Figure Observer)

Figure
RectangleFigure),

' _Figure

Flgure Client
> (Figure Hlerarchy) (Graphics)

Subject Child U
(Figure Observ r), (Figure Hierarchy), |

[l
T / |
CompositeFigure 1

Successor Parent
| (Figure Chain) F|gure Hierarchy

RectangleFigure

J

ann, Design Patterns g

A Client
(Polylining)
I

Client
ClassFigure)

bserver
Int. Fig. Observer,

RootFigure

ClassFigure |

Prof.

Client Client
(RectangleFigure) A\ (Texting)

Root
(FigureHierarchy)

Figure
(ClassFigure)

RootClient
(FigureHierarchy)

Predecessor ubject
(Figure Chain) Int. Fig. Observer |

Imager
(Imaging)

Image ,

Image
(Imaging)

Font

Font
(Texting)

Polygon

Polygon
(Polylining)

11.2 Framework Hook Patterns

16

Design Patterns and Frameworks, © Prof. Uwe ARmann

O

Pree's Framework Hook Patterns
(Template&Hook Role Models)

T&H Patterns and Standard Patterns

17

Prof. Uwe ABmann, Design Patterns and Frameworks

)

» In Pree's work, framework hooks are characterized by design
patterns (framework hook patterns)
- They describe the roles of classes on the border of the framework
- The framework hook pattern determines the way how the classes
interact with each other at the border of the framework
» A framework variation point is characterized with a Template&Hook
conceptual pattern
- Pree called this a T&H metapattern, we call this a T&H role model

» AT&H role model has 2 parts:

- Atemplate class (or template role type), which gives the skeleton
algorithm of the framework: Fix, grasps commonalities

- Ahook class, which can be exchanged (or: a hook role type which can
be bound to a client class): Variable, even extensible, grasps variability
and extension

Fixed Part | Template Flexible Part, Variation Point

T&H in Standard Design Patterns

18

» A TH-role model overlays another pattern (hence Pree called it a
metapattern)
- The template part fixes parts of the pattern
- The hook part keeps parts of the pattern variable, i.e., open for binding.

Prof. Uwe ABmann, Design Patterns and Frameworks

O

&

| Fixed Part, Framework | | Plexible Part, Variation Point |
! | |
' / || Role\mapping |
| / [| \ |
! Subject I E— Observer |
| | |
| _______ — L - - - —— - - -

T&H in Framework Hook Patterns

19

Prof. Uwe ABmann, Design Patterns and Frameworks

=

» Subject and Observer can vary; nothing is fixed
- SortingAlgorithm and AnimationEngine can be exchanged

Subject Pattern role model

/ \' Role mapping
\

/
SortingAlgorithm » AnimationEngine | Class model

20

Prof. Uwe ABmann, Design Patterns and Frameworks

» Subject can no longer vary; it is fixed

- SortingAlgorithm cannot be exchanged (exeption:
DimensionalClassHierarchies)

| Fixed Part | Plexible Part, Variation PointI
| o * Framework hook role
Template Hook] model (T&H role

| o model) |

! I [I |

! Subject | > Pattern roje model

| 7] Y |

| i | \ |

| SortingAlgorithm t——{ AnimationEngine Cla§s model

Why T&H Patterns Add More to
Standard Patterns

Framework Hook Patterns

21

Prof. Uwe ABmann, Design Patterns and Frameworks

&

> Due to the Riehle-Gross Law, we know that metapatterns are role models that overlay the
role models of design patterns
- Metapatterns are very general role models that can be mixed into every design pattern
- As design patterns describe application models, metapatterns describe design patterns
> In [Pree], roles are not considered. Pree has only hook classes and hook methods. Here, we
combine [Pree] and [Riehle/Gross]
If a metapattern is overlayed to a role model of a design pattern, it adds commonality/variability
knowledge, describing a framework variation point
- The template part characterizes the framework's fixed parts
- The hook part characterizes the framework's variation point
» Hence we call a design pattern with metapattern information framework hook pattern

M~

T&H Pattern

(Metapattern)
Framework
Hook Pattern
Standard
Design Pattern

Remark

22

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» The template-hook role model
- adds more pragmatics to a standard design pattern, information about
commonality and variability. Hence, framework variation points are
described
- The template-hook role model adds more constraints to a standard
design pattern. Some things can no longer be exchanged
» Pree discovered 7 framework hook patterns, i.e., 7 template-hook
role models for framework hooks

- The template-hook role models describe the parameterization of the
framework by open role hooks

- They include Riehle's open role hooks, but add more variants
- There are even other ones (see next chapter)

Differences between Standard Patterns
and Framework Hook Patterns

23

Prof. Uwe ABmann, Design Patterns and Frameworks

=

» Note: we mean in the following:
- with the role Template, that the class of the role type belongs to the
framework
- with the role Hook, that the class of the role type belongs to the
application
- with the role TemplateM(ethod) that the role defines a template method,
calling a hook method HookM(ethod)
» Problem: Pree uses TemplateM/HookM, but calls them
Template/Hook

- and varies HookM classes, which is misleading because the variation is
actually in the framework and the fixed part in the application

24

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Framework hook pattern

Fixed and variable part
Elementary pattern and role
model

Applicable only at the border
of the framework,

» Standard design pattern

- Often, no template parts; -
everything flows (exception: _
TemplateClass and -Method)

- Rich pattern and role model -
- Applicable everywhere in the

framework - or at the border of a
- No T&H metapattern component, i.e., in an
overlayed “interface”
- One T&H metapattern
overlayed

A Simple Notation for Framework Hook
Patterns .
3 11.3 Delegation-Based
25 || » Insight: A framework hook pattern does something like this I Fram eWOI‘k H OOk Patterns
- It provides a design pattern at the border of a framework
- It combines a T&H role model with standard role models
26
: Fixed Part
i (framework)
H |
§ ~
5 ~
g ~
£ Flexible Part, Variation Point
e
g Fixed Part P
3 (framework) Phd
) T|H|™
@ @ Design Patterns and Frameworks, © Prof. Uwe ABmann
T—H Connection Pattern TemplateClass with 1-T--H
| (3
27 || » T&H connection pattern (T--H framework hook) 28 || » Attention: in this case, the Template role also carries the TemplateM
- Similar to Riehle/Gross open role type, but with aggregation instead of role (framework has template method, application has hook method)
association
- Tand H classes are coupled by a template-hook role model, the hook is F = = — = 7 Mini-connector
. . .. I r - 7 -
a delegatee (the relation is called a mini-connector) —— = - = — — -
- “Whole” is in the framework, “Part” is in the plugin DataGenerato

Data data;

I _a
p i Generatorimpl
im

| o 2 generateData(Data
| imp.generateData(data) ZF
I

I

I

I

I

I

generateData(Data) | | generateData(Data)

£ £

Z 1-T—H (aggregated open role hook) n-T—H (flat extension) a generate()

5 Hpartof T T has n H parts, n is dynamic &

g Mini-connectorl g

g _ /I' - 7 - g

a — A % a

S n

& T <} /H 7 T <>_ H g TestDataGenerator ExhaustiveGenerato] RandomGenerator
<

5 5

/
~ /
Template —> Template 0
— DI

=

TemplateClass Runtime Scenario

3

Dimensional Hierarchies with 1-T--H
(Bridge with Template/Hook Constraint)

29

Template object

:TestDataGenerator |

generate() |

Prof. Uwe ABmann, Design Patterns and Frameworks

&

[
[
| Data data;
[
[

Internationalization as
Dimensional Class Hierarchy with 1-T--H

Hook object

/
/

¥

:ExhaustiveGenerator

generateData(Data)

30

| Framework

TemplateClas Template n
templateMethod()» |

7

hookObject.hookMethod(

» Template classes cannot be varied by user, but by the hook subclass

|
ookObljec)t(Hook] HookClass
| hookMethod()

L

| _I:_II c:‘:e(I:on;:\rete .IM c:;e(l:on;rete ConcreteHookClassA| ConcreteHookClassB
| TemplateA | | Template
| templateMethod()ﬁE> hookMethod() hookMethod()

Implementation A

... hookObject.hookMethod();

Prof. Uwe ABmann, Design Patterns and Frameworks

Internationalization as
Dimensional Class Hierarchy with 1-T--H

templateMethod(}?

Implementation B

I

I

I
... hookObject.hookMethod);

|

fulfil a contract!

Attention: To be a template class,
the templateMethod should

= [
1 | 1§
— J. —_ = = — l_l —————
 _Framework , _ | _framework
[LayoutAlgorith{ Tompjate '3"9”49‘;[Hook }nguage | |
|
! layoutPage() ? | ‘getText() | LayoutAlgorith(Temp|ate 'a"g“agﬁ[Hook WLanguage
I ... layout from left to righ ol
| language.getText() | H layoutPage() | getText()
| ... layout... | §| |
| | £ » may be abbreviated to:
|| MoreConcrete MoreConcrete I Enali . 2
nglish (GB) Chinese a _— = = =
[TemplateA TemplateB ! & Framework R
layoutPage() O layoutPage() O | getText() getText() S lr e -]
= : : | |
... layout from right to left ; I é |
language.getText() :: | In the template class, the “Da LayoutAlgorithm | Language
1 = E |
| |
1

O s . — —

... layout...

... layout fromleft to right
language.getText()
... layout...

templateMethod fulfills the contract
that all content of the page has
been layouted.

&

Multiple Internationalization as
ml| Dimensional Class Hierarchy with n-T--H

Multiple Internationalization as
g/l Dimensional Class Hierarchy with n-T--H

~ A
L Framework b
[LayoutAlgorith{ Tompjate 'a"g”abis Hook)_anguage
I layoutPage() ®) ! getText()
I Iayout from left to righ
[for I in languages
layout(l.getText())
I
I
|| MoreConcrete MoreConcrete . .
| TemplateA TemplateB English (GB) Chinese
layoutPage() ? getText() getText()

... layout from left to right
for I in languages

layoutPage() ¢
layout(l.getText()) li

... layout from right to left
for I in languages

In the template class, the
templateMethod fulfills the contract
that all content of the page has

layout(l.getText()) been layouted.

— —_—— — DR p— —_— — — —

’_fl.____-__

Multiple Internationalization as
ml| N-T—H Dimensional Hierarchy

34 || » n-T—H is based on *-Bridge pattern
» This framework hook allows for multiple internationalized texts
- An application can layout several languages at the same time
» The layout algorithm can be coupled with different languages that use
the same layout (multiple internationalization)
» However, mixin of different layout languages freely with languages is
impossible!
» Here, you can see the power of the T—H concept:
- 1-T--H: dynamic variability
- n-T—H: dynamic extension (flat, non-recursive)

Prof. Uwe ABmann, Design Patterns and Frameworks

Observer as n-T—H of a Framework

i
1 | 1§
i _— — — _ - o————
_ Framework | | Framework | _
I
| Subject observers Observer

languages

Y

Hook WLanguage

LayoutAlgorith Template

layoutPage() getText()

;I_ Framework
I
I
I
I
I

—_——_— — — — —

_Framework |, _ _

LayoutAlgorithm | «+ Language

Prof. Uwe ABmann, Design Panenr

_ —_— —_— —_— ——

&
I
I
I
|
I
I
I

Template
update ()

register(Observer)

return SubjectState

I
I
I
| :gzﬁg(l)ster(ObserVg_r?" for all b in observers { !
| y b.update () |
VAN |
| I
| | | ConcreteObserver
. Subject
ConcreteSubject | _1_| ObserverState =
! - update () °© Subject.getState()
| | getState() Or, | | Observerstate
| setState() |
| SubjectState |
| I
|

Observer Runtime Scenario: Several Observer-based Extensible
ml| Visualizers in Parallel al| Frameworks
37 B lF_ ool
| Framework
Template object Hook objects | |
[e — = — 7 | SortingAlgorithp vieualizere Visualizer
, _ Framework | _, Template | > Hook
£ - |
g ¥ | |
g ' :SortingAlgorithm | :TextVisualizer | |
§ | register(Observer) update() 'E ———————— "
g | unregister(Observer) | § _— o — — -
g | nofify() :HtmIVisualizer g Framework =~
2 getState() | N 8 | — === :
| setState() | update() g | |
3 | 2
§ b e = I | :JDKVisualizer § | SortingAlgorithm| « Visualizer
S & |
update() | |

Bridge Frameworks Have

&
&

Observer
| m|| T—H Hooks
39 || » The Observer pattern is used for extensibility 40 || » Every dimension corresponds to a T—H hook
» With T&H, it becomes clear that Observers are a perfect way to » Bridges, Strategy, Adapter can be used as mini-connectors

achieve product lines with new feature extensions:
- Model a critical template algorithm as Subject (template of the n-T--H)

Core Facet: Animal Domain

- Model an extension as a new Observer (hook of the n-T--H) l ™ | l = | l T3 | lani-EonFecE)rl
P
~
/ \
7 \ P
First facet dimengion (e.g., Group) | |-
H1 ! ‘

I I
| I

Second facet (e.g., Age)

H2

Prof. Uwe ABmann, Design Patterns and Frameworks

Prof. Uwe ABmann, Design Patterns and Frameworks

Third facet (e.g., Nurture)

=
&

Bridge Framework Runtime Scenario

Bridge Framework Runtime Scenario,
ml| with dimension 1 in Framework

|

O\; :AnimalAge
|
|

__________ «| :AnimalNurture

:AnimalNurture

-
41 42
Template object Hook objects
————— /
Template object Hook objects [Framework 1 2
— ramework | _ L . . .

, | TFraméwork Ty _ [_ | 4 '
| B I :Animal :AnimalGroup |
: ¥ : .
5 | | g |
[:Animal :AnimalGrou £

! “Animatiroup |
5 > 5
5 [g
¢ : |
5 o 4
£ g :AnimalAge
g g
3 | 2
5 5
2 g

&

Extensible Bridge Framework with n-
T--H

&

n-T—H Makes Bridge Frameworks
al| Extensible

43

Prof. Uwe ABmann, Design Patterns and Frameworks

=

—

JIF Framework

______J__.I

BusinessObjectCorJ

I

I

| " Framework | _
Template |

I

r 1

| |

_ o T_ _ _ _ 1 | |
«) extensions | Core Object |

- Extension *

BusinessObjectExtension

44 >

Prof. Uwe ABmann, Design Patterns and Frameworks

&

An n-T—H framework hook makes dimensional bridge frameworks

extensible with new dimensions at run time

New extensions in new dimensions can be added and removed on-

the-fly
Applications

Business applications
System software
3- and n-tier architectures

T—H Patterns Result in Blackbox
Frameworks

45 || » The main relation between T and H is delegation.

» Hence, when overriding and instantiating H, the framework is
untouched (blackbox framework)

» 1-T—H gives variability
» n-T—H gives extensibility

Prof. Uwe ABmann, Design Patterns and Frameworks

&

H<=T Recursive Connection

11.4 The H<=T Recursion
Metapattern

46

O

|

Design Patterns and Frameworks, © Prof. Uwe ARBmann

Decorator as 1-H<=T

47 || » T&H recursive connection pattern (H<=T framework hook, deep
extension pattern)

- with 1- or n-ObjectRecursion

- H-class inherits from T, T is part of H

- His decorator of T (1:1) or a composed class in a composite pattern
(2:n)

n-H<=T (deep graph extension)
H has n T parts

T inherit from H
n-ObjectRecursion/Composite

n : H
<l_

H<=T (deep list extension)
T part of H

H inherit from T
1-ObjectRecursion/Decorator

T ﬂ]H T

Template ’ Template V"l

Prof. Uwe ABmann, Design Patterns and Frameworks

=

48

e e e

_Framework _,

» All decorator objects have to conform to the template class of the
Decorator pattern

Template
A
I

~Mini-connectorl
“ T =<
o ~
mimiced \
rd

Record

i

TransientRecord

access()

PersistentDecorator

access() access()

- 11

mimiced.access()

£
2
é PersistentRead PersistentRecord
) OnlyRecord 0 if (lloaded()) load();
S access() ——-—---..L .
< if (lloaded()) load()f ~ — |- access() boolean loaded() —=-{ super.access();
. if (modified()) dump():
Super_access()‘ boolean Ioaded() boolean mOdIerd() (()) p()
load() load()
@ dump()

Decorator as Framework Hook . B
Composite as n-H<=T
m|| Pattern m
49 || » Lists extend the framework 50 || » Composite is as instance of n-ObjectRecursion and n-H<=T
Template object [7 Framewok |

o - - _— — = — 1

| _Framework , - > Component |

4 s I g | commonOperation() |

! :TransientRecord ! £ | add(Component)

% | Hook obiect L remove(Component) |

: 00k objects : ! getType(int) Template }<!

| I 5 | childObjects

a | . I S |

Ej | :PersistentRecord >|:PersistentRecord ,;?

;é’ ________ ﬂé Hook

< < (e]0]

2 E Leaf Composite ;

5 3 . : oy

* * commonOperation() gzg(négnm?)gi;a;'t?no for all g in childObjects

remove(Component) g.commonOperation()

@ @ getType(int)

Composite as Framework Hook :
Production Data Systems
m{| Pattern m
51 || » Part/Whole hierarchies extend the framework 52 || » Piece lists are part/whole hierarchies of technical artefacts in
production
Template object » The roles of a composite form the hook of the framework
| Framework |, _ _
4 '/I Hook objects g Template class Composed
! :Picture I ué Car
! | 3| Fremework , _ _ _ /
i | £
! | - > SN
Ej | :Picture :Line :Rectangle § | ComposedPiece <t CarPart
— — — —— — — — g1
g £ |
% / \\ % | | AtomicPiece <‘— AtomicCarPart
5 / \ . 5 | | Atomic
S :Picture :Line :Rectangle & B |

=

Production Data Systems

H<=T

53 || » Piece lists are part/whole hierarchies of technical artefacts in

production

» Example: SAP PDM module, IBM San Francisco

Template object

Hook objects

MREMOYOT N _/I/

V4
:Piecel.ist

ARumannneDnniaadd ~tawe ~ e . = 5

RN

B

:Chassis

:Motor

:Window

:Roof

AN

:Cabin

)

Bridge Frameworks Can Be Done with
H<=T (Bridge H<=T Framework)

54 >

white-box

» Mini-connector H<=T is used
» Attention: The class with the Template role carries the HookM role,

the class with the Hook role carries TemplateM role

- The template (fixed) class in the framework is called from the hook class
in the application (which carries the template method role)

- Pree calls the pattern T<=H, but means TemplateM <= HookM !!

Prof. Uwe ABmann, Design Patterns and Frameworks

&

O

H<=T framework hooks result in frameworks between black-box and

Bridge Frameworks Can Be Done with
H<=T (Bridge H<=T Framework)

55 || » Adimension may correspond to a H<=T hook of the core framework

» Composite, Decorator, Bureaucracy can be used as mini-connectors

Core Facet: Animal Domain

IMmi-J)nrﬁctEq

Prof. Uwe ABmann, Design Patterns and Frameworks

[™M | [T2 | [73]
~ / AN lDE_COLa_tO"_ B
\ —
First facet dimensign - -
(e.g., Group) 1‘0 / \
H1 ! ‘
| |
Second facet (e.g., Age) <> ‘ ’
H2 /
\ /
Third f N e
ird facet (e.g., Nurture) | m3 |

=

56 || » Composite as mini-connector

Core Facet: Core Domain

Mini-connector
Compositum _,
-—

irst facet dimension

esign Paneuﬁ and Frameworks

Second facet

Prof. Uwe ARmann, D

Third facet

D)

T | [12 | T3 |
VAN N AN =
\
A/ -
S \
H1 ‘
|
<> |
H2 I
/
<>
H3 | —

TH
|
J 115 The TH Uniﬁcation Metapattern 58 || » Unified T&H pattern (TH framework hook)

- T-class == H-class

57

TH 1-TH (deep list extension) n-TH (deep tree
T== T== extension)

TH part of TH TH part of TH T==

“funny” Decorator “funny” Decorator TH has n TH parts

“funny” 1:n-Composite

TH TH <>__] TH <n>__]
_
)

rof. Uwe ABmann, Design Patterns and Frameworks

Template K> Template : Hook Template §->

ChainOfResponsibility as 1-TH Event Handlers
.| |

59 || » A Chain is recursing on the abstract super class, i.e., 60

- All classes in the inheritance tree know they hide some other class
(unlike the ObjectRecursion)

Design Patterns and Frameworks, © Prof. Uwe ABmann

ConcreteWorker1 ConcreteWorker2 Logger SecurityHandler

Successor Successor
L -_— -_— -_— - 0 o -_ -_— -_— -
L Framework < L Framework
e — ——— — g —-— — — — —
g B
s
[= I
. i .
Client g Client
[g |
&
[o I
c
2
4 g N 4
=3
g
£
2
<
[}
]
=]
i<
[*%

Prof. Uwe ABmann, Design Patterns and Frameworks

Work() Work() handleEvent() handleEvent()

=
&

Event Handlers: Object Diagram

Why TH Unification Makes Sense

61

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Client

Template object

N
N

- -
Framework

- — — — L ="

A |
RN

:Authentication

:Logger

Hook objects

handleEvent()

handleEvent()

:SecurityHandler|

handleEvent()

:Personalizer|

handleEvent()

Bridge Frameworks Can Be Done with

TH (Bridge TH Framework)

63

Prof. Uwe ABmann, Design Patterns and Frameworks

=

» Adimension may correspond to a H<=T hook

» Chain can be used as mini-connector

Core Facet: Animal Domain

First facet dimen

T1 T2 T3
< & O
H1

H2
H3

Second facet (e.g., Age)

Third facet (e.g., Nurture)

A
l

62

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» |If a hook class is the same as the template class,
- Some methods are template methods, others are hook methods
- Together with the template, the hooks can be exchanged
» Template methods in the template class are not abstract, but
concrete
- They are build from referencing hook methods of the hook class
» As we saw in the last chapter, merging role types in one class can
make an application faster, but less flexible

11.6 The H<T Whitebox Inheritance

J Metapattern

64

Design Patterns and Frameworks, © Prof. Uwe ARmann

Whitebox Framework with H<T

A<t al| Framework Hook

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» If H inherits from T, H<T framework port (whitebox framework pattern) es || » Also TemplateMethod can be applied (HookM <= TemplateM)
- Whitebox reuse of T in the framework, while deriving H in the application

P ———

Framework

- They are build from referencing hook methods of the hook class

. Template
» A H<T framework hook means whitebox framework

- (not of Pree, earlier known) F = o — = — — — — 1

» If a hook class inherits from a template class, it inherits the skeleton |
algorithm Client Worker |

- Template methods in the template class are not abstract, but concrete Work() |

I

I

ConcreteWorker1 ConcreteWorker2

H<T T q H Work() Work()

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Summary of Cardinalities and Extensibility of
T&H Patterns and Framework af| Framework Hooks
68 » 1:1—-T and H correspond 1:
J HOOkS 1} TZaslSpart P H

- Hooks are not extensible at runtime

- 1:1 T&H framework hooks should be used when the behavior of the
framework should be varied, but not extended at the variation point

» Because variability patterns form the mini-connector between T and H,
derived from 1-ObjectRecursion
» 1:n—T and H correspond 1:n

- Thas nH parts

- Hooks are extensible, also dynamically

- 1:n T&H framework hooks should be used when the behavior of the
framework should not only be varied, but also extended dynamically at
the variation point

* Because extensibility patterns form the mini-connector between T and H,
derived from n-ObjectRecursion

Prof. Uwe ABmann, Design Patterns and Frameworks

Design Patterns and Frameworks, © Prof. Uwe ABmann

&

Deriving a Simple Notation for
Framework Hook Patterns
| al| Framework Hooks
Inheritance Unification
69 H<T 70 H<T TH
H inherit from T T"l_ h
whitebox T== T —
Aggregation/Association T H TH I
¢ T-H H<=T Recursion 1-TH S 1T-H H<=T 1-TH
§ Hpartof T T part of H T== §
= Tis core class of H inherit from T TH part of TH 2 b
g complex object Decorator “funny” Decorator g T ‘ H T ™
s | T KCHH T |4 A TH s]
f nT-H n-H<=T n-TH R e]
§ T has n H parts H has n T parts T== ‘fg n-T--H n-H<=T n-TH
= Tis core class of H inherit from T TH has n TH parts =
& complex object 1:n-Deﬁorator “funny” 1:n-Composite & T ’ n H TH
T O H iz ™
) H D

Short-Hand Notation for Framework
m|| HOOKS
71 H<T TH

T<] H TH

% 1-T--H H<= 1-TH
2 T H T< H TH 1
é n-T--H n-H<=T n-TH
: T [+H | H TH »

=

11.7 T&H in Frameworks

Design Patterns and Frameworks, © Prof. Uwe ARmann

Advantages of T&H Framework Hook
Patterns

Pree's First Law of Framework
Instantiation

73

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» One big mess with frameworks is the trustworthy framework
instantiation problem:

- If a framework is instantiated by inheritance (whitebox) or delegation
(blackbox), illegal combinations of parameters appear

- Applications may not run stabel

» Framework Hook Patterns describe much more precise how the
variation points of a framework should be instantiated

- They allow for determining whether the framework is varied or extended
in a product line

Pree's Second Law of Framework
Instantiation

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Variability-based framework hooks define framework variation points
- If you want to constrain the uses of a framework to a fixed set of
variations, use variability patterns for framework hooks
(1-TH patterns)

If a framework hook is based on a variability pattern,

the framework is varied, but NOT extended

A Multi-lingual dimensional Data
Generator

75

Prof. Uwe ABmann, Design Patterns and Frameworks

=

» Extensibility-based framework hooks define framework extension
points
- If you do not want to constrain the uses of a framework to a fixed set of
variations, use extensibility patterns for framework hooks (n-TH
patterns)

If a framework hook is based on an extensibility pattern,

the framework is extended, but not varied

76

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» One framework hook may have several bridge dimensions

— — — — —

7 \ /7 \ VARN
DataGeneraItor \ Layou{ \ Data \
= |] | | 4 - — — —
Data \ I Langupge* ,Gramm‘ar * |
GenerationSﬂrategy \] \]
~ ~ ~
Variable Extensible
Variation Point Extension Points

7 N\
'} 1 L] -
Loyout |, [Language Framework Instantiation Market
D produceLayout()l] LroduceLayout() Dl
”~ N > .
77 layou >[ceneratorstrategy | V7 78 Today, frameworks are the most important software technology for
-~ product lines in large companies
D mp ~~—= | generateData(Data) L. i .
ataGenerator » Instantiating big frameworks is very hard
generate() Of .. data ZF - Requires special instantiation consultancy, which is a big market
- SAP Germany has a marker for instantiation companies of their
£ ¢ 1
g imp.generateData(data| g framework!)) o
£ ExhaustiveGeneratgr| RandomGenerator £ - If you go to a big company, teach them framework instantiation patterns!
% generateData(Data) generateDa}a(%ta) ‘L‘%
g 7 > , g
T) 2
TestDataGenerator ReportGenerator)\ Data . » | Grammar §
o H
generate) O generate() O \ ’Data createData() . bata createData() {3
1 ' ~ 7 1 , g
£ : ! g
% data = : \ / %
3 parseTestDataGrammar(); ': N H
g imp.generateData(data); ' 5
Q 1 o
data = TestData ReportData
readFromForm();
@ imp.generateData(data); TestData createData()| ReportData createDa() @

A Multi-lingual Business Framework

A Business Framework with Several
Languages Simultaneously

79

Prof. Uwe ABmann, Design Patterns and Frameworks

=

[Business F;am;vork__l_ Product
Piecelist
Business Object Layout Workflow
Scheduling |
Extensions * Language | | Scheduling

80

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Problem: business frameworks have an enormous number of
framework hooks

Business Framewor | _|Prodvet

| Piecelist* :
| |
| |
| |
| Business Object Layout Workflow |

Va
Langua&gi)

Extensions =

Schedulir@*‘

OpenOffice

GEBOS Banking Layered Framework

| -
g1 || ~ Varabiliies . _ g2 || » If atemplate class of a framework hook has several hook classes
- Type of program (word, slides, drawings, calc, .. (e.g., as an n-Bridge), then the Framework becomes layered
* Structured documents (Composite pattern)
* Embeddings of all document types into other document types possible
- Language e —
- Gul . [GEEOS_Fraﬂewo_rk | :
% Visible toolbar (visibility, position) of MainToolbar, FunctionBar, ObjectBar, ColorBar, % | I TechnicalKernel | |
H OptionBar, PresentationBar, HyperlinkBar H | |
E * Views, such as StandardView, OutlineView, HandoutView E |11 | | |
g g
_____ | | !
g Office Framework Document 0 | N
- - - = N DR | 1] I
g Editor | & ||
-§’ [| § |1 Banking Objects Banking Values Folders ! ||
a . = — 4
£ [£ — Business . . |
?s(| | |||;<§yered |1’| /_y Sections ValueHierarchy TechnicalFolders _ |
E Editor Layout DocumentLayout | SpellChecker | gamework| Application = |
B — — — - Toolb n—EDT'i-I— . knowledge |
cLl[)"-nenS,onaLt — »| Toolbars * Language Language a — —AmmeE - - - - = - = = = = = =
Framework View R ‘
&rh-T--H
Ty— —— — Language ‘ @

=

83

Specialized Patterns

Decorator

i

ObjectRecursion

Prof. Uwe ABmann, Design Patterns and Framew

-~

Composite

$
I
I

Proxy

Chain

4}'/‘XI

Bridge

i

Visitor

Observer

Dimensional
ClassHierarchies

v

Recursive
H<=T Pattern

TH Pattern

Framework Patterns

Connection
T--H Pattern

~(rom

'<+'

84

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» When overlayed with a T--H metapattern, a design pattern becomes

a framework hook pattern for the interface of a framework

» These are mini-connectors between a framework and its application

classes
- More flexible that just generic classes (generic frameworks) or
delegation (blackbox) or inheritance (whitebox)
» The framework hook patterns determine very precisely how a
framework is to be instantiated
» There are more kinds of dimensional frameworks
- Dimensional T—H (n-Bridge LF), H<=T, TH, T>H dimensional
frameworks
» 1-T&H framework hook patterns can be used for variability of the
framework

» n-T&H for extensibility.

The End

85

SylomawrelS pue sulaned ubisaq ‘uuewsy amn Joid

o)

