
Design Patterns and Frameworks, © Prof. Uwe Aßmann

1

12. Frameworks and Patterns -
Framework Extension Patterns

Prof. Dr. U. Aßmann

Software Engineering Group

Faculty of Informatics

Dresden University of Technology

Version 12-1.1, 12/18/12

1)Extension Object Pattern

2)Large Layered Frameworks

3)Role Object Pattern

4)GenVoca Pattern

5)Mixin Layer Pattern

6)Concerns for Layered
Frameworks

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

2

Literature (To Be Read)

► E. Gamma. The Extension Objects Pattern. Conf. On Pattern Languages of Programming
(PLOP) 97, ACM. http://portal.acm.org/citation.cfm?id=273448.273455#

► Y. Smaragdakis and D. Batory. Mixin layers: an object-oriented implementation technique for
refinements and collaboration-based designs. ACM Transactions on Software Engineering and
Methodology, 11(2):215–255, 2002.

► D. Bäumer, D. Riehle, W. Silberski, M. Wulf. Role Object. Conf. On Pattern Languages of
Programming (PLOP) 97. http://citeseer.ist.pst.edu/baumer97role.html

► D. Riehle, T. Gross. Role Model Based Framework Design and Integration. Proc. 1998 Conf. On
Object-oriented Programing Systems, Languages, and Applications (OOPSLA 98) ACM Press,
1998. http://citeseer.ist.pst.edu/riehle98role.html

► D. Bäumer, G. Gryczan, C. Lilienthal, D. Riehle, H. Züllighoven. Framework Development for
Large Systems. Communications of the ACM 40(10), Oct. 1997.
http://citeseer.ist.pst.edu/bumer97framework.html

► [Batory] Roberto E. Lopez-Herrejon and Don S. Batory. A standard problem for evaluating
product-line methodologies. In Jan Bosch, editor, GCSE, volume 2186 of Lecture Notes in
Computer Science, pages 10-24. Springer, 2001.

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

3

Further Literature

► D. Bäumer. Softwarearchitekturen für die rahmenwerkbasierte Konstruktion grosser
Anwendungssysteme. PhD thesis, 1997, Universität Hamburg.

► JWAM sites
– http://www.c1-wps.de/forschung-und-lehre/fachpublikationen/
– www.jwam.de
– http://sourceforge.net/projects/jwamtoolconstr/

► U. Aßmann. Composing Frameworks and Components for Families of Semantic Web
Applications. Lecture Notes In Computer Science, vol. 2901, Nov. 2003.

► U. Aßmann, J. Johannes, J. Henriksson, and I. Savga. Composition of rule sets and
ontologies. In F. Bry, editor, Reasoning Web, Second Int. Summer School 2006,
number 4126 in LNCS, pages 68-92, Sept 2006. Springer.

► Y. Smaragdakis, D. Batory. Mixin Layers: An object-oriented implementation for
refinements and collaboration-based designs.

► Y. Smaragdakis, D. Batory. Implementing layered designs with mixin layers. In
Lecture Notes in Computer Science (LNCS) 1998, Springer-Verlag.

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

4

Goal

► Studying extensible framework hook patterns
– Understand patterns Extensions Object, Role Object, and Genvoca
– See how layered frameworks can be implemented by Role Object and Genvoca

► Understand these patterns as extension points of frameworks, i.e.,
framework hook patterns

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

5

Frameworks Must Be Extensible

► Frameworks must evolve, be adapted
► Idea: instead of variability hooks, use extensibility hooks

– based on basic extensibility patterns

► Presented in this lecture:
– Gamma's Extension Object Pattern (EOP)
– Layered frameworks

● Riehle/Züllighoven's RoleObject pattern (ROP)
● Batory's mixin layer pattern (GenVoca pattern)

Design Patterns and Frameworks, © Prof. Uwe Aßmann

6

12.1 The ExtensionObjects Pattern
(EOP)

Extensions of Objects, visibile for the Client

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

7

Structure of ExtensionObjects

► Whenever a complex object has non-mandatory parts that can be added, if necessary
► Extension is the base class of all extensions
► AbstractExtension defines an interface for a concrete hierarchy of extension objects
► Extensions can be added, retrieved, and removed by clients

Subject

Concrete
Extension2

Concrete
Extension3

Concrete
Extension1

Extension

1 or n

AbstractExtension

getExtension(name)
addExtension(name, Extension)
removeExtension(name)

ConcreteSubject

getExtension(name)
addExtension(name, Extension)
removeExtension(name)

extension

owner

Client

AbstractExtension

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

8

Example: Spellcheckers in Document
Models
► E.g., OpenDoc or OLE documents

Document

English
Spellchecker

German
Spellchecker

French
Spellchecker

Extension

1 or n

<<template>>

Spellchecker

getExtension(name)
addExtension(name, Extension)
removeExtension(name)

ConcreteDocument

getExtension(name)
addExtension(name, Extension)
removeExtension(name)

extension

owner

Client

WordCounter

<<hook>>

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

9

Discussion of EOP

► If there is 1 extension object, naming is not necessary
► If there are n extension objects, a dictionary (map) has to map names to

extension objects
► Advantages

– Complex objects can be split into simpler parts
– Extensions can model (optional) roles of objects
– Extensions can be added dynamically and unforeseen

► Disadvantage
– Clients have to manage extension objects themselves, and hence, are more

complex
– Extension objects suffer from the object schizophrenia problem: the logical this

of an extension object is the subject, but the physical this is the extension object

► Relations to Other Patterns
– If many objects of an application have the same roles that are realized by

extension objects, ExtensionObjects can be generalized to the Role Object
Pattern

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

10

Framework

ExtensionObjects at Framework
Borders
► Since with EOP, clients have to manage extensions themselves, the use of

the template object in the framework does not help to use the hook objects

Subject

Concrete
Extension2

Concrete
Extension3

Concrete
Extension1

Extension

1 or n

<<template>>

AbstractExtension

getExtension(name)
addExtension(name, Extension)
removeExtension(name)

ConcreteSubject

getExtension(name)
addExtension(name, Extension)
removeExtension(name)

extension

owner

Client

AbstractExtension

<<hook>>

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

11

EOP as Framework Hook Pattern

► Since the hook object is not mandatory, also 1-H=T is a real extensibility
pattern for frameworks

T H

n-H=T
T has n H parts
T owns H parts

nT H

1-H=T
T has 1 H part
T owns H

1

T H= T H=
*

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

12

Optional Tools for Documents in an
Office Framework

Office Framework

SpellChecker

Document

WordCount

=
*

a.s.o

Design Patterns and Frameworks, © Prof. Uwe Aßmann

13

12.2 Extensibility of Frameworks with
Layers

... with Layered Role Object Frameworks

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

14

Case Study GEBOS

► GEBOS is a banking application for RWG banking group with 450 banks,
south of Germany

– Banking applications, with services: tellers, loans, stocks, investment, self-
service

– 2500 C++ classes, arranged in frameworks, Arranged in layers

► Concepts of the bank application domain
– Banks organize themselves in business sections (tellers, loans, etc.)

● Department of specialists that have a certain expertise (loans, teller, investment)

– Workplace contexts
● Service centers offer customers an all-in-one service
● Services of the business sections
● Every workplace needs different application systems

– Business domain
● Business objects such as bill, order, account

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

15

Application Framework Layers

Adviser
Desktop

Telephone
Banking

Teller

Application Layers

Teller Loans Investment

Business Section Layers

Account Loan Product

Business Domain Layer

...

...

...

Desktop
Layer

Tool

Folders

Values

...

Technical
Kernel
Layer

Graphic
Interface

Collections

MOP

► Gebos demonstrates that it is advantageous to structure an application
framework into layers

– Application layers, Business Section layers, Business domain layers
– Desktop Layer, Technical kernel layer

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

16

Layers

► Technical Kernel Layer
– Service layer, independent of other layers
– Domain independent, application independent
– Is a framework itself

● Collections
● Middleware
● Wrappers
● Garbage collection, late creation, factories, trace support

– Is a blackbox framework

► Desktop Layer
– Support for interactive workplaces
– Contains a tool construction framework (for the Tools&Materials approach)
– MVC framework, Folder framework, Value framework for business and

domain values
● AccountNumber, clientNumber, Money etc

– Look and feel, reusable for office domains with GUI applications

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

17

Layers

► Business Domain Layer contains the business core concepts:
Account, customer, product, value types

– Shares knowledge for all business sections
– Think about how to divide the knowledge between business domain

layer and business section layers

► Business Section Layers
– Subclassing business domain and desktop layers, “inherits” knowledge

from both
– Business section concepts: Borrower, investor, garantor, loan, loan

account, tools. Organizational entities and notions
– Distinguish from business domain

► Application Layers
– Application concepts
– Separate from Business Sections, because workplaces need different

functionality from different business sections
– Uses (and inherits) from all other layers

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

18

Goals in Framework Design of GEBOS

► Minimize coupling between frameworks and application systems
– Frameworks should never be touched when developing an application system

► Model different facets of business sections, products, and business domain
concepts

– Use role-object design pattern

► Minimize coupling between the layers
– Separate concepts from implementation
– Move implementation to lower layers

► Achieved with the RoleObject pattern

Design Patterns and Frameworks, © Prof. Uwe Aßmann

19

12.3 The RoleObject Pattern

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

20

Framework Extensibility with Riehles
Role-Object Layers
► The Role-Object Pattern (ROP) is both a variability and extensibility pattern

– Realizes the “dispatch on all layers” for application frameworks
– Can easily be extended with new layers

► Extension of a core layer (a blackbox framework of core objects) with layers
of delegatees (role objects)

– A conceptual object (complex object, subject) of the application is split over
all layers

– Core and role objects conceptually belong together to the conceptual object,
but distribute over the layers

– Role objects are views on the conceptual object

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

21

Application Layers

Business Domain Layer

Riehle/Züllighovens Role Object
Pattern (ROP)

Client

Customer

Guarantor InvestorBorrower

CustomerCore CustomerRole*

potential run-time
access

static knowledge

Business Section Layers

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

22

Application Layer

Business Section Layers

Business Domain Layer

Role Object Pattern with Inheritance
Drawn Upwards

Client

Customer

Guarantor InvestorBorrower

CustomerCore CustomerRole*

<<interfaces>>

<<implementations>>

<<template classes>>

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

23

Run-Time Structure: Deep Roles

<<application
layer 2>>

InvestorAppl

<<business domain layer>>
CustomerCore

<<business section layer>>
Investor

next

role

role

<<application layer 1>>
Client

► At runtime, RoleObjects pass service requests (queries) on to the core
– RoleObjects can be stacked in a Decorator chain (deep roles)

► The core knows all RoleObjects, and distributes requests (Mediator)
– The core manages the RoleObjects in a map that can be dynamically extended

Mediator

Colleague

Colleague

next

<<application
layer 2>>
StockAppl

role

Colleague

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

24 Application

Layer 2

Core Layer 1

Riehle/Züllighovens Role Object
Pattern Abstracted

Client
Conceptual

Role2 Role3Role1

Core Role*

<<interfaces>>

<<implementations>>

Layer 3

Role2 Role3Role1

<<implementations>>

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

25

Application

Layer 2

Core Layer 1

Riehle/Züllighovens Role Object
Pattern Variant 2 (“Flat Roles”)

Client
Conceptual

Role2 Role3Role1

Core Role
*

<<interfaces>>

<<implementations>>

Layer 3

Role2 Role3Role1

<<implementations>>

► Variant 2 has no Decorator; roles only know cores

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

26

Variant “Flat Roles”: Run-Time
Structure

<<application
layer 2>>

InvestorAppl

<<business domain layer>>
CustomerCore

<<business section layer>>
Investor

next

role

role

<<application layer 1>>
Client

► At runtime, RoleObjects pass service requests (queries) on to the core
– RoleObjects can be stacked in a Decorator chain

► The core knows all RoleObjects, and distributes requests (Mediator)
– The core manages the RoleObjects in a map that can be dynamically extended

Mediator

Colleague

Colleague

next

<<application
layer 2>>
StockAppl

role

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

27

Run-Time Structure: Flat Roles

<<application
layer 2>>

InvestorAppl

<<business domain layer>>
CustomerCore

<<business section layer>>
Investor

core

role

role

<<application layer 1>>
Client

► At runtime, RoleObjects pass service requests (queries) on to the core
– RoleObjects are directly linked to the core (flat roles)

Mediator

Colleague

Colleague

core

<<application
layer 2>>
StockAppl

role

core

Colleague

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

28

Application

Core Layer

Structure of Core Layer Client

Conceptual

Core Role*

service1()
service2()
service3()

addRole()
removeRole()

hasRole()
giveRole()

service1()
service2()
service3()

addRole()
removeRole()

hasRole()
giveRole()

addRole()
removeRole()

hasRole()
giveRole()

service1()
service2()
service3()

<<delegate>>

new

► Services are
■ directly available (black): role

object is registered, service in role
object

■ available (red): then role object is
registered; service is not in role,
but can be delegated via core

■ loadable (green): interface exists in
“Conceptual”, but role must be
created and registered to be
delegatable; role map must be
bound with role object

■ loadable and hidden (blue): then
service is defined in a role
subclass, NOT existing in
“Conceptual”; but can be loaded
and accessed from the role
directly; role map must be
extended

Role Map

SubRole

service4()

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

29

Run-time Behavior of ROP

► Change of role:
– Different Role Objects may belong to the same role type (same ability)
– Over time, the role object for a role type may change, due to polymorphic

behavior of the role
– This expresses states of the role type in the application

● E.g., Borrrower --> UnsafeBorrower --> TrustedBorrower

► Roles are created on-demand
– In the beginning, the Subject is slim, i.e., carries few roles.
– At service requests, the core creates roles and enters them in the role map

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

30

Core Layer 1

Core Layer with Traded Call

Conceptual

Core Role*

<<interfaces>>

accept(ServiceDescription)
service1()

addRole()
removeRole()

hasRole()
giveRole()

accept(ServiceDescription)
service1()

addRole()
addRole(ServiceDescription)

removeRole()
hasRole()
giveRole()

addRole()
removeRole()

hasRole()
giveRole()

accept(S.D.)
service1()

Role Map

// Traded call //
Interpret serviceDescription;
Lookup concrete service
 in role map;
Call;

► To add services dynamically (beyond the service interfaces in the conceptual
object), add a trader to the core

● A trader is a method that interprets a service request based on a service
description

// enter traded role //
Interpret serviceDescription;
add concrete role and service
 under service description
 in role map;

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

31

RoleObject and Other Patterns

► Role object pattern is not only a Decorator
– It is based on 1-H<=T, i.e., 1-ObjectRecursion

● All role objects inherit from the abstractum

– Remember, 1-ObjectRecursion based patterns lend themselves to
extension

– And 1-H<=T framework hook patterns provide extensible frameworks
– 1:n relationship between core and role objects
– Role objects decorate the core object, and pass requests on to it

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

32

Business Section Loan Layer

Business Section Investment Layer

Business Domain Layer

Role Object Pattern Vs Inheritance
(White-Box Framework Layers)

Customer

Investor

Borrower

CustomerCore CustomerRole*

Account Product

Savings
Account

Loan
Account

Special Term
Savings

Special Term
Loan

<<template classes>>

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

33

Business Section Loan Layer

Business Section Investment Layer

Business Domain Layer

Role Object Pattern Vs Inheritance
(White-Box Framework Layers)

Customer

Investor

Borrower

CustomerCore CustomerRole*

Account

Savings
Account

Loan
Account

AccountCore AccountRole

<<interfaces>>

*

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

34

Comparison of Role Objects with
Inheritance
► Simple inheritance has one instance of a subclass at a time

– Subclass can change over time (polymorphism)

► The role object has many of them at the same time
– All role objects can change (role polymorphism)

► Only changes in the base layers (technical, presentation, business) affect
other layers

– Changes in the business section layers do not affect the business domain layers

► The relation of core and role objects is a special form of part-of (combined
with inheritance)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

35

Business Section Loan Layer

Business Section Investment Layer

Business Domain Layer

Role Object Pattern with Template and
Hook Stereotypes

Customer

Investor

Borrower

CustomerCore CustomerRole*

Account

Savings
Account

Loan
Account

AccountCore AccountRole

<<template class>>

<<template class>>

<<template class>>

<<template class>> <<hook class>><<hook class>>
*

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

36

Business Section Loan Layer

Business Section Investment Layer

Business Domain Layer

Role Object Pattern and Role Models
on Role Layers

Customer

Investor

Borrower

CustomerCore CustomerRole*

Account

Savings
Account

Loan
Account

AccountCore AccountRole*

► Usually, roles of one subject talk to other roles of another subject on the
same layer (within a role model)

► Cores never talk to each other directly

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

37

Switching Role Layers

► At run time, entire role models on role layers can be exchanged (variable role
layers)

Business Section Loan Layer

Business Section Investment Layer

Business Domain Layer

Customer

Garantor

Borrower

CustomerCore CustomerRole*

Account

Garantee
Contract

Loan
Account

AccountCore AccountRole*

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

38

Riehle/Züllighovens Layer Pattern As
Framework Hook Pattern

C

R

Core-Role-Pattern

R

R

C

n-TrH mini-connector

R

Conceptual

Role n-TrH
T2 has H parts

H and T2 inherit
from T1

Core

Special partOf

Con

T1

H

T2

n n

n

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

39

RoleObject Ensures Extensibility

► The RoleObject pattern lends itself not only to variability, but also to static
and dynamic extensibility

– If a framework hook is a role object pattern, the hook can be extended in
unforeseen ways without changing the framework!

– New layers of the application or the framework can be added at design time or
runtime

► Powerful extension concept with ROP-Trader
– Whenever you have to design something complex which should be extensible

in unforeseen ways, consider Role Object

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

40

Riehle/Züllighovens Layered Role
Object Framework

C

RCore Layer

R

R

Role Layer 1 Role Layer 2 Role Layer 3

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

41

Extension in
Layered Role Object Frameworks

C

RCore Layer

R

R

Role Layer 1 Role Layer 2 Role Layer 3

R

Role Layer 4

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

42

RoleObject Can Implement
Dimensions That Are Not Independent
► The role objects implement dimensions

– Core object implements primary dimension
– Role object secondary dimension

► Role objects realize one conceptual object, instead of a role model
crosscutting several conceptual objects

– Facets are independent dimensions of a conceptual objects
– Every dimension can be varied independently

► Comparison to the standard implementation of facets by Multi-Bridge (see
Chapter “Simple Extensibility”)

– Multi-Bridge has no inheritance between ConceptualObject, Core and Role
– Multi-Bridge suffers from object schizophrenia, ROP can implement “this()” on

itself without object schizophrenia
– Calls to the role are not dispatched to the LogicalObject
– Bridges must not inherit from each other, RoleObjects can

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

43

Benefit of
Layered Role Objects Frameworks
► Implements conceptual objects with layered dependent dimensions

– Not only independent dimensions

► Together with layering,
– Easily extensible
– Enormous variability
– Simple structure for extensible product line architecture results

► For instance: Layered Frameworks for Business Software
– Dispatch on all layers is necessary

● Implementation without multimethods (in standard languages) very hard. Only
CLOS, Cecil, and MultiJava are good here

– That is one reason why business frameworks are so hard
● SanFrancisco business framework of IBM didn't make it though a dynamic

extensibility pattern
● That's also why these applications are so expensive

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

44

The JWAM Framework

► Java WAM (Werkzeug Automat Material) is a layered framework for the
Tools&Material pattern language www.jwam.de
http://sourceforge.net/projects/jwamtoolconstr/

► The JWAM site has a lot of interesting papers, e.g., the PhD thesis of
Bäumer

Application Layer

Business Section Layer

Subject Layer (Domain Layer)

...

...

...

Desktop
Layer

Tool

Folders

Values

...

Technical
Kernel
Layer

Messaging

Collections

MOP

Technical Layer (including JDK)

Language Extension Layer (other frameworks, such as JUnit)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

45

JWAM has a Kernel

► 100 classes and interfaces
► Simple applications can be built with the kernel only
► Extensions can be added, extension components:

– Equipment components
● Ready to use packages such as desktop, registry, form-service

– Integration components
● Database connection...

Design Patterns and Frameworks, © Prof. Uwe Aßmann

46

12.4 The GenVoca Pattern, Mixin
Layers, and Layered Mixin
Frameworks

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

47

The Mixin Concept

► A mixin is a partial class, for an extension of another class
► A mixin-base is a class with a generic super, a mixin parameterizes this generic super
► Some languages have mixins (Scala, C#, Eiffel)
► Otherwise, mixins can be expressed as class fragments that can be parameterized with a

superclass (C++)
► Mixins can implement (static) roles and facets

template <class S>
class EmployeeMixin extends S {

// class extension..
Salary salary;
Employer emp;

}

template <class S>
class EmployeeMixin extends S {

// class extension..
Salary salary;
Employer emp;

}

EmployeeMixin<Person> employeeOfPerson;
EmployeeMixin<German> employeeOfGerman;
EmployeeMixin<Club> employeeOfClub;

EmployeeMixin<Person> employeeOfPerson;
EmployeeMixin<German> employeeOfGerman;
EmployeeMixin<Club> employeeOfClub;

Person

EmployeeMixin

<<parameterize>>

EmployedPerson

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

48

The GenVoca Pattern

► If several mixin parameterizations are nested, the GenVoca pattern results
[Batory]

template <class S> class EmployeeMixin extends S {
Salary salary;
Employer emp;

}
template <class S> class ParentMixin extends S {

Child child;
Money kindergeld;

}
template <class S> class HobbyMixin extends S {

Hobby hobby;
}
// Persons composed with GenVoca pattern
HobbyMixin<ParentMixin<EmployeeMixin<Person>>>> assmann;
EmployeeMixin<ParentMixin<HobbyMixin<Person>>>> assmann2;
// Have assmann and assmann2 the same type?

template <class S> class EmployeeMixin extends S {
Salary salary;
Employer emp;

}
template <class S> class ParentMixin extends S {

Child child;
Money kindergeld;

}
template <class S> class HobbyMixin extends S {

Hobby hobby;
}
// Persons composed with GenVoca pattern
HobbyMixin<ParentMixin<EmployeeMixin<Person>>>> assmann;
EmployeeMixin<ParentMixin<HobbyMixin<Person>>>> assmann2;
// Have assmann and assmann2 the same type?

Person

EmployeeMixin

ParentMixin

HobbyMixin

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

49

GenVoca Variations

► When different variants exist for a “abstraction layer”, parameterizations
express configurations of a product line

// Variants
Person: Man, Woman
ParentMixin: FatherMixin, MotherMixin
EmployeeMixin: TimedEmployee, PermanentEmployee
HobbyMixin: PigeonFriend, Sportsman, GolfPlayer

// Compositions
GolfPlayer<TimedEmployee<Father<Man>>>> assmann;
PigeonFriend<PermanentEmployee<Father<Man>>>> miller;
GolfPlayer<PermanentEmployee<Mother<Woman>>>> brown;

// Variants
Person: Man, Woman
ParentMixin: FatherMixin, MotherMixin
EmployeeMixin: TimedEmployee, PermanentEmployee
HobbyMixin: PigeonFriend, Sportsman, GolfPlayer

// Compositions
GolfPlayer<TimedEmployee<Father<Man>>>> assmann;
PigeonFriend<PermanentEmployee<Father<Man>>>> miller;
GolfPlayer<PermanentEmployee<Mother<Woman>>>> brown;

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

50

Variations on Different Abstraction
Layers form Product Variants
► Variants can be formed on every layer

Person

ParentMixin

<<parameterize>>

EmployeeMixin

<<parameterize>>

HobbyMixin

<<parameterize>>

Man

Father

TimedEmployee

GolfPlayer

Permanent
Employee

PigeonFriend

Woman

Mother

Permanent
Employee

GolfPlayer

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

51

Variations on Different Role Layers

► Abstraction layers correspond to role layers of complex objects
► Roles collaborate, but are not implemented by role objects, but by mixins

Person

ParentMixin

<<parameterize>>

EmployeeMixin

<<parameterize>>

HobbyMixin

<<parameterize>>

Man

Father

TimedEmployee

GolfPlayer

Permanent
Employee

PigeonFriend

Woman

Mother

Permanent
Employee

GolfPlayer

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

52

Discussion

► A mixin layer groups all mixins of a role abstraction layer
► Mixins play in the GenVoca pattern the same role as role objects in the role

object pattern and layered role frameworks
– However, all role objects are embedded into one physical object
– There is a physical identity for the entire logical object
– No object schizophrenia to be avoided
– GenVoca applications are more efficient, since they merge all roles together into

one physical object (see the Aßmann's law on role merging)

► Similarly to layered role object frameworks, layered GenVoca frameworks
can model big product lines

– Every abstraction layer (mixin layer) expresses variability
– New mixin layers model extensibility

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

53

12.5 The Mixin Layer Pattern

► While the GenVoca pattern deals with single stacking of parameterizations, the MixinLayer
pattern groups all roles of an abstraction layer together and composes entire layers

► MixinLayer treats all logical objects of an application

Person

ParentMixin

<<parameterize>>

EmployeeMixin

<<parameterize>>

HobbyMixin

<<parameterize>>

Work

ParentalWork

WorkRights

LeisureWork

Location

Home

Workshop

HobbyLocation

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

54

FullTimePerson FullTimeWork FullTimeLocation

PartTimePerson PartTimeWork PartTimeLocation

FullTimeLayer

PartTimeLayer

Mixin Layers as Compositional Unit

► A mixin layer gets a name and can be exchanged consistently for a variant,
changing the behavior of the entire layer

Person

Father

<<parameterize>>

<<parameterize>>

Work

ChangingDiapers

Location

Toilet

Mother BreastFeeding ChildrensRoom

NoContract Deliberate Home

NoContract Forced Home

<<parameterize>>

ChildrenAsHobby

FatherLayer

MotherLayer

ForcedToWork

Deliberate

WorkAsHobby

WorkNotAs
Hobby

ChildrenNotAs
Hobby

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

55

Composition of Mixin Layers

► Mixin layers are composed similarly to single GenVoca mixins
– Meaning: All role classes are consistently exchanged with their layer

CoreLayer: FullTime, PartTime
ParentLayer: FatherLayer, MotherLayer
EmployeeLayer: Deliberate, ...
HobbyLayer: WorkAsHobby, Slave....

// This is now mixin layer composition!
WorkAsHobby<Deliberate<FatherLayer<FullTime>>>> assmann;

CoreLayer: FullTime, PartTime
ParentLayer: FatherLayer, MotherLayer
EmployeeLayer: Deliberate, ...
HobbyLayer: WorkAsHobby, Slave....

// This is now mixin layer composition!
WorkAsHobby<Deliberate<FatherLayer<FullTime>>>> assmann;

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

56

Implementation of Mixin Layers with
GenVoca Pattern and Inner Classes
► The role classes of upper layers form super classes of the layer class
► The following pattern allows for separate parameterization of all role mixins,

not the layer as a whole

► The role classes of upper layers form super classes of the layer class
► The following pattern allows for separate parameterization of all role mixins,

not the layer as a whole

class Layer <class Super, class RoleSuper
1
, .., class RoleSuper

n
>

extends Super {
class Role

1
 extends RoleSuper

1
 { .. }

..
class Role

n
 extends RoleSuper

n
 { .. }

.. additional classes..
}

class Layer <class Super, class RoleSuper
1
, .., class RoleSuper

n
>

extends Super {
class Role

1
 extends RoleSuper

1
 { .. }

..
class Role

n
 extends RoleSuper

n
 { .. }

.. additional classes..
}

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

57

Implementation of Mixin Layers with
Designated Inner Classes
► If the target language permits to have inner classes that can be designated

by an expression, mixin layers can be inherited as a whole
► The super mixin layer can be selected by one single expression L<L1>

class Layer <class Super>
// The class Super has n inner role classes RoleSuper

1
, ..,

// RoleSuper
n

extends Super {
class Role

1
 extends Super.RoleSuper

1
 { .. }

..
class Role

n
 extends Super.RoleSuper

n
 { .. }

.. additional classes..
}

class Layer <class Super>
// The class Super has n inner role classes RoleSuper

1
, ..,

// RoleSuper
n

extends Super {
class Role

1
 extends Super.RoleSuper

1
 { .. }

..
class Role

n
 extends Super.RoleSuper

n
 { .. }

.. additional classes..
}

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

58

GraphUndirected VertexWithAdjac

GraphDirected VertexWithoutAdj

Representation
Layer

Example: A Graph Framework

► Graph applications can be structured into mixin layers
► ConnectedOnDFTUndirected = CRL1<CL1<VN1<TL1<RL1>>>>>
► ConnectedOnBFTRevDirected = CRL1<CL1<VN2<TL2<RL2>>>>>

Graph

DFT

Node

VertexDFT

Workspace

BFT VertexBFT

VertexNumber WorkspaceNumber

VertexReverse
Number

WorkspaceNumber

GraphCycleCheck

Traversal
Layer

Vertex Numbering
Layer

CycleLayer

ConnectedRegionLayer

GraphConnected

NodeCycleCheck WorkspaceCycleCheck

NodeConnected WorkspaceConnected

CL1

CRL1

VN2

VN1

TL2

TL1

RL2

RL1

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

59

Layered Mixin Frameworks vs
Layered Role Object Frameworks
► Every mixin layer corresponds to a role layer
► Mixin layers form frameworks that can be extended by mixin layer

composition towards applications
► Same variability effects for big product lines

Person

ParentMixin

EmployeeMixin

HobbyMixin

Work

ParentalWork

WorkRights

LeisureWork

Adviser
Desktop

Telephone
Banking

Teller

Application Layers

Teller Loans Investment

Business Section Layers

Account Loan Product

Business Domain Layer

...

...

...

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

60

Layered Mixin Frameworks vs
Layered Role Object Frameworks
► Unfortunately, the direction of generality is usually drawn in the opposite way

in mixin layer frameworks and role object frameworks
► If we agree to put the “most general abstraction layer” downmost, the

dependencies go into the same direction
► Features on the upper layers depend on the lower layers

Person

ParentMixin

EmployeeMixin

HobbyMixin

Work

ParentalWork

WorkRights

LeisureWork

Adviser
Desktop

Telephone
Banking

Teller

Application Layers

Teller Loans Investment

Business Section Layers

Account Loan Product

Business Domain Layer

...

...

...

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

61

Layered Mixin Frameworks vs
Layered Role Object Frameworks
► Essentially, layered role object frameworks and layered mixin frameworks

provide the same concept for variability and extensibility
► Difference: mini-connector

– Layered role object frameworks use as mini-connector the Role Object Pattern
– Layered mxin frameworks use as mini-connector the GenVoca pattern

Design Patterns and Frameworks, © Prof. Uwe Aßmann

62

12.6 How To Find Concerns for a
Layered Framework

Example: Layered Frameworks for the
Semantic Web

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

63

A New Application Area:
Semantic Web Applications
► Semantic web:

– Standardization technology for the Web and many application domains
– Definition of ontologies, standard dictionaries
– Based on inheritance and constraints

► Every application domain will have its “Semantic Web ontology”
► How to build product families for those domains?

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

64

Component Language
 Semantics

Component Model

Architectural Style Constraints

Application Family Constraints

Application Constraints

User Constraints (Personalization)

Architectural Concerns

Core Conceptual Concerns

Application Concerns

The Concerns of an Application in the
Semantic Web
► Which concerns exist?
► After a little thought: three groups of concerns. (This is not complete, there

might be more)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

65

Layered Frameworks for Product Lines
on the Semantic Web
► We can sort the acyclically dependent concerns into a layered architecture,

in which several ComplexObjects crosscut all layers
– On every level, there are constraints to check the layer for consistency
– All role objects on the layer are checked by the constraints

Generic Component Layer

Composition Time Layer

Component Language Layer

Concrete Component Model Layer

Architectural Style Layer

Application Family Layer

Application Layer

User Layer (Personalization)

Architectural Layers

Core Conceptual Layers

Application Layers
Concern
Constraints

Concern
Constraints

Concern
Constraints

Concern
Constraints

Concern
Constraints

Concern
Constraints

Concern
Constraints

Concern
Constraints

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

66

Layered Frameworks for Composition
Systems
► Even a composition system for web applications can be arranged in role

layers

Generic Component Layer

Composition Time Layer

Component Language Layer

Concrete Component Model Layer

Architectural Style Layer

Application Family Layer

Application Layer

User Layer (Personalization)

Architectural Layers

Core Conceptual Layers

Application Layers
Concern
Constraints

Concern
Constraints

Concern
Constraints

Concern
Constraints

Concern
Constraints

Concern
Constraints

Concern
Constraints

Concern
Constraints

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

67

Layers can be Instantiated Differently

► On every layer of the layered framework, there is variation and extensibility
► New user constraints
► New application constraints
► New application family constraints
► New architectural constraints
► New component models
► New component languages
► Different Languages in One Framework

– Since the language is a layer, it can be exchanged
– Several ontology languages can be used for components in Semantic Web

applications
● BPEL, Datalog, Prolog, OWL

Generic Component Layer

Composition Time Layer

Component Language Layer

Concrete Component
Model Layer

Architectural Style Layer

Application Family Layer

Application Layer

User Layer (Personalization)

Component

Architectural Layers

Core Conceptual Layers

Application Layers

Fragment
Component

Datalog

Prolog

Binary
Datalog

OWL

Web
Services Model

Transaction-based
Web Services Model

Banking Transaction-based
Web Services

MoneyDeposit Inc.
Web Services

Uwe Assmann
Banking Portfolio

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

69

Different Architectures are Possible for
One Component Model
► Since the architectural styles can be exchanged for the same component

model

Generic Component Layer

Composition Time Layer

Component Language Layer

Concrete Component
Model Layer

Architectural Style Layer

Application Family Layer

Application Layer

User Layer (Personalization)

Component

Architectural Layers

Core Conceptual Layers

Application Layers

Fragment
Component

Datalog

EJB

Binary
Datalog

JSP

Runtime
Component

Tax Event-based
Web Services

Tax Authorities
Web Services

Uwe Assmann
Tex Portfolio

Event-based
Web Services Model

Transaction-based
Web Services Model

Banking Transaction-based
Web Services

MoneyDeposit Inc.
Web Services

Uwe Assmann
Banking Portfolio

Web
Services Model

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

71

Different Component Models Can
Coexist
► Interoperability of Semantic Web application is simplified

Generic Component Layer

Composition Time Layer

Component Language Layer

Concrete Component
Model Layer

Architectural Style Layer

Application Family Layer

Application Layer

User Layer (Personalization)

Component

Architectural Layers

Core Conceptual Layers

Application Layers

Fragment
Component

Datalog

EJB

Binary
Datalog

JSP

Web Services Model I

Runtime
Component

Tax Event-based
Web Services

Tax Authorities
Web Services

Uwe Assmann
Tex Portfolio

Event-based
Web Services Model

Transaction-based
Web Services Model

Banking Transaction-based
Web Services

MoneyDeposit Inc.
Web Services

Uwe Assmann
Banking Portfolio

Web Services Model II

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

73

Layered Frameworks and Component
Models
► Once, if languages and component models are layers, layered frameworks

can be generalized considerably.
– Implementation with Layered ROP frameworks or Layered mixin frameworks

► It becomes possible to build totally heterogeneous applications:
– Different framework and component languages
– Different architectures and architectural styles
– Different product lines (application families)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

74

What Have We Learned?

► How can we structure a Product Line as Layered Framework?
– ExtensionObjects is a simple extension mechanism for frameworks
– Layered frameworks provide variability and extensibility for thousands of

different products in a product line

► Process for layered frameworks:
– Identify concerns (abstraction layers), which crosscut all or many objects. These

concerns are similar to facets, but not independent
– Sort them according to their (acyclic) dependencies
– Use ROP or Genvoca pattern for implementation
– Use framework role layers or mixin layers for a layered application

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

75

The End

