22. The San Francisco (SF) Framework

J for Business Applications

Prof. Dr. U. ABmann 1) Architecture of SF
Chair for Software 2) Extensibility Mechanisms
Engineering

_ 3) Special SF Patterns
Faculty of Informatics

Dresden University of
Technology

12-1.0, 1/12/13

Design Patterns and Frameworks, © Prof. Uwe ABmann

San Francisco — Non-Obl. Literature

San Francisco — Obligatory Literature

Prof. Uwe ABmann, Design Patterns and Frameworks

=)

» K.A. Bohrer: Architecture of the San Francisco frameworks
http://researchweb.watson.ibm.com/journal/sj/372/bohrer.html

What is San Francisco (SF)?

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» P. Monday, J. Carey, M. Dangler. SanFrancisco Component Framework: an
introduction. Addison-Wesley, 2000. Overview on San Francisco and its
layered architecture.

» J. Carey et al.: SanFrancisco Design Patterns: blueprints for business
software. Addison-Wesley, 2000.

» Carey, Carlson, "Framework Process Patterns: Lessons Learned
Developing Application Frameworks", Addison-Wesley, 2002

» Carey, Carlson, Graser, "SanFrancisco Design Patterns: Blueprints
for Business Patterns”, Addison-Wesley, 2000.

» |IBM SanFrancisco Documentation Entry
http://csiserv0l.centerprise.com/techdoc/SF/doc_en/ibmsf.sf.FS_DocumentationEntry.html

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Business framework of IBM, to support the building of business applications
= started in March 1995, initial release Aug 1997, stopped in 1999
» Arranged as layered frameworks
= Supporting distributed applications
» Based on business-specific Design Patterns
» Design goals
= flexibility by using object-oriented framework technology
= Dynamic extensibility
= Maximal reuse
= |solation from underlying technology
= Focus on the core, provide the common tasks of every business application
= Rapidly building quality applications
= |ntegration with existing systems

San Francisco Architecture

Common Business Objects (from the Domain
Model)

| Common Functions Financial Interface (CFFI)

5 || » Foundation: infrastructure and services (transactions, collections, administration, conflict 6 || » General business objects: » Financial business objects
control, mstalla'tlon), h|defs dn‘re.rences in un'derlymg tec.hnology. - Value objects: Address, = Value objects: Money, currency

» Common Bu5|_ness Objects: implementations of business objects that are common to more currency, natural calendar gain
than one domain c = Account. | t

L}

» Core Business Processes: business objects and default business logic for selected vertical ompany . , 1058 acc9un
domains (accounts receivable/accounts payable, general ledger, ord‘er management = Business partner, customer » Generalized mechanisms
warehouse management) P = Decimal structure of numbers, = Cached balances

_ g number series generator = Classification
-- & = Document location = Keys and Keyables
Core Business Processes E = Fiscal calendar
""""" Customer = Initials
General et o Solutions g
Ledger Mgmt Ledger © = Payment method and payment
"""""""""""" 2 terms
Warehouse 8)
Mgmt £ = Unit of measure
&
<
o
3
B
o

Prof. Uwe ABmann, Design Patterns and Frameworks

Common Business Objects

Foundation

Java

‘ Dangler]

Component Model of SF:
User-Defined Entity (Dynamic Classes)

Core Business Processes

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Entities: Dynamically extensible »
components in SF
= materials, also persistent

= with global identifiers (handles,

guids)

= Created via factories, entered
into containers
= Splitinto interface class and
implementation class

» Entities are similar to Java Entity

Beans.

>

= Hence, IBM started a move to

port onto EJB, but this was

very difficult

Standard Functions:

constructor (factory method). Calls
a global factory

initialize
getters and setters

set ownership of an entity (to an
entity container)

destroy
externalizeToStream
internalizeFromStream

Global functions:

begin, commit, rollback transaction
Manage work area for a thread

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Common Function Financial Interface (CFFI): common functionality used by
other business processes
» Warehouse management
= Stock movements
= Quality control
» Order management (sales, purchase)
= Order data interchange planning
= Pricing, discounts, order acknowledgment
» Accounts payable (AP), Accounts receivable (AR)
= Payment process
= Business task transfer to other partners
» General ledger
= Journaling (creating, validating, maintaining journals)
= Closing at the end of a financial year

22.2.1. Extending Classes by Dynamic
ml| Subclassing

Business objects are extensible by subclassing (white-box extension)
Classes can be marked as extension points inheriting from Entity

= Naming scheme E<number>_<name>
Subclasses of class PropertyContainer are extensible via a special Design
Pattern

= New attributes (properties) can be added dynamically, without recompilation.

22.1 Extending San Francisco ol >

= Dynamic Extension of

= Classes by dynamic subclassing £ \
S . . z Access works via hash tables
= Object life cycles by state maschine extension £ identf ¢ di | ¢ busi ue d .
. = >
. Business rules % Dynam:c: entifiers for extending value ranges of business value domains
©
é Property
K Container
g T is-a
é 1S-a is-a
§ Person Customer Vendor [+ Company
E A
. 1 extends dynamically
a Gramssssssssssmssmssnnnn FECTTTETETCR FEPTITRRITS .
i Premium :_____ ! Long-Term :
i Behavior : extends: Behavior ‘i
DeSIgn patterns and Frameworks’ © prof Uwe ABmann @ Srsssssssssmssmnsnm s (-j ynamical/'y ---------------------- 10

How it Should have Been:
Dynamic Extension by Roles

Dynamic Class Extension by Pattern
ml| “Property Container” =l

Intent: dynamically extend an instance of class (a business object class) with 12
new properties (dynamically new attributes)
» Motivation: adding dynamically new data, properties or capabilities to specific
instances of business objects

= Qualified association with key “propertyname:String”

» Class modeling does not distinguish roles (context-based und non-rigid
knowledge)

> Roles separate the functional core iof an object of the context-specific (foun
und temporary (non-rigid) features

&

&

2 » Related Patterns: Chain of Responsibility, Controller 2
g g Property
5 5 Container
w w
s s T is-a
§ PropertyContainer g is-a is-a
_25 perty % Person = Customer Vendor [— Company
£ % £ 1 extends dynamically
£ € aressssssssssssssssssssn, gessssssssss | P, .
< i ; i Propert E: i i f :
§ DomainBusinessObject propertyname:String > REIY, ﬁé PremlL.Jm Lo S Long Tgrm :
5 0. 3 Behavior i i Behavior i
5 B e extends beiririinar et
& o dynamically
12

How it Should have Been:
Dynamic Extension by Roles

22.2.2 Lifecycle of Business Objects
(Business Workflow, Process)

13

Prof. Uwe ABmann, Design Patterns and Frameworks

&

> Property Container is not necessary,
because roles add properties to core
objects

» Dynamic class inheritance is replaced
by <<plays-a>>

Property
|_Contai_ner_|
I is-a
plays-a plays-a
Person ---->[Customer]—[Vendor]<---- Company
A
(-
Premium Long - Term]
 Customer l is-a l Customer
13

22.2.3. Extending Business rules by Policy
Classes

14

Prof. Uwe ABmann, Design Patterns and Frameworks

=)

» Abusiness workflow in SanFrancisco is described by an extensible state
machine (statechart)
= However, in the form of a state transition and decision table

= The table rows contain conditions and actions (CA-Rules) and change the state
of the process

» The statechart can be extended dynamically with new paths
= As an action, a transition can extend the statechart (or shrink it)

E/extendStatechart(i)

/shrinkStatechart(i)

Simple Policy Pattern (Business Rule)

15

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Policy Patterns implement business rules

= Policy classes implement business rules a Strategy (TemplateClass)
Pattern as extension points

= ChainOfResponsibility as extension points (for multiple policy objects and
multiple business rules), e.g., for specific rules of product, system, company,
globally

= Composite as extension points: Policies may be added that search for
policies (higher-order policies) in composite data structures

16

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Intent: encapsulate business rule as a set of methods in an object, make
them interchangeable and produce independence from affected business
objects

» Motivation: different versions of a algorithm are required dependent on the
specific situation in a company

> Related Patterns: Simple Policy is a Strategy. Additionally, the strategy
method implements a method in the domain business objects with the same
name (method factoring). Hence, the BO delegates the computation of the
business rule to the strategy

StandardPolicyA

SimplePolicy
domainMethod()

DomainBusinessObject
domainMethod()

d
"~

StandardPolicyB

Chain-Of-Responsibility-Policy Pattern

17

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Intent: encapsulate complex business rule(s) as a chain-of-responsibility

» Motivation: many rules are available for a business case and must be
exchanged dynamically.

» Related Patterns: A typical 1-TH-pattern. COR-Policy is a Chain, combined
with a Strategy. The Chain is searched for appropriate rules that apply to the
current state of business.

= Search order can be changed by higher-order policies

next D StandardPolicyA

DomainBusinessObjec CORPolicy //

i domainMethod(
domainMethod())

StandardPolicyB

/

SF Design Patterns

-

22.3 San Francisco Design Patterns

18

D

= San Francisco uses several new
business-related Design Patterns meeting
particular problems of business
applications

= analyzing typical business applications and
developing generic solutions for recurring
problems

= encourage object-oriented implementation of
business software

= several patterns for several aspects of
business tasks

Design Patterns and Frameworks, © Prof. Uwe ARBmann

Selected SF Patterns:
Dynamic Class Replacement Pattern

- Hierarchy Information

SpecializedDomainClassFactory

creates

SpecializedDomainClass

(3 o
19 Foundational Patterns: Behavioral Patterns: 20 || » Intent: change the behavior without changing the class or application logic.
- Dynamic Class Replacement - Simple Policy Provides a kind of super factory, a factory delivering factories
- Special Class Factory - Chain of Responsibility-Driven Policy > Mptivation: replacg.provid.ed pusiness objects with others that have been
- Property Container (etensible - Token-Driven Policy tailored for a specific application
class) Structural Patterns: » Related Patterns: Abstract Factory and Factory Method
- Business Process Command - Controller §
Process Patterns: - Key/Keyable g
- Cached Aggregate - Generic Interface %
- Keyed Attribute Retrieval Dynamic Behavioral Patterns: é DomainClassFactory creates DomainClass
- List Generation - Extensible Item &
- Hierarchical Extensible Item § BaseFactory Zr ates after ZT
. . . = class ement
- Business Entity Lifecycle 5
<
g

Prof. Uwe ABmann, Design Patterns and Frameworks

&

- Decoupled Processes

&

Selected SF Patterns: Business Process
Command

What Have We Learned?

21

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Intent: a logical business object is implemented as multiple physical objects
and support one business process

» Motivation: encapsulating a business process (a tool) in a command, thus a
logical object combines a group of physical objects

» Related Patterns: Command, Template Method, Facade

Command

I

BusinessProcessCommand |-~

ComponentBusinessClassA

ComponentBusinessClassB

N

ComponentBusinessClassC

The End

23

Prof. Uwe ABmann, Design Patterns and Frameworks

&

22

Prof. Uwe ABmann, Design Patterns and Frameworks

=)

» Big business frameworks are structured according to the principles of
variability and extensibility we have studied in the course.
» IBM San Francisco manages extension points and types them with certain
framework hook patterns, e.g., Strategy/Policy, or Chain.
» If you ever design a business framework, do it
= Layered framework
= Roles for dynamic extension
= The SF patterns

